Chapter 10: Rotation

Size: px
Start display at page:

Download "Chapter 10: Rotation"

Transcription

1 Chapter 10: Rotation Review of translational motion (motion along a straight line) Position x Displacement x Velocity v = dx/dt Acceleration a = dv/dt Mass m Newton s second law F = ma Work W = Fdcosφ Kinetic energy K = ½ mv 2 What about rotational motion?

2 Rotational variables We will focus on the rotation of a rigid body about a fixed axis Reference line: pick a point, draw a line perpendicular to the rotation axis Angular position zero angular position angular position: θ = s/r s: length of the arc, r: radius Unit of θ: radians (rad) 1 rev = 360 o = 2πr/r= 2π rad 1 rad = 57.3 o = rev

3 Angular displacement θ = θ 2 θ 1 direction: clockwise is negative Angular velocity average: ω avg = θ/ t instantaneous: ω = dθ/dt unit: rad/s, rev/s magnitude of angular velocity = angular speed Angular acceleration average: α avg = ω/ t instantaneous: α = dω/dt unit: rad/s 2

4 Angular velocity and angular acceleration are vectors. For rotation along a fixed axis, we need not consider vectors. We can just use + and sign to represent the direction of ω and α. clockwise is negative Direction of ω : right hand rule

5 Rotation with constant angular acceleration The equations for constant angular acceleration are similar to those for constant linear acceleration replace θ for x, ω for v, and α for a, missing v = v 0 + at ω = ω 0 + αt θ θ 0 x x 0 = v 0 t + ½ at 2 θ θ 0 = ω 0 t + ½ αt 2 ω v 2 = v a(x x 0 ) ω 2 = ω 02 +2α (θ θ 0 ) t and two more equations x x 0 = ½ (v 0 + v)t θ θ 0 = ½(ω 0 ω)t α x x 0 = vt ½ at 2 θ θ 0 = ωt ½ αt 2 ω 0

6 Relating the linear and angular variables The linear and angular quantities are related by radius r The position θ *in* radians! distance s = θ r The speed ds/dt = d(θ r)/dt = (dθ/dt)r v = ω r Time for one revolution T = 2πr/v = 2π/ω Note: θ and ω must be in radian measure

7 Acceleration dv/dt = d(ωr)/dt = (dω/dt)r tangential component a t = α r ( α = dω/dt ) α must be in radian measure radial component a r = v 2 /r = (ωr) 2 /r = ω 2 r Note: a r is present whenever angular velocity is not zero (i.e. when there is rotation), a t is present whenever angular acceleration is not zero (i.e. the angular velocity is not constant)

8 Cp11-3: A cockroach rides the rim of a rotating merry-goaround. If the angular speed of this system (merry-go-around+ cockroach) is constant, does the cockroach have (a ) radial acceleration? (b) tangential acceleration? If the angular speed is decreasing, does the cockroach have (c) radial acceleration? (d) tangential acceleration?

9 Kinetic Energy of Rotation Consider a rigid body rotating around a fixed axis as a collection of particles with different linear speed, the total kinetic energy is K = Σ ½ m i v i2 = Σ ½ m i (ω r i ) 2 = ½ ( Σ m i r i 2 ) ω 2 Define rotational inertia ( moment of inertia) to be I = Σ m i r i 2 r i : the perpendicular distance between m i and the given rotation axis Then K = ½ I ω 2 Compare to the linear case: K = ½ m v 2

10 Rotational inertia involves not only the mass but also the distribution of mass for continuous masses Calculating the rotational inertia I = r 2 dm

11 Parallel-Axis theorem If we know the rotational inertia of a body about any axis that passes through its center-of-mass, we can find its rotational inertia about any other axis parallel to that axis with the parallel axis theorem I = I c.m. + M h 2 h: the perpendicular distance between the two axes

12 Torque The ability of a force F to rotate a body depends not only on its magnitude, but also on its direction and where it is applied. Torque is a quantity to measure this ability Torque is a VECTOR τ = r F sin φ F is applied at point P. τ = r x F r : distance from P to the rotation axis. unit: N. m direction: clockwise (CW) is negative because the angle is decreasing

13 Torque The figure shows an overhead view of a meter stick that can pivot about the dot at the position marked 20 (for 20cm). All five horizontal forces on the stick have the same magnitude. Rank those forces according to the magnitude of the torque that they produce, greatest first. F 1 = F 2 = F 3 = F 4 = F 5 =F

14 Force producing the greatest (most positive) torque: Torque 1. F 1 2. F 2 F 1 = F 2 = F 3 = F 4 = F 5 =F 3. F 3 4. F 4 5. F 5 6. F 1 and F 3 7. need more information

15 τ = r x F Magnitude: τ = r F sin φ Checkpoint 10-6 The figure shows an overhead view of a meter stick that can pivot about the dot at the position marked 20 (for 20cm). All five horizontal forces on the stick have the same magnitude. Rank those forces according to the magnitude of the torque that they produce, greatest first. F 1 = F 2 = F 3 = F 4 = F 5 =F F 1 : τ 1 = r 1 F 1 sin φ 1 = (20)Fsin(90 o ) = 20F (CCW) v v v τ1 = r1 F1 = + 20F

16 τ = r x F Magnitude: τ = r F sin φ Checkpoint 10-6 The figure shows an overhead view of a meter stick that can pivot about the dot at the position marked 20 (for 20cm). All five horizontal forces on the stick have the same magnitude. Rank those forces according to the magnitude of the torque that they produce, greatest first. F 1 = F 2 = F 3 = F 4 = F 5 =F F 2 : τ 2 = r 2 F 2 sin φ 2 = (0)Fsin(60 o ) = 0 (no direction) v v v τ2 = r2 F2 = 0F = 0

17 τ = r x F Magnitude: τ = r F sin φ Checkpoint 10-6 The figure shows an overhead view of a meter stick that can pivot about the dot at the position marked 20 (for 20cm). All five horizontal forces on the stick have the same magnitude. Rank those forces according to the magnitude of the torque that they produce, greatest first. F 1 = F 2 = F 3 = F 4 = F 5 =F F 3 : τ 3 = r 3 F 3 sin φ 3 = (20)Fsin(90 o ) = 20F (CW) v v v τ3 = r3 F3 = 20F

18 τ = r x F Magnitude: τ = r F sin φ Checkpoint 10-6 The figure shows an overhead view of a meter stick that can pivot about the dot at the position marked 20 (for 20cm). All five horizontal forces on the stick have the same magnitude. Rank those forces according to the magnitude of the torque that they produce, greatest first. F 1 = F 2 = F 3 = F 4 = F 5 =F F 4 : τ 4 = r 4 F 4 sin φ 4 = (20)Fsin(60 o ) = 17.3F (CW) v v v τ4 = r4 F4 = 17.3F

19 τ = r x F Magnitude: τ = r F sin φ Checkpoint 10-6 The figure shows an overhead view of a meter stick that can pivot about the dot at the position marked 20 (for 20cm). All five horizontal forces on the stick have the same magnitude. Rank those forces according to the magnitude of the torque that they produce, greatest first. F 1 = F 2 = F 3 = F 4 = F 5 =F F 5 : τ 5 = r 5 F 5 sin φ 5 = (80)Fsin(0 o ) = 0 (no direction) v v v τ5 = r5 F5 = 0F = 0

20 The figure shows an overhead view of a meter stick that can pivot about the dot at the position marked 20 (for 20cm). All five horizontal forces on the stick have the same magnitude. Rank those forces according to the magnitude of the torque that they produce, greatest first. F 1 = F 2 = F 3 = F 4 = F 5 =F τ = r x F τ = r F sin φ Checkpoint 10-6 v v v τ1 = r1 F1 = + 20F v v v τ2 = r2 F2 = 0F = 0 v v v τ5 = r5 F5 = 0F = 0 v v v τ4 = r4 F4 = 17.3F v v v τ = F = 20F 3 r3 3

21 Newton s second law for rotation ma F F n 1 i i net v v v = = = Compare to the linear equation: α = = τ = v v v v I F r n 1 i i i net I: rotational inertia α: angular acceleration

22 Balanced Torques Forces F 1 and F 2 are applied on a meter stick which is free to rotate around the pivot point. Only F 1 is shown. F 2 is perpendicular to the stick (in the same plane as F 1 and the stick) and is applied at the right end (point labeled 2 ). The stick is not to rotate. r 1 r 2 2 F 2 As viewed from above, what should be the direction of F 2?

23 Balanced Torques-1 As viewed from above, what should be the direction of F 2 so the rod doesn t rotate? r 1 r 2 2 F 2 1. up 2. down 3. not enough information

24 Forces F 1 and F 2 are applied on a meter stick which is free to rotate around the pivot point. Only F 1 is shown. F 2 is perpendicular to the stick (in the same plane as F 1 and the stick) and is applied at the right end (point labeled 2 ). The stick is not to rotate. r 1 r 2 2 F2 As viewed from above, what should be the direction of F 2? DOWN or else both forces will cause the rod to rotate CW

25 Forces F 1 and F 2 are applied on a meter stick which is free to rotate around the pivot point. Only F 1 is shown. F 2 is perpendicular to the stick (in the same plane as F 1 and the stick) and is applied at the right end (point labeled 2 ). The stick is not to rotate. r 1 r 2 2 F2 Should F 2 be greater than, less than, or equal to F 1?

26 Balanced Torques-2 Should F 2 be greater than, less than, or equal to F 1? r 1 r 2 2 F2 1. F 2 > F 1 2. F 2 < F 1 3. F 2 = F 1 4. F 2 can t balance F 1 5. none of the above

27 Forces F 1 and F 2 are applied on a meter stick which is free to rotate around the pivot point. Only F 1 is shown. F 2 is perpendicular to the stick (in the same plane as F 1 and the stick) and is applied at the right end (point labeled 2 ). The stick is not to rotate. r 1 r 2 2 F2 Should F 2 be greater than, less than, or equal to F 1? r 2 > r 1 => F 2 must be less that F 1 so the torques cancel

28 Sample Problem 10-9 This figure shows a uniform disk, with mass M=2.5kg and radius R = 20 cm, mounted on a fixed horizontal axle. A block with mass m = 1.2 kg hangs from a massless cord that is wrapped around the rim of the disk. Find the acceleration of the falling block, the angular acceleration of the disk, and the tension in the cord. Note: R = 20 cm = 0.2m y a

29 This figure shows a uniform disk, with mass M=2.5kg and radius R = 20 cm, mounted on a fixed horizontal axle. A block with mass m = 1.2 kg hangs from a massless cord that is wrapped around the rim of the disk. Find the acceleration of the falling block, the angular acceleration of the disk, and the tension in the cord. The key points are following: For the block: T mg = ma (1) For the pulley: τ = I α RT = (1/2)MR 2 α (2) acceleration a of the block is equal to a t at the rim of the pulley a = a t = α R (3) Three equations and three unknowns: a, α, T, so a unique solution exists. a y

30 Sample Problem This figure shows a uniform disk, with mass M=2.5kg and radius R = 20 cm, mounted on a fixed horizontal axle. A block with mass m = 1.2 kg hangs from a massless cord that is wrapped around the rim of the disk. Find the acceleration of the falling block, the angular acceleration of the disk, and the tension in the cord. Equations 2&3: T = (1/2)Ma Equations 2&3 and 1: a = αr = (Ma)/2m g Equations 1,3 and 2: a = αr = g MR α/2m 1 M 2m + a = g a = g = 2m ( M + 2m) a 2 4.8m/s y

31 Sample Problem This figure shows a uniform disk, with mass M=2.5kg and radius R = 20 cm, mounted on a fixed horizontal axle. A block with mass m = 1.2 kg hangs from a massless cord that is wrapped around the rim of the disk. Find the acceleration of the falling block, the angular acceleration of the disk, and the tension in the cord. Then, y T = 1/2Ma = 6.0N and, a α = a/r = 24 rad/s 2

32 Work and Rotational Kinetic Energy Work-kinetic energy theorem : W = K = K f K i K = ½ I ω f2 ½ I ω i2 (if there is only rotation) θ Work done = f x v W τ dθ (compare to v W = f F dx ) θi if τ is constant, W = τ (θ f θ i ) x i Power P = dw/dt P = τ dθ/dt = τ (dθ/dt) = τ ω compare to P = v v F

33 translational motion Quantity Rotational motion x Position θ x Displacement θ v = dx/dt Velocity ω=dθ/dt a = dv/dt Acceleration m Mass Inertia I F = ma W x v v F dx = f x i Newton s second law Work τ = r x F K = ½ mv 2 Kinetic energy K = ½ Iω 2 v v P = F Power (constant F or τ) P = τω W θ = f θ i τ dθ

34 Chapter 10: Rotation Review of translational motion (motion along a straight line) Position x Displacement x Velocity v = dx/dt Acceleration a = dv/dt Mass m Newton s second law F = ma Work W = Fdcosφ Kinetic energy K = ½ mv 2 What about rotational motion?

35 Kinetic Energy of Rotation Consider a rigid body rotating around a fixed axis as a collection of particles with different linear speed, the total kinetic energy is K = Σ ½ m i v i2 = Σ ½ m i (ω r i ) 2 = ½ ( Σ m i r i 2 ) ω 2 Define rotational inertia (moment of inertia) to be I = Σ m i r i 2 r i : the perpendicular distance between m i and the given rotation axis Then K = ½ I ω 2 Compare to the linear case: K = ½ m v 2

36 Rotational inertia (moment of inertia) Define rotational inertia (moment of inertia) to be I = Σ m i r 2 i or 2 I = r i : the perpendicular distance between m i and the given rotation axis r dm m 1 m 2 x 1 x 2 Moment of inertia I = m x m2x 2

37 Rotational inertia (moment of inertia) Define rotational inertia (moment of inertia) to be I = r i : the perpendicular distance between m i and the given rotation axis dm = ρ rdθ where ρ = M/2πr r 2 dm r = a I = Moment of inertia = r r 3 2 dm ρ 2π 0 = 2π 0 dθ = r 2 ρrdθ = 2πr 3 2π 0 r 3 ρ = 2πr ρdθ 3 M 2πr = Mr 2

38 Rotational inertia involves not only the mass but also the distribution of mass for continuous masses Calculating the rotational inertia I = r 2 dm

39 Parallel-Axis theorem If we know the rotational inertia of a body about any axis that passes through its center-of-mass, we can find its rotational inertia about any other axis parallel to that axis with the parallel axis theorem I = I c.m. + M h 2 h: the perpendicular distance between the two axes

40 Work and Rotational Kinetic Energy Work-kinetic energy theorem: W = K = K f K i K = ½ I ω f2 ½ I ω i2 (if there is only rotation) = f θ θ Work done W τ dθ (compare to W = f F dx ) i if τ is constant, W = τ (θ f θ i ) x v x i v Power P = dw/dt P = τ dθ/dt = τ (dθ/dt) = τ ω. compare to P = F v

41 Summary -- Translation - Rotation translational motion Quantity Rotational motion x Position θ x Displacement θ v = dx/dt Velocity ω=dθ/dt a = dv/dt Acceleration α m Mass Inertia I F = ma Newton s second law τ = r x F x v θ v W = F dx Work W = τ dθ x θi i K = ½ mv 2 Kinetic energy K = ½ Iω 2 v v P = F Power (constant F or τ) P = τω

42 Rolling viewed as a combination of pure rotation and pure translation Rolling viewed as pure rotation v top = (ω)(2r) = 2 v com Different views, same conclusion

43 The Kinetic Energy of Rolling View the rolling as pure rotation around P, the kinetic energy K = ½ I P ω 2 parallel axis theorem: I p = I com +MR 2 so K = ½ I com ω 2 + ½ MR 2 ω 2 since v com = ωr K = ½ I com ω 2 + ½ M(v com ) 2 ½ I com ω 2 : due to the object s rotation about its center of mass ½ M(v com ) 2 : due to the translational motion of its center of mass

44 Torque revisited For a fixed axis rotation, torque τ = r F sinθ direction : right-hand rule v τ = v r v F magnitude : τ = rfsin Φ = rf = r F

11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Rotational Motion: 11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

More information

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013 PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

More information

Linear Motion vs. Rotational Motion

Linear Motion vs. Rotational Motion Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a

More information

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc. Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

More information

Lab 7: Rotational Motion

Lab 7: Rotational Motion Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

Torque and Rotary Motion

Torque and Rotary Motion Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straight-forward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,

More information

Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

More information

Physics 1A Lecture 10C

Physics 1A Lecture 10C Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

More information

Angular acceleration α

Angular acceleration α Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-

More information

Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity. We touched on this briefly in chapter 7! x 2 Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

More information

E X P E R I M E N T 8

E X P E R I M E N T 8 E X P E R I M E N T 8 Torque, Equilibrium & Center of Gravity Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 8:

More information

Physics 201 Homework 8

Physics 201 Homework 8 Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

Rotational Inertia Demonstrator

Rotational Inertia Demonstrator WWW.ARBORSCI.COM Rotational Inertia Demonstrator P3-3545 BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

EXPERIMENT: MOMENT OF INERTIA

EXPERIMENT: MOMENT OF INERTIA OBJECTIVES EXPERIMENT: MOMENT OF INERTIA to familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body as mass plays in

More information

3600 s 1 h. 24 h 1 day. 1 day

3600 s 1 h. 24 h 1 day. 1 day Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Rotational Motion: Moment of Inertia

Rotational Motion: Moment of Inertia Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering

More information

Practice Exam Three Solutions

Practice Exam Three Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,

More information

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013 PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.

More information

Lecture Presentation Chapter 7 Rotational Motion

Lecture Presentation Chapter 7 Rotational Motion Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class

More information

HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions

HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions HW Set VI page 1 of 9 10-30 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 10-33 ). The bullet emerges from the

More information

AP Physics: Rotational Dynamics 2

AP Physics: Rotational Dynamics 2 Name: Assignment Due Date: March 30, 2012 AP Physics: Rotational Dynamics 2 Problem A solid cylinder with mass M, radius R, and rotational inertia 1 2 MR2 rolls without slipping down the inclined plane

More information

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6 Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

D Alembert s principle and applications

D Alembert s principle and applications Chapter 1 D Alembert s principle and applications 1.1 D Alembert s principle The principle of virtual work states that the sum of the incremental virtual works done by all external forces F i acting in

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

Answer, Key { Homework 6 { Rubin H Landau 1 This print-out should have 24 questions. Check that it is complete before leaving the printer. Also, multiple-choice questions may continue on the next column

More information

Chapter 11 Equilibrium

Chapter 11 Equilibrium 11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

More information

226 Chapter 15: OSCILLATIONS

226 Chapter 15: OSCILLATIONS Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

More information

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6. Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

Objective: Equilibrium Applications of Newton s Laws of Motion I

Objective: Equilibrium Applications of Newton s Laws of Motion I Type: Single Date: Objective: Equilibrium Applications of Newton s Laws of Motion I Homework: Assignment (1-11) Read (4.1-4.5, 4.8, 4.11); Do PROB # s (46, 47, 52, 58) Ch. 4 AP Physics B Mr. Mirro Equilibrium,

More information

Physics 1120: Simple Harmonic Motion Solutions

Physics 1120: Simple Harmonic Motion Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Chapter 10 Dynamics of Rotational Motion PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 5_31_2012 Goals for Chapter

More information

Torque Analyses of a Sliding Ladder

Torque Analyses of a Sliding Ladder Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise. Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

More information

Chapter 7 Homework solutions

Chapter 7 Homework solutions Chapter 7 Homework solutions 8 Strategy Use the component form of the definition of center of mass Solution Find the location of the center of mass Find x and y ma xa + mbxb (50 g)(0) + (10 g)(5 cm) x

More information

SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi.

SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi. SOLID MECHANICS DYNAMICS TUTOIAL MOMENT OF INETIA This work covers elements of the following syllabi. Parts of the Engineering Council Graduate Diploma Exam D5 Dynamics of Mechanical Systems Parts of the

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

Chapter 8: Rotational Motion of Solid Objects

Chapter 8: Rotational Motion of Solid Objects Chapter 8: Rotational Motion of Solid Objects 1. An isolated object is initially spinning at a constant speed. Then, although no external forces act upon it, its rotational speed increases. This must be

More information

CHAPTER 15 FORCE, MASS AND ACCELERATION

CHAPTER 15 FORCE, MASS AND ACCELERATION CHAPTER 5 FORCE, MASS AND ACCELERATION EXERCISE 83, Page 9. A car initially at rest accelerates uniformly to a speed of 55 km/h in 4 s. Determine the accelerating force required if the mass of the car

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Experiment 9. The Pendulum

Experiment 9. The Pendulum Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION This tutorial covers pre-requisite material and should be skipped if you are

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

More information

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad. Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.

More information

TORQUE AND FIRST-CLASS LEVERS

TORQUE AND FIRST-CLASS LEVERS TORQUE AND FIRST-CLASS LEVERS LAB MECH 28.COMP From Physics, Eugene Hecht and Physical Science with Computers, Vernier Software & Technology INTRODUCTION In Figure 1, note force F acting on a wrench along

More information

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region

More information

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani Problem 6.40 and 6.4 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani 6.40 A wheel with fine teeth is attached to the end of a spring with constant k and unstretched length

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

Hand Held Centripetal Force Kit

Hand Held Centripetal Force Kit Hand Held Centripetal Force Kit PH110152 Experiment Guide Hand Held Centripetal Force Kit INTRODUCTION: This elegantly simple kit provides the necessary tools to discover properties of rotational dynamics.

More information

MFF 2a: Charged Particle and a Uniform Magnetic Field... 2

MFF 2a: Charged Particle and a Uniform Magnetic Field... 2 MFF 2a: Charged Particle and a Uniform Magnetic Field... 2 MFF2a RT1: Charged Particle and a Uniform Magnetic Field... 3 MFF2a RT2: Charged Particle and a Uniform Magnetic Field... 4 MFF2a RT3: Charged

More information

Chapter 5A. Torque. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 5A. Torque. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 5A. Torque A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Torque is a twist or turn that tends to produce rotation. * * * Applications

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

TOP VIEW. FBD s TOP VIEW. Examination No. 2 PROBLEM NO. 1. Given:

TOP VIEW. FBD s TOP VIEW. Examination No. 2 PROBLEM NO. 1. Given: RLEM N. 1 Given: Find: vehicle having a mass of 500 kg is traveling on a banked track on a path with a constant radius of R = 1000 meters. t the instant showing, the vehicle is traveling with a speed of

More information

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

More information

Work and Energy. W =!KE = KE f

Work and Energy. W =!KE = KE f Activity 19 PS-2826 Work and Energy Mechanics: work-energy theorem, conservation of energy GLX setup file: work energy Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002 1 PASPORT Motion

More information

Torque and Rotation. Physics

Torque and Rotation. Physics Torque and Rotation Physics Torque Force is the action that creates changes in linear motion. For rotational motion, the same force can cause very different results. A torque is an action that causes objects

More information

3 Work, Power and Energy

3 Work, Power and Energy 3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy

More information

Two-Body System: Two Hanging Masses

Two-Body System: Two Hanging Masses Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

Universal Law of Gravitation

Universal Law of Gravitation Universal Law of Gravitation Law: Every body exerts a force of attraction on every other body. This force called, gravity, is relatively weak and decreases rapidly with the distance separating the bodies

More information

A vector is a directed line segment used to represent a vector quantity.

A vector is a directed line segment used to represent a vector quantity. Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

More information

So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold.

So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold. Name: MULTIPLE CHOICE: Questions 1-11 are 5 points each. 1. A safety device brings the blade of a power mower from an angular speed of ω 1 to rest in 1.00 revolution. At the same constant angular acceleration,

More information

11. Describing Angular or Circular Motion

11. Describing Angular or Circular Motion 11. Describing Angular or Circular Motion Introduction Examples of angular motion occur frequently. Examples include the rotation of a bicycle tire, a merry-go-round, a toy top, a food processor, a laboratory

More information

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital

More information

CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign

CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign Name: Period: Due Date: Lab Partners: CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign Purpose: Use the CP program from Vernier to simulate the motion of charged particles in Magnetic and Electric Fields

More information

Pendulum Force and Centripetal Acceleration

Pendulum Force and Centripetal Acceleration Pendulum Force and Centripetal Acceleration 1 Objectives 1. To calibrate and use a force probe and motion detector. 2. To understand centripetal acceleration. 3. To solve force problems involving centripetal

More information

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb: Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6 Signature Name (Print): 4 Digit ID: Section: Instructions: Answer all questions 24 multiple choice questions. You may need to do some calculation.

More information

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to

More information

Mechanical Principles

Mechanical Principles Unit 4: Mechanical Principles Unit code: F/601/1450 QCF level: 5 Credit value: 15 OUTCOME 4 POWER TRANSMISSION TUTORIAL 2 BALANCING 4. Dynamics of rotating systems Single and multi-link mechanisms: slider

More information

Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis

Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis 21.1 Introduction... 1 21.2 Translational Equation of Motion... 1 21.3 Translational and Rotational Equations of Motion... 1

More information

Fundamental Mechanics: Supplementary Exercises

Fundamental Mechanics: Supplementary Exercises Phys 131 Fall 2015 Fundamental Mechanics: Supplementary Exercises 1 Motion diagrams: horizontal motion A car moves to the right. For an initial period it slows down and after that it speeds up. Which of

More information

Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43

Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state

More information

Problem Set 5 Work and Kinetic Energy Solutions

Problem Set 5 Work and Kinetic Energy Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on

More information

Vector Algebra II: Scalar and Vector Products

Vector Algebra II: Scalar and Vector Products Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define

More information