Modeling Curves and Surfaces

Size: px
Start display at page:

Download "Modeling Curves and Surfaces"

Transcription

1 Modeling Curves and Surfaces Graphics I Modeling for Computer Graphics!? 1

2 How can we generate this kind of objects? Umm!? Mathematical Modeling! S Do not worry too much about your difficulties in mathematics, I can assure you that mine are still greater. 2

3 Our modeling plan Parametric curves o Bezier o B-Spines (subdivision methods) How to extend curves to the surfaces, images, volumetric data sets Parametric versus implicit modeling Simple example: Circle o parametric t Q x(t) y(t) Q 3

4 Parametric versus implicit modeling Polynomial curves Polynomials are fundamental mathematical objects Easy and efficient to compute standard representation Polynomial curves of degree one, two and three where 4

5 User input for a polynomial curve Formula!!! No way Giving 2D(or 3D) points as Pi a good idea Pi : point => arbitrary combination of them is not possible. Why? Affine combination It is not possible to satisfy this condition by this set of polynomials Bernstein basis functions Terms in the expansion of: Second degree polynomials Third degree polynomials Resulting curves 5

6 Bezier Models Bezier curve properties Decasteljau algorithm Subdivision method Flaws of Bezier modeling Graphics I Bezier Model P.Bezier, 1960, Unisurf in Renault automobile designing. Mathematical definition Q(u) Modeling Point in or Old CAD and graphics software curve Postscript METAFONT 6

7 Bezier Curve Definition u is the parameter Berenstein polynomial of order d :Control points ( inputs) Bezier Curve Details Bezier curve of order 1 Bezier curve of order 3 Bezier curve of order 2 7

8 Cubic Bezier Curve properties 1. is a polynomial curve with the domain [0,1] Properties of Non-negative polynomial of order d 8

9 Convex Hull What is the Convex Hull? Given a set of points (in ) The smallest convex polyhedral that includes all the points given Implementation (brute force) Input P[i], d //P[i]: control point, d : degree, u : parameter for u=0 to 1 step 0.01 for i=0 to d b = Berenstein( i, d, u ) q = q + b * P[i] end plot(q); end This program isn t efficient Redundant computations High number of control points High degree polynomial High degree polynomial Unstable computation 9

10 de Casteljau Algorithm Avoid direct evaluating of polynomials Geometric interpretation Consider a planer cubic at u 1 u column by column updating rule Pseudo Code Input P[j], d, u //P[j] : control point, d : degree, u : parameter //output will be Q(u) for i = 1 to d for j = 0 to d-i P[j] =(1-u)*P[j] + u*p[j+1] end end Output??? Why is this algorithm correct? 10

11 Some Observation on Cubic Case After one step of decasteljue algorithm for Obtaining 4 green points 4 purple points Where Small left Bezier curve: Small right Bezier curve: Original Bezier curve Divided and conquer method A discrete approach We start with 4 points We will obtain 8 new points 7 new points New points: New points are closer to the curve We can repeat for any 4 points in the new points sets And initial polyline is replaced by a finer polyline Subdivision method 11

12 Matrix form Unit summation of any row. Non negative elements. Banded structure. L0, L1, L2,L3, R1, R2 and R3 can be found from the decasteljau algorithm 12

13 Subdivision approach versus functional approach Bezier Curve Functional approach Subdivision Approach Weakness of Bezier curves High degree polynomial How can we increase the controlling on the curve without adding control points? Composite Bezier curve: join Bezier curve segments. Apply some constraints at the connection points. What are these constrains? o Positional Continuity = zero degree continuity o Same direction tangents = first degree continuity Any other weakness? 13

14 instability! B-spline Subdivisions Spline curves Chaikin Subdivision: quadratic B-spline Cubic B-spline subdivision Tensor product surfaces Graphics I 14

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example. An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points

More information

Computer Graphics CS 543 Lecture 12 (Part 1) Curves. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics CS 543 Lecture 12 (Part 1) Curves. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics CS 54 Lecture 1 (Part 1) Curves Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) So Far Dealt with straight lines and flat surfaces Real world objects include

More information

CSE 167: Lecture 13: Bézier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Lecture 13: Bézier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 CSE 167: Introduction to Computer Graphics Lecture 13: Bézier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #6 due Friday, Nov 18

More information

We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model

We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant

More information

Geometric Modelling & Curves

Geometric Modelling & Curves Geometric Modelling & Curves Geometric Modeling Creating symbolic models of the physical world has long been a goal of mathematicians, scientists, engineers, etc. Recently technology has advanced sufficiently

More information

CHAPTER 1 Splines and B-splines an Introduction

CHAPTER 1 Splines and B-splines an Introduction CHAPTER 1 Splines and B-splines an Introduction In this first chapter, we consider the following fundamental problem: Given a set of points in the plane, determine a smooth curve that approximates the

More information

(Refer Slide Time: 1:42)

(Refer Slide Time: 1:42) Introduction to Computer Graphics Dr. Prem Kalra Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture - 10 Curves So today we are going to have a new topic. So far

More information

Figure 2.1: Center of mass of four points.

Figure 2.1: Center of mass of four points. Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would

More information

How To Use Design Mentor

How To Use Design Mentor DesignMentor: A Pedagogical Tool for Computer Graphics and Computer Aided Design John L. Lowther and Ching Kuang Shene Programmers: Yuan Zhao and Yan Zhou (ver 1) Budirijanto Purnomo (ver 2) Michigan Technological

More information

Curves and Surfaces. Goals. How do we draw surfaces? How do we specify a surface? How do we approximate a surface?

Curves and Surfaces. Goals. How do we draw surfaces? How do we specify a surface? How do we approximate a surface? Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] Goals How do we draw surfaces? Approximate with polygons Draw polygons

More information

Essential Mathematics for Computer Graphics fast

Essential Mathematics for Computer Graphics fast John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made

More information

Corollary. (f є C n+1 [a,b]). Proof: This follows directly from the preceding theorem using the inequality

Corollary. (f є C n+1 [a,b]). Proof: This follows directly from the preceding theorem using the inequality Corollary For equidistant knots, i.e., u i = a + i (b-a)/n, we obtain with (f є C n+1 [a,b]). Proof: This follows directly from the preceding theorem using the inequality 120202: ESM4A - Numerical Methods

More information

the points are called control points approximating curve

the points are called control points approximating curve Chapter 4 Spline Curves A spline curve is a mathematical representation for which it is easy to build an interface that will allow a user to design and control the shape of complex curves and surfaces.

More information

Planar Curve Intersection

Planar Curve Intersection Chapter 7 Planar Curve Intersection Curve intersection involves finding the points at which two planar curves intersect. If the two curves are parametric, the solution also identifies the parameter values

More information

Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11

Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11 Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter

More information

BEZIER CURVES AND SURFACES

BEZIER CURVES AND SURFACES Department of Applied Mathematics and Computational Sciences University of Cantabria UC-CAGD Group COMPUTER-AIDED GEOMETRIC DESIGN AND COMPUTER GRAPHICS: BEZIER CURVES AND SURFACES Andrés Iglesias e-mail:

More information

Computer Animation: Art, Science and Criticism

Computer Animation: Art, Science and Criticism Computer Animation: Art, Science and Criticism Tom Ellman Harry Roseman Lecture 4 Parametric Curve A procedure for distorting a straight line into a (possibly) curved line. The procedure lives in a black

More information

A Mathematica Package for CAGD and Computer Graphics

A Mathematica Package for CAGD and Computer Graphics A Mathematica Package for CAGD and Computer Graphics Andrés Iglesias 1, Flabio Gutiérrez 1,2 and Akemi Gálvez 1 1 Departament of Applied Mathematics and Computational Sciences University of Cantabria,

More information

Numerical algorithms for curve approximation and novel user oriented interactive tools

Numerical algorithms for curve approximation and novel user oriented interactive tools UNIVERSITÀ DEGLI STUDI DI BARI Dottorato di Ricerca in Matematica XXI Ciclo A.A. 2008/2009 Settore Scientifico-Disciplinare: MAT/08 Analisi Numerica Tesi di Dottorato Numerical algorithms for curve approximation

More information

A matrix method for degree-raising of B-spline curves *

A matrix method for degree-raising of B-spline curves * VOI. 40 NO. 1 SCIENCE IN CHINA (Series E) February 1997 A matrix method for degree-raising of B-spline curves * QIN Kaihuai (%*>/$) (Department of Computer Science and Technology, Tsinghua University,

More information

Finite Element Formulation for Plates - Handout 3 -

Finite Element Formulation for Plates - Handout 3 - Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the

More information

A Geometric Characterization of Parametric Cubic Curves

A Geometric Characterization of Parametric Cubic Curves A Geometric Characterization of Parametric Cubic Curves MAUREEN C. STONE Xerox PARC and TONY D. DEROSE University of Washington In this paper, we analyze planar parametric cubic curves to determine conditions

More information

B4 Computational Geometry

B4 Computational Geometry 3CG 2006 / B4 Computational Geometry David Murray [email protected] www.robots.o.ac.uk/ dwm/courses/3cg Michaelmas 2006 3CG 2006 2 / Overview Computational geometry is concerned with the derivation

More information

B2.53-R3: COMPUTER GRAPHICS. NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions.

B2.53-R3: COMPUTER GRAPHICS. NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. B2.53-R3: COMPUTER GRAPHICS NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE is to be answered in the TEAR-OFF ANSWER

More information

How To Understand And Solve Algebraic Equations

How To Understand And Solve Algebraic Equations College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides

More information

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203.

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : III Year, V Semester Section : CSE - 1 & 2 Subject Code : CS6504 Subject

More information

Degree Reduction of Interval SB Curves

Degree Reduction of Interval SB Curves International Journal of Video&Image Processing and Network Security IJVIPNS-IJENS Vol:13 No:04 1 Degree Reduction of Interval SB Curves O. Ismail, Senior Member, IEEE Abstract Ball basis was introduced

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES

Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations

More information

Linear Programming Problems

Linear Programming Problems Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725 Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T

More information

Kinematical Animation. [email protected] 2013-14

Kinematical Animation. lionel.reveret@inria.fr 2013-14 Kinematical Animation 2013-14 3D animation in CG Goal : capture visual attention Motion of characters Believable Expressive Realism? Controllability Limits of purely physical simulation : - little interactivity

More information

GAME ENGINE DESIGN. A Practical Approach to Real-Time Computer Graphics. ahhb. DAVID H. EBERLY Geometrie Tools, Inc.

GAME ENGINE DESIGN. A Practical Approach to Real-Time Computer Graphics. ahhb. DAVID H. EBERLY Geometrie Tools, Inc. 3D GAME ENGINE DESIGN A Practical Approach to Real-Time Computer Graphics SECOND EDITION DAVID H. EBERLY Geometrie Tools, Inc. ahhb _ jfw H NEW YORK-OXFORD-PARIS-SAN DIEGO fl^^h ' 4M arfcrgsbjlilhg, SAN

More information

NURBS Drawing Week 5, Lecture 10

NURBS Drawing Week 5, Lecture 10 CS 430/536 Computer Graphics I NURBS Drawing Week 5, Lecture 10 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University

More information

Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Copyrighted Material. Chapter 1 DEGREE OF A CURVE Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

8. Linear least-squares

8. Linear least-squares 8. Linear least-squares EE13 (Fall 211-12) definition examples and applications solution of a least-squares problem, normal equations 8-1 Definition overdetermined linear equations if b range(a), cannot

More information

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary) Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

More information

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

More information

NURBS Drawing Week 5, Lecture 10

NURBS Drawing Week 5, Lecture 10 CS 430/536 Computer Graphics I NURBS Drawing Week 5, Lecture 10 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

More information

3. Interpolation. Closing the Gaps of Discretization... Beyond Polynomials

3. Interpolation. Closing the Gaps of Discretization... Beyond Polynomials 3. Interpolation Closing the Gaps of Discretization... Beyond Polynomials Closing the Gaps of Discretization... Beyond Polynomials, December 19, 2012 1 3.3. Polynomial Splines Idea of Polynomial Splines

More information

Application of Design of Experiments to an Automated Trading System

Application of Design of Experiments to an Automated Trading System Application of Design of Experiments to an Automated Trading System Ronald Schoenberg, Ph.D. Trading Desk Strategies, LLC [email protected] www.optionbots.com A Design of Experiments (DOE) method

More information

Mean value theorem, Taylors Theorem, Maxima and Minima.

Mean value theorem, Taylors Theorem, Maxima and Minima. MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.

More information

The Essentials of CAGD

The Essentials of CAGD The Essentials of CAGD Chapter 2: Lines and Planes Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd c 2000 Farin & Hansford

More information

Algorithms for Real-Time Tool Path Generation

Algorithms for Real-Time Tool Path Generation Algorithms for Real-Time Tool Path Generation Gyula Hermann John von Neumann Faculty of Information Technology, Budapest Polytechnic H-1034 Nagyszombat utca 19 Budapest Hungary, hermgyviif.hu Abstract:The

More information

Curves and Surfaces for Computer Graphics

Curves and Surfaces for Computer Graphics David Salomon Curves and Surfaces for Computer Graphics With 207 Figures, 2 in Full Color David Salomon (Emeritus) Department of Computer Science California State University, Northridge Northridge, CA

More information

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

More information

Estimating the Average Value of a Function

Estimating the Average Value of a Function Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and

More information

How To Draw A 3D Virtual World In 3D Space (Computer Graphics)

How To Draw A 3D Virtual World In 3D Space (Computer Graphics) 2 Computer Graphics What You Will Learn: The objectives of this chapter are quite ambitious; you should refer to the references cited in each Section to get a deeper explanation of the topics presented.

More information

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina - Beaufort Lisa S. Yocco, Georgia Southern University

More information

Nonlinear Programming Methods.S2 Quadratic Programming

Nonlinear Programming Methods.S2 Quadratic Programming Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

More information

2.2 Creaseness operator

2.2 Creaseness operator 2.2. Creaseness operator 31 2.2 Creaseness operator Antonio López, a member of our group, has studied for his PhD dissertation the differential operators described in this section [72]. He has compared

More information

Introduction to Computer Graphics Marie-Paule Cani & Estelle Duveau

Introduction to Computer Graphics Marie-Paule Cani & Estelle Duveau Introduction to Computer Graphics Marie-Paule Cani & Estelle Duveau 04/02 Introduction & projective rendering 11/02 Prodedural modeling, Interactive modeling with parametric surfaces 25/02 Introduction

More information

Chapter 13. Curves and Surfaces

Chapter 13. Curves and Surfaces Chapter 13 Curves and Surfaces There are two fundamental problems with surfaces in machine vision: reconstruction and segmentation. Surfaces must be reconstructed from sparse depth measurements that may

More information

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,

More information

1. The forward curve

1. The forward curve 1. The forward curve Andrew Lesniewsi January 28, 2008 Contents 1 LIBOR and LIBOR based instruments 1 1.1 Forward rate agreements...................... 2 1.2 LIBOR futures........................... 3

More information

Math 2280 - Assignment 6

Math 2280 - Assignment 6 Math 2280 - Assignment 6 Dylan Zwick Spring 2014 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.8 - Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue

More information

From Scattered Samples to Smooth Surfaces

From Scattered Samples to Smooth Surfaces From Scattered Samples to Smooth Surfaces Kai Hormann 1 California Institute of Technology (a) (b) (c) (d) Figure 1: A point cloud with 4,100 scattered samples (a), its triangulation with 7,938 triangles

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the

More information

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all. 1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.

More information

Seminar. Path planning using Voronoi diagrams and B-Splines. Stefano Martina [email protected]

Seminar. Path planning using Voronoi diagrams and B-Splines. Stefano Martina stefano.martina@stud.unifi.it Seminar Path planning using Voronoi diagrams and B-Splines Stefano Martina [email protected] 23 may 2016 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Dhiren Bhatia Carnegie Mellon University

Dhiren Bhatia Carnegie Mellon University Dhiren Bhatia Carnegie Mellon University University Course Evaluations available online Please Fill! December 4 : In-class final exam Held during class time All students expected to give final this date

More information

COMP175: Computer Graphics. Lecture 1 Introduction and Display Technologies

COMP175: Computer Graphics. Lecture 1 Introduction and Display Technologies COMP175: Computer Graphics Lecture 1 Introduction and Display Technologies Course mechanics Number: COMP 175-01, Fall 2009 Meetings: TR 1:30-2:45pm Instructor: Sara Su ([email protected]) TA: Matt Menke

More information

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1 Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

More information

Derive 5: The Easiest... Just Got Better!

Derive 5: The Easiest... Just Got Better! Liverpool John Moores University, 1-15 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de Technologie Supérieure, Canada Email; [email protected] 1. Introduction Engineering

More information

Geography 4203 / 5203. GIS Modeling. Class (Block) 9: Variogram & Kriging

Geography 4203 / 5203. GIS Modeling. Class (Block) 9: Variogram & Kriging Geography 4203 / 5203 GIS Modeling Class (Block) 9: Variogram & Kriging Some Updates Today class + one proposal presentation Feb 22 Proposal Presentations Feb 25 Readings discussion (Interpolation) Last

More information

Turtle Geometry in Computer Graphics and Computer Aided Design

Turtle Geometry in Computer Graphics and Computer Aided Design Turtle Geometry in Computer Graphics and Computer Aided Design Ron Goldman, Scott Schaefer, Tao Ju Department of Computer Science Rice University 6100 Main Street Houston, Texas 77005-1892 [email protected],

More information

Analyzing Functions Intervals of Increase & Decrease Lesson 76

Analyzing Functions Intervals of Increase & Decrease Lesson 76 (A) Lesson Objectives a. Understand what is meant by the terms increasing/decreasing as it relates to functions b. Use graphic and algebraic methods to determine intervals of increase/decrease c. Apply

More information

Selective Degree Elevation for Multi-Sided Bézier Patches

Selective Degree Elevation for Multi-Sided Bézier Patches EUROGRAPHICS 2015 / O. Sorkine-Hornung and M. Wimmer (Guest Editors) Volume 34 (2015), Number 2 Selective Degree Elevation for Multi-Sided Bézier Patches J. Smith 1 and S. Schaefer 1 1 Texas A&M University

More information

Simplex method summary

Simplex method summary Simplex method summary Problem: optimize a linear objective, subject to linear constraints 1. Step 1: Convert to standard form: variables on right-hand side, positive constant on left slack variables for

More information

Simple Predictive Analytics Curtis Seare

Simple Predictive Analytics Curtis Seare Using Excel to Solve Business Problems: Simple Predictive Analytics Curtis Seare Copyright: Vault Analytics July 2010 Contents Section I: Background Information Why use Predictive Analytics? How to use

More information

Investigating Area Under a Curve

Investigating Area Under a Curve Mathematics Investigating Area Under a Curve About this Lesson This lesson is an introduction to areas bounded by functions and the x-axis on a given interval. Since the functions in the beginning of the

More information

Computer Aided Systems

Computer Aided Systems 5 Computer Aided Systems Ivan Kuric Prof. Ivan Kuric, University of Zilina, Faculty of Mechanical Engineering, Department of Machining and Automation, Slovak republic, [email protected] 1.1 Introduction

More information

Fitting Subject-specific Curves to Grouped Longitudinal Data

Fitting Subject-specific Curves to Grouped Longitudinal Data Fitting Subject-specific Curves to Grouped Longitudinal Data Djeundje, Viani Heriot-Watt University, Department of Actuarial Mathematics & Statistics Edinburgh, EH14 4AS, UK E-mail: [email protected] Currie,

More information

Scientific Data Visualization with Shape Preserving C 1 Rational Cubic Interpolation

Scientific Data Visualization with Shape Preserving C 1 Rational Cubic Interpolation EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 3, No. 2, 2010, 194-212 ISSN 1307-5543 www.ejpam.com Scientific Data Visualization with Shape Preserving C 1 Rational Cubic Interpolation Malik Zawwar

More information

MATH 52: MATLAB HOMEWORK 2

MATH 52: MATLAB HOMEWORK 2 MATH 52: MATLAB HOMEWORK 2. omplex Numbers The prevalence of the complex numbers throughout the scientific world today belies their long and rocky history. Much like the negative numbers, complex numbers

More information

CONCEPT-II. Overview of demo examples

CONCEPT-II. Overview of demo examples CONCEPT-II CONCEPT-II is a frequency domain method of moment (MoM) code, under development at the Institute of Electromagnetic Theory at the Technische Universität Hamburg-Harburg (www.tet.tuhh.de). Overview

More information

COMPUTER GRAPHICS Computer Graphics

COMPUTER GRAPHICS Computer Graphics COMPUTER GRAPHICS Computer Graphics involves display, manipulation and storage of pictures and experimental data for proper visualization using a computer. Typical graphics system comprises of a host computer

More information

Linearly Independent Sets and Linearly Dependent Sets

Linearly Independent Sets and Linearly Dependent Sets These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation

More information

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem David L. Finn November 30th, 2004 In the next few days, we will introduce some of the basic problems in geometric modelling, and

More information

3D Tranformations. CS 4620 Lecture 6. Cornell CS4620 Fall 2013 Lecture 6. 2013 Steve Marschner (with previous instructors James/Bala)

3D Tranformations. CS 4620 Lecture 6. Cornell CS4620 Fall 2013 Lecture 6. 2013 Steve Marschner (with previous instructors James/Bala) 3D Tranformations CS 4620 Lecture 6 1 Translation 2 Translation 2 Translation 2 Translation 2 Scaling 3 Scaling 3 Scaling 3 Scaling 3 Rotation about z axis 4 Rotation about z axis 4 Rotation about x axis

More information

Piecewise Cubic Splines

Piecewise Cubic Splines 280 CHAP. 5 CURVE FITTING Piecewise Cubic Splines The fitting of a polynomial curve to a set of data points has applications in CAD (computer-assisted design), CAM (computer-assisted manufacturing), and

More information

Computer Animation. Lecture 2. Basics of Character Animation

Computer Animation. Lecture 2. Basics of Character Animation Computer Animation Lecture 2. Basics of Character Animation Taku Komura Overview Character Animation Posture representation Hierarchical structure of the body Joint types Translational, hinge, universal,

More information

NURBS with Extraordinary Points: High-degree, Non-uniform, Rational Subdivision Schemes

NURBS with Extraordinary Points: High-degree, Non-uniform, Rational Subdivision Schemes NURBS with Extraordinary Points: High-degree, Non-uniform, Rational Subdivision Schemes Thomas J. Cashman University of Cambridge Ursula H. Augsdörfer University of Cambridge Neil A. Dodgson University

More information

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

More information

Nonlinear Iterative Partial Least Squares Method

Nonlinear Iterative Partial Least Squares Method Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for

More information

1 Review of Least Squares Solutions to Overdetermined Systems

1 Review of Least Squares Solutions to Overdetermined Systems cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

More information

Mathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework

Mathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework Provider York County School Division Course Syllabus URL http://yorkcountyschools.org/virtuallearning/coursecatalog.aspx Course Title Algebra I AB Last Updated 2010 - A.1 The student will represent verbal

More information

Largest Fixed-Aspect, Axis-Aligned Rectangle

Largest Fixed-Aspect, Axis-Aligned Rectangle Largest Fixed-Aspect, Axis-Aligned Rectangle David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 1998-2016. All Rights Reserved. Created: February 21, 2004 Last Modified: February

More information

Getting started with qplot

Getting started with qplot Chapter 2 Getting started with qplot 2.1 Introduction In this chapter, you will learn to make a wide variety of plots with your first ggplot2 function, qplot(), short for quick plot. qplot makes it easy

More information

With the Tan function, you can calculate the angle of a triangle with one corner of 90 degrees, when the smallest sides of the triangle are given:

With the Tan function, you can calculate the angle of a triangle with one corner of 90 degrees, when the smallest sides of the triangle are given: Page 1 In game development, there are a lot of situations where you need to use the trigonometric functions. The functions are used to calculate an angle of a triangle with one corner of 90 degrees. By

More information

Constrained curve and surface fitting

Constrained curve and surface fitting Constrained curve and surface fitting Simon Flöry FSP-Meeting Strobl (June 20, 2006), [email protected], Vienna University of Technology Overview Introduction Motivation, Overview, Problem

More information

Computer Aided Design (CAD)

Computer Aided Design (CAD) 16.810 Engineering Design and Rapid Prototyping Lecture 3a Computer Aided Design (CAD) Instructor(s) Prof. Olivier de Weck January 16, 2007 Plan for Today CAD Lecture (ca. 50 min) CAD History, Background

More information

How To Write An Isgeometric Finite Element Analysis

How To Write An Isgeometric Finite Element Analysis NTNU Norwegian University of Science and Technology Faculty of Information Technology, Mathematics and Electrical Engineering MASTER S THESIS for stud.techn. Kjetil André Johannessen Faculty of Information

More information

How to Create a Data Table in Excel 2010

How to Create a Data Table in Excel 2010 How to Create a Data Table in Excel 2010 Introduction Nicole Bernstein Excel 2010 is a useful tool for data analysis and calculations. Most college students are familiar with the basic functions of this

More information