THE SOLAR DYNAMO. Mausumi Dikpati High Altitude Observatory, NCAR

Size: px
Start display at page:

Download "THE SOLAR DYNAMO. Mausumi Dikpati High Altitude Observatory, NCAR"

Transcription

1 THE SOLAR DYNAMO Mausumi Dikpati High Altitude Observatory, NCAR High Altitude Observatory (HAO) National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. An Equal Opportunity/Affirmative Action Employer.

2 Organization Motivation (comes from observations) Historical Background (first global solar dynamo models half a century ago) Recent Models; Flux-transport Dynamos (compatible with recent advances in helioseismology) Comparison Of Model Output With Observations (suitable proxies need to be developed from model output) Summary (successes; difficulties; possible refinements) Where Are We Now? (can we predict solar cycle features?)

3 Manifestations of Solar Activity Cycle Appearance and variations in the number of sunspots with an 11-year periodicity Reversal of the Sun s polar field after every 11-year Large-scale coronal variations

4 Observed butterfly diagram Courtesy: D.H. Hathaway Sunspots are believed to be formed from strong toroidal flux tubes that rise to the surface due to their magnetic buoyancy Equatorward migration of sunspot-belt was explained by an equatorward propagating dynamo wave for the subsurface toroidal fields

5 Historical Background Click to see movie (i) Generation of toroidal field by shearing a pre-existing poloidal field by differential rotation (Ω-effect )

6 Historical Background (contd.) Click to see movie (ii) Re-generation of poloidal field by lifting and twisting a toroidal flux tube by helical turbulence (α-effect) Proposed by Parker (1955) Mathematically formulated by Steenbeck, Krause & Radler (1969)

7 Historical Background (contd.) In 1960 s and 70 s, equatorward propagating dynamo wave was obtained by assuming a radial differential rotation increasing inward throughout the convection zone. Equatorward propagation of dynamo wave was obtained by satisfying Parker-Yoshimura Sign Rule; α dω/dr < 0, In North-hemisphere

8 Observational constraints But, In 1980 s, helioseismic analysis inferred that there is no radial shear in the convection zone, and the strong radial shear at or below the base of the convection zone is decreasing inward at sunspot latitudes. (Courtesy: Thierry Corbard) Therefore, Convection Zone Dynamos Do Not Work With Solar-like Ω

9 More Observational Constraints Evolution of large-scale, diffuse fields Weak diffuse fields drift poleward in contrast to equatorward migration of sunspot belt But maintain a 90-deg phase relation with the sunspots Polar reversal takes place during sunspot maximum Polar field changes sign from negative to positive when subsurface toroidal field is positive Dikpati & Choudhuri 1995, SolP, 161, 9 [Data source: Howard (NSO) and Wang (NRL)]

10 Flux-transport Models Click to see movie Poleward drift of large-scale diffuse fields was explained by invoking a meridional circulation. A θ-φ surface model by NRL Group in 1989 An r-θ model : Dikpati s thesis 1996

11 What is a Flux-transport Dynamo? Pole + Meridional circulation FLUX-TRANSPORT DYNAMO (Wang & Sheeley, 1991, ApJ, 375, 761) (Choudhuri, Schüssler, & Dikpati, 1995, A&A, 303, L29.) (Durney, 1995, SolP, 160, 213.) (Dikpati & Charbonneau, ApJ, 1999, 518, 508) (Küker, Rüdiger & Schültz, A&A, 2001, 374, 301) 0.6R 0.7R 1R Equator

12 Observational Evidence of Meridional circulation and Differential rotation Doppler measurements: Duvall, 1979 Ulrich et al Hathaway et al Magnetic tracer : Equator Cavallini, Ceppatelli & Righini 1993 Hathaway 1996 Komm, Howard & Harvey 1993 Helioseismic inversions: Giles et al Braun & Fan 1998 Helioseismic inversions: Brown et al Goode et al Tomczyk, Chou & Thompson 1995 Kosovichev 1996 Charbonneau et al Corbard et al. 1998

13 Mathematical Formulation Under MHD approximation (i.e. electromagnetic variations are nonrelativistic), Maxwell s equations + generalized Ohm s law lead to induction equation : B t = ( U B η B). Applying mean-field theory to (1), we obtain the dynamo equation as, B t = ( U B + αb η B), (1) (2) Differential rotation and meridional circulation Displacing and twisting effect by kinetic helicity Diffusion (turbulent + molecular)

14 Mathematical Formulation (continued) Under the assumption of axisymmetry, we write; B ( ), = B ( r θ, t) eˆ + A ( r, θ, t) eˆ U = u( r θ) + r sin θ Ω( r, θ) e, φ, φ φ Toroidal field Poloidal field Meridional circulation We obtain the following two scalar equations: A + t r 1 sin θ Bφ 1 + t r r, ˆφ 2 ( u )( r sin θa) = η A + S ( r, θ, B ) φ B φ, θ ( ru B ) + ( u B ) r φ ( B ) θ φ r 2 1 sin = r sin θ Ω η B eˆ p φ 2 φ θ + η 2 r 2 1 sin 2 Differential rotation B θ φ, (3a) (3b)

15 Mathematical Formulation (continued) Babcock 1961, ApJ, 133, 572 Schematic diagram A Babcock-Leighton type poloidal source-term can be represented as, ( ) ( ).,, 1 erf 1 erf cos sin,, = B t θ r Bφ d r r d r r θ θ S B θ r S φ Latitude dependence Amplitude Confines in a thin layer near the surface Quenching

16 Boundary Conditions Diffusivity profile ( 2-1 /r 2 sin 2 θ)a=0, B φ =0 A=0, B φ =0 Equator 0.6 R 0.7 R 1 R A θ = 0, B = φ 0 Polar Axis A=0, Bφ=0

17 Evolution of Magnetic Fields In a Babcock-Leighton Flux-Transport Dynamo Click to see movie

18 Time-latitude Diagrams Produced from the Babcock-Leighton Flux-transport Dynamo Solution Pole Latitude (degree) Equator Pole Equator Latitude (degree) Toroidal Field at r = 0.7R t (yr) Surface Radial Field t (yr) Dikpati & Charbonneau, 1999, ApJ, 518, 508 Equatorward migrating sunspot belts Poleward drifting large-scale radial fields Correct phase relation between these two fields Dynamo cycle period (T) primarily governed by meridional flow speed T υ s η m 0 T = 56.8 υm s0 ηt, max.flow speed surface poloidal source turbulent diffusivity

19 Difficulties 1. A Babcock-Leighton dynamo is not self-excited; how can it revive after Maunder minima? 2. Furthermore, N & S hemispheres are coupled by an antisymmetric magnetic field about the equator, as inferred from Hale s polarity rule But, a full-spherical-shell Babcock-Leighton dynamo relaxes to symmetric magnetic fields about the equator

20 Click to see movie Full Spherical Shell Solutions Dynamo driven by Babcock-Leighton alpha-effect produces incorrect field symmetry, violating Hale s polarity rule Click to see movie Dynamo driven by tachocline alpha-effect produces solar-like field symmetry, satisfying Hale s polarity rule Dikpati & Gilman, 2001, ApJ, 559, 428 Bonanno et al, 2002, A&A, 390, 673

21 Summary Large-scale solar dynamo mechanism involves 3 basic processes; (i) Ω-effect, (ii) α-effect, (iii) flux-transport by meridional circulation Mean meridional flow sets the solar clock Sun is likely to have both Babcock-Leighton type and tachocline α-effect.

22 Peculiar Features Of Cycle 23 Sunspot index graphics The monthly (blue) & monthly smoothed (red) sunspot numbers for the latest five cycles 250 Sunspot Number 200 Monthly Smoothed Spot Number Time (years) Rise of this cycle was slow compared to other odd cycles It never reached the expected strength It showed a second peak during its declining phase, unusual for an odd cycle

23 Building A Flux-transport Dynamo-based Prediction Scheme We postulate that magnetic persistence, or the duration of the Sun s memory of its own magnetic field, is controlled by meridional circulation.

24 Correlation Between Polar Field And Sunspot Field Derived From A Stochastic Flux-transport Dynamo Charbonneau & Dikpati, 2000, ApJ, 543, 1027 Observationally verified by Hathaway et al, 2002

25 Polar Field Features Of Cycle 23 Polar field pattern Polar reversal in cycle 23 was unusually slow After the reversal, polar field build-up was slow S-polar field reversed ~1 yr after the N-polar field During , N- and S-polar field patterns show distinctly different features S-polar fields were stronger than N-polar fields during minima of 21 and 22

26 Calibrated Flux-transport Dynamo Model N-Pole Red: α -effect location Green: rotation contours Blue: meridional flow Dikpati, Corbard, Thompson & Gilman, 2001, ApJ, 575, L41 Our supergranular diffusivity value is consistent with that of Wang, Shelley & Lean, ApJ, 2002, 580, 1188

27 Calibrated dynamo Click to see movie

28 Validity test of calibration: Time-latitude diagram to match with observation Model output Contours: toroidal fields at CZ base Gray-shades: surface radial fields Observed NSO map of longitude-averaged photospheric fields

29 Effect of time-varying meridional flow (contd.) 1. High-latitude reverse cell in N-hemisphere speeds up N-polar reversal

30 Effect of time-varying polar field sources 1. Weakening in average active region magnetic flux in cycle 23 slows down polar reversal significantly (matches well with observation) 2. Plateau in N-polar field during well-reproduces the observation. 3. However, S-pole reversing ~1/2 yr before N-pole does not match with observation.

31 Combined effect: comparison between model output and observations 1. Weak poloidal sources are the cause of major slow-down in cycle 23 polar reversal 2. High-latitude reverse cell in N- hemisphere is the cause of N- pole reversing before S-pole 3. However, S-polar field build-up is not as slow as observed (Dikpati, de Toma, Gilman, Arge & White, 2004, ApJ, February 10, in press)

32 Future Directions: Building a 3D Flux-transport Dynamo Axisymmetric models cannot explain longitude-dependent solar cycle features. (Stix, 1971, A&A, 13, 203) (Moss, Touminen & Brandenburg, 1991, A&A, 245, 129) Linear studies and nonlinear tachocline instabilities indicate the existence of m=1 nonaxisymmetry (Gilman & Dikpati, 2000, ApJ, 528, 552) (Cally, Dikpati & Gilman, 2003, ApJ, 582, 1190) First 3D flux-transport dynamo is being built by incorporating nonaxisymmetry from the tachocline. (Dikpati, Gilman & van Ballegooijen, under development) Active longitudes From de Toma, White & Harvey 2000, ApJ, 529, 1101

The Solar Dynamo. Ericsson Lopez Quito Astronomical Observatory, National Polytechnic School Quito-Ecuador

The Solar Dynamo. Ericsson Lopez Quito Astronomical Observatory, National Polytechnic School Quito-Ecuador The Solar Dynamo Ericsson Lopez Quito Astronomical Observatory, National Polytechnic School Quito-Ecuador 2011 ISWI-Europe Summer School in Space Science, Astronomical Institute of the SAS, Tatranská Lomnica,

More information

FAIR SPACE WEATHER FOR SOLAR CYCLE #24

FAIR SPACE WEATHER FOR SOLAR CYCLE #24 FAIR SPACE WEATHER FOR SOLAR CYCLE #24 Kenneth Schatten a.i. solutions, Inc. 10001 Derekwood Lane, Suite 215 Lanham, MD 20706 ABSTRACT We discuss the polar field precursor method of solar activity forecasting,

More information

3-D MHD SIMULATIONS OF THE SOLAR CONVECTION ZONE AND TACHOCLINE

3-D MHD SIMULATIONS OF THE SOLAR CONVECTION ZONE AND TACHOCLINE 1 3-D MHD SIMULATIONS OF THE SOLAR CONVECTION ZONE AND TACHOCLINE Allan Sacha Brun DSM/DAPNIA/Service d Astrophysique, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France. ABSTRACT We present the recent progress

More information

arxiv:1604.05405v2 [astro-ph.sr] 6 May 2016

arxiv:1604.05405v2 [astro-ph.sr] 6 May 2016 Solar cycle 25: another moderate cycle? R.H. Cameron 1, J. Jiang 2, M. Schüssler 1 arxiv:1604.05405v2 [astro-ph.sr] 6 May 2016 cameron@mps.mpg.de ABSTRACT Surface flux transport simulations for the descending

More information

Surface Magnetic Field Effects on Acoustic Waves.

Surface Magnetic Field Effects on Acoustic Waves. Surface Magnetic Field Effects on Acoustic Waves. Hannah Schunker 1,2 P.S. Cally 1, D.C. Braun 3, C. Lindsey 3 1. Centre for Stellar and Planetary Astrophysics, Monash University, Australia 2. Max-Planck

More information

Solar Ast ro p h y s ics

Solar Ast ro p h y s ics Peter V. Foukal Solar Ast ro p h y s ics Second, Revised Edition WI LEY- VCH WILEY-VCH Verlag Co. KCaA Contents Preface 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.3

More information

Structure and Energy Transport of the Solar Convection Zone

Structure and Energy Transport of the Solar Convection Zone Structure and Energy Transport of the Solar Convection Zone A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR

More information

Towards Using Modern Data Assimilation and Weather Forecasting Methods in Solar Physics

Towards Using Modern Data Assimilation and Weather Forecasting Methods in Solar Physics Astron. Nachr. / AN 999, No. 88, 789 798 (2006) / DOI please set DOI! Towards Using Modern Data Assimilation and Weather Forecasting Methods in Solar Physics Allan Sacha Brun DSM/DAPNIA/SAp, CEA-Saclay,

More information

A mean-field Babcock-Leighton solar dynamo model with long-term variability

A mean-field Babcock-Leighton solar dynamo model with long-term variability Anais da Academia Brasileira de Ciências (2014) 86(1): 11-26 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-37652014111212

More information

SPATIAL DISTRIBUTION OF NORTHERN HEMISPHERE WINTER TEMPERATURES OVER THE SOLAR CYCLE DURING THE LAST 130 YEARS

SPATIAL DISTRIBUTION OF NORTHERN HEMISPHERE WINTER TEMPERATURES OVER THE SOLAR CYCLE DURING THE LAST 130 YEARS SPATIAL DISTRIBUTION OF NORTHERN HEMISPHERE WINTER TEMPERATURES OVER THE SOLAR CYCLE DURING THE LAST 130 YEARS Kalevi Mursula, Ville Maliniemi, Timo Asikainen ReSoLVE Centre of Excellence Department of

More information

The sun and the solar corona

The sun and the solar corona The sun and the solar corona Introduction The Sun of our solar system is a typical star of intermediate size and luminosity. Its radius is about 696000 km, and it rotates with a period that increases with

More information

ULTRALONG SOLAR CYCLE 23 AND POSSIBLE CONSEQUENCES

ULTRALONG SOLAR CYCLE 23 AND POSSIBLE CONSEQUENCES ULTRALONG SOLAR CYCLE 23 AND POSSIBLE CONSEQUENCES By Joseph D Aleo, CCM WHAT ARE SUNSPOTS? In 1610, shortly after viewing the sun with his new telescope, Galileo Galilei made the first European observations

More information

arxiv:1211.7251v1 [astro-ph.sr] 30 Nov 2012

arxiv:1211.7251v1 [astro-ph.sr] 30 Nov 2012 GLOBAL DYNAMICS OF SUBSURFACE SOLAR ACTIVE REGIONS L. Jouve 1 UPS-OMP, Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse CNRS, 14 Avenue Edouard Belin, F-31400 Toulouse, France

More information

Solar Forcing of Electron and Ion Auroral Inputs

Solar Forcing of Electron and Ion Auroral Inputs Solar Forcing of Electron and Ion Auroral Inputs Barbara A. Emery (NCAR), Ian G. Richardson (GSFC), David S. Evans (NOAA), Frederick J. Rich (LL/MIT), Gordon Wilson (AFRL), Sarah Gibson (NCAR), Giuliana

More information

Magnetohydrodynamics. Basic MHD

Magnetohydrodynamics. Basic MHD Magnetohydrodynamics Conservative form of MHD equations Covection and diffusion Frozen-in field lines Magnetohydrostatic equilibrium Magnetic field-aligned currents Alfvén waves Quasi-neutral hybrid approach

More information

Comments on Episodes of relative global warming, by de Jager en Duhau

Comments on Episodes of relative global warming, by de Jager en Duhau Comments on Episodes of relative global warming, by de Jager en Duhau Gerbrand Komen, September 2009 (g.j.komen@hetnet.nl) Abstract De Jager and Duhau (2009 [dj-d]) derived a statistical relation between

More information

ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

DEPENDENCE OF SOLAR PLASMA FLOWS ON MAGNETIC FIELD OBLIQUITY

DEPENDENCE OF SOLAR PLASMA FLOWS ON MAGNETIC FIELD OBLIQUITY DEPENDENCE OF SOLAR PLASMA FLOWS ON MAGNETIC FIELD OBLIQUITY E.J. Zita and C. Smith (The Evergreen State College, Olympia WA, 98505) N.E. Hurlburt (Lockheed Martin ATC, Palo Alto CA, 94304) ABSTRACT Interactions

More information

Interpretation of Data (IOD) Score Range

Interpretation of Data (IOD) Score Range These Standards describe what students who score in specific score ranges on the Science Test of ACT Explore, ACT Plan, and the ACT college readiness assessment are likely to know and be able to do. 13

More information

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

More information

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.

More information

Solar atmosphere. Solar activity and solar wind. Reading for this week: Chap. 6.2, 6.3, 6.5, 6.7 Homework #2 (posted on website) due Oct.

Solar atmosphere. Solar activity and solar wind. Reading for this week: Chap. 6.2, 6.3, 6.5, 6.7 Homework #2 (posted on website) due Oct. Solar activity and solar wind Solar atmosphere Reading for this week: Chap. 6.2, 6.3, 6.5, 6.7 Homework #2 (posted on website) due Oct. 17 Photosphere - visible surface of sun. Only ~100 km thick. Features

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Sunlight and its Properties. EE 495/695 Y. Baghzouz

Sunlight and its Properties. EE 495/695 Y. Baghzouz Sunlight and its Properties EE 495/695 Y. Baghzouz The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction at the sun's core converts hydrogen to

More information

6.4 THE SIERRA ROTORS PROJECT, OBSERVATIONS OF MOUNTAIN WAVES. William O. J. Brown 1 *, Stephen A. Cohn 1, Vanda Grubiši 2, and Brian Billings 2

6.4 THE SIERRA ROTORS PROJECT, OBSERVATIONS OF MOUNTAIN WAVES. William O. J. Brown 1 *, Stephen A. Cohn 1, Vanda Grubiši 2, and Brian Billings 2 6.4 THE SIERRA ROTORS PROJECT, OBSERVATIONS OF MOUNTAIN WAVES William O. J. Brown 1 *, Stephen A. Cohn 1, Vanda Grubiši 2, and Brian Billings 2 1 National Center for Atmospheric Research, Boulder, Colorado.

More information

Tropical Horticulture: Lecture 2

Tropical Horticulture: Lecture 2 Lecture 2 Theory of the Tropics Earth & Solar Geometry, Celestial Mechanics The geometrical relationship between the earth and sun is responsible for the earth s climates. The two principal movements of

More information

An Analysis of the Rossby Wave Theory

An Analysis of the Rossby Wave Theory An Analysis of the Rossby Wave Theory Morgan E. Brown, Elise V. Johnson, Stephen A. Kearney ABSTRACT Large-scale planetary waves are known as Rossby waves. The Rossby wave theory gives us an idealized

More information

www.integratedsoft.com Electromagnetic Sensor Design: Key Considerations when selecting CAE Software

www.integratedsoft.com Electromagnetic Sensor Design: Key Considerations when selecting CAE Software www.integratedsoft.com Electromagnetic Sensor Design: Key Considerations when selecting CAE Software Content Executive Summary... 3 Characteristics of Electromagnetic Sensor Systems... 3 Basic Selection

More information

Lecture 14. Introduction to the Sun

Lecture 14. Introduction to the Sun Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum

More information

APPENDIX D: SOLAR RADIATION

APPENDIX D: SOLAR RADIATION APPENDIX D: SOLAR RADIATION The sun is the source of most energy on the earth and is a primary factor in determining the thermal environment of a locality. It is important for engineers to have a working

More information

Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE

Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE EMR and the Dawn Mission Electromagnetic radiation (EMR) will play a major role in

More information

Kinetic processes and wave-particle interactions in the solar wind

Kinetic processes and wave-particle interactions in the solar wind Kinetic processes and wave-particle interactions in the solar wind Eckart Marsch Institute for Experimental and Applied Physics (IEAP), Christian Albrechts University at Kiel, 24118 Kiel, Germany Seminar

More information

Formation and Large-Scale Patterns of Filament Channels and Filaments

Formation and Large-Scale Patterns of Filament Channels and Filaments Formation and Large-Scale Patterns of Filament Channels and Filaments Duncan H Mackay Abstract The properties and large-scale patterns of filament channels and filaments are considered. Initially, the

More information

arxiv:1303.6307v1 [astro-ph.sr] 25 Mar 2013

arxiv:1303.6307v1 [astro-ph.sr] 25 Mar 2013 Astronomy& Astrophysics manuscript no. article_v20 c ESO 2013 March 27, 2013 Helioseismology of sunspots: how sensitive are travel times to the Wilson depression and to the subsurface magnetic field? H.

More information

LIST OF PUBLICATIONS

LIST OF PUBLICATIONS LIST OF PUBLICATIONS Articles and books grouped by area: Quantitative Finance Book Co-authored with Marco Avellaneda: Quantitative Modeling of Derivative Securities: from theory to practice, Chapman Hall-CRC

More information

The solar wind (in 90 minutes) Mathew Owens

The solar wind (in 90 minutes) Mathew Owens The solar wind (in 90 minutes) Mathew Owens 5 th Sept 2013 STFC Advanced Summer School m.j.owens@reading.ac.uk Overview There s simply too much to cover in 90 minutes Hope to touch on: Formation of the

More information

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...

More information

Temperature anisotropy in the solar wind

Temperature anisotropy in the solar wind Introduction Observations Simulations Summary in the solar wind Petr Hellinger Institute of Atmospheric Physics & Astronomical Institute AS CR, Prague, Czech Republic Kinetic Instabilities, Plasma Turbulence

More information

Proton and He 2+ Temperature Anisotropies in the Solar Wind Driven by Ion Cyclotron Waves

Proton and He 2+ Temperature Anisotropies in the Solar Wind Driven by Ion Cyclotron Waves Chin. J. Astron. Astrophys. Vol. 5 (2005), No. 2, 184 192 (http:/www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Proton and He 2+ Temperature Anisotropies in the Solar Wind Driven by Ion Cyclotron

More information

Eco Pelmet Modelling and Assessment. CFD Based Study. Report Number 610.14351-R1D1. 13 January 2015

Eco Pelmet Modelling and Assessment. CFD Based Study. Report Number 610.14351-R1D1. 13 January 2015 EcoPelmet Pty Ltd c/- Geoff Hesford Engineering 45 Market Street FREMANTLE WA 6160 Version: Page 2 PREPARED BY: ABN 29 001 584 612 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW

More information

Non-Inductive Startup and Flux Compression in the Pegasus Toroidal Experiment

Non-Inductive Startup and Flux Compression in the Pegasus Toroidal Experiment Non-Inductive Startup and Flux Compression in the Pegasus Toroidal Experiment John B. O Bryan University of Wisconsin Madison NIMROD Team Meeting July 31, 2009 Outline 1 Introduction and Motivation 2 Modeling

More information

Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.

Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore. Power Electronics Prof. K. Gopakumar Centre for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture - 1 Electric Drive Today, we will start with the topic on industrial drive

More information

Solar Irradiance Variability

Solar Irradiance Variability Solar Radiative Output and its Variability Claus Frölich and Judith Lean Preethi Ganapathy November 22, 2005 Solar Irradiance Variability Historical Investigations Contemporary Investigations Limitations

More information

The Sherlock Cycle. A Theory of Natural Climate Cycles

The Sherlock Cycle. A Theory of Natural Climate Cycles The Sherlock Cycle Does the Earth have a natural climate cycle of the kind that could account for events like the Medieval Warm Period and the large global temperature increase that has been observed since

More information

Chapter 6: Cloud Development and Forms

Chapter 6: Cloud Development and Forms Chapter 6: Cloud Development and Forms (from The Blue Planet ) Why Clouds Form Static Stability Cloud Types Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling.

More information

arxiv:1301.6940v2 [astro-ph.sr] 2 Mar 2013

arxiv:1301.6940v2 [astro-ph.sr] 2 Mar 2013 Helioseismology with PICARD arxiv:1301.6940v2 [astro-ph.sr] 2 Mar 2013 T Corbard 1, D Salabert 1, P Boumier 2, T Appourchaux 2, A Hauchecorne 3, P Journoud 2, A Nunge 2, B Gelly 4, J F Hochedez 3, A Irbah

More information

Assessment Plan for Learning Outcomes for BA/BS in Physics

Assessment Plan for Learning Outcomes for BA/BS in Physics Department of Physics and Astronomy Goals and Learning Outcomes 1. Students know basic physics principles [BS, BA, MS] 1.1 Students can demonstrate an understanding of Newton s laws 1.2 Students can demonstrate

More information

Coronal expansion and solar wind

Coronal expansion and solar wind Coronal expansion and solar wind The solar corona over the solar cycle Coronal and interplanetary temperatures Coronal expansion and solar wind acceleration Origin of solar wind in magnetic network Multi-fluid

More information

Atmospheric Dynamics of Venus and Earth. Institute of Geophysics and Planetary Physics UCLA 2 Lawrence Livermore National Laboratory

Atmospheric Dynamics of Venus and Earth. Institute of Geophysics and Planetary Physics UCLA 2 Lawrence Livermore National Laboratory Atmospheric Dynamics of Venus and Earth G. Schubert 1 and C. Covey 2 1 Department of Earth and Space Sciences Institute of Geophysics and Planetary Physics UCLA 2 Lawrence Livermore National Laboratory

More information

CALCULATION OF CLOUD MOTION WIND WITH GMS-5 IMAGES IN CHINA. Satellite Meteorological Center Beijing 100081, China ABSTRACT

CALCULATION OF CLOUD MOTION WIND WITH GMS-5 IMAGES IN CHINA. Satellite Meteorological Center Beijing 100081, China ABSTRACT CALCULATION OF CLOUD MOTION WIND WITH GMS-5 IMAGES IN CHINA Xu Jianmin Zhang Qisong Satellite Meteorological Center Beijing 100081, China ABSTRACT With GMS-5 images, cloud motion wind was calculated. For

More information

Ionosphere Properties and Behaviors - Part 2 By Marcel H. De Canck, ON5AU

Ionosphere Properties and Behaviors - Part 2 By Marcel H. De Canck, ON5AU Ionosphere Properties and Behaviors - Part 2 By Marcel H. De Canck, ON5AU I n the previous issue I explained that gyrofrequency depends on the earth s magnetic field and mentioned that this magnetic field

More information

Renewable Energy. Solar Power. Courseware Sample 86352-F0

Renewable Energy. Solar Power. Courseware Sample 86352-F0 Renewable Energy Solar Power Courseware Sample 86352-F0 A RENEWABLE ENERGY SOLAR POWER Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this

More information

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8 References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that

More information

Wave-particle and wave-wave interactions in the Solar Wind: simulations and observations

Wave-particle and wave-wave interactions in the Solar Wind: simulations and observations Wave-particle and wave-wave interactions in the Solar Wind: simulations and observations Lorenzo Matteini University of Florence, Italy In collaboration with Petr Hellinger, Simone Landi, and Marco Velli

More information

Coronal Heating Problem

Coronal Heating Problem Mani Chandra Arnab Dhabal Raziman T V PHY690C Course Project Indian Institute of Technology Kanpur Outline 1 2 3 Source of the energy Mechanism of energy dissipation Proposed mechanisms Regions of the

More information

Ay 122 - Fall 2004. The Sun. And The Birth of Neutrino Astronomy. This printout: Many pictures missing, in order to keep the file size reasonable

Ay 122 - Fall 2004. The Sun. And The Birth of Neutrino Astronomy. This printout: Many pictures missing, in order to keep the file size reasonable Ay 122 - Fall 2004 The Sun And The Birth of Neutrino Astronomy This printout: Many pictures missing, in order to keep the file size reasonable Why Study the Sun? The nearest star - can study it in a greater

More information

Local Electron Thermal Transport in the MST Reversed-Field Pinch

Local Electron Thermal Transport in the MST Reversed-Field Pinch Local Electron Thermal Transport in the MST Reversed-Field Pinch T.M. Biewer,, J.K., B.E. Chapman, N.E. Lanier,, S.R. Castillo, D.J. Den Hartog,, and C.B. Forest University of Wisconsin-Madison Recent

More information

50.07 Uranus at Equinox: Cloud morphology and dynamics

50.07 Uranus at Equinox: Cloud morphology and dynamics 50.07 Uranus at Equinox: Cloud morphology and dynamics 14 October 2008 DPS Meeting, Ithaca, NY Lawrence A. Sromovsky 1, P. M. Fry 1, W. M. Ahue 1, H. B. Hammel 2, I. de Pater 3, K. A. Rages 4, M. R. Showalter

More information

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND THE THREE-DIMENSIONAL DISTRIBUTION OF THE RADIANT FLUX DENSITY AT THE FOCUS OF A CONVERGENCE BEAM

More information

Proton temperature and Plasma Volatility

Proton temperature and Plasma Volatility The microstate of the solar wind Radial gradients of kinetic temperatures Velocity distribution functions Ion composition and suprathermal electrons Coulomb collisions in the solar wind Waves and plasma

More information

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski WELCOME to Aurorae In the Solar System Aurorae in the Solar System Sponsoring Projects Galileo Europa Mission Jupiter System Data Analysis Program ACRIMSAT Supporting Projects Ulysses Project Outer Planets

More information

Heating diagnostics with MHD waves

Heating diagnostics with MHD waves Heating diagnostics with MHD waves R. Erdélyi & Y. Taroyan Robertus@sheffield.ac.uk SP 2 RC, Department of Applied Mathematics, The University of Sheffield (UK) The solar corona 1860s coronium discovered

More information

Physics of the Atmosphere I

Physics of the Atmosphere I Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 Ulrich.Platt@iup.uni-heidelberg.de heidelberg.de Last week The conservation of mass implies the continuity equation:

More information

Coordinate Systems. Orbits and Rotation

Coordinate Systems. Orbits and Rotation Coordinate Systems Orbits and Rotation Earth orbit. The earth s orbit around the sun is nearly circular but not quite. It s actually an ellipse whose average distance from the sun is one AU (150 million

More information

Monifysikaalisten ongelmien simulointi Elmer-ohjelmistolla. Simulation of Multiphysical Problems with Elmer Software

Monifysikaalisten ongelmien simulointi Elmer-ohjelmistolla. Simulation of Multiphysical Problems with Elmer Software Monifysikaalisten ongelmien simulointi Elmer-ohjelmistolla Simulation of Multiphysical Problems with Elmer Software Peter Råback Tieteen CSC 25.11.2004 Definitions for this presentation Model Mathematical

More information

The Sun: Our nearest star

The Sun: Our nearest star The Sun: Our nearest star Property Surface T Central T Luminosity Mass Lifetime (ms) Value 5500K 15x10 6 K 2 x 10 33 ergs 4 x 10 33 grams 10 billion years Solar Structure Build a model and find the central

More information

Magnetic Field of a Circular Coil Lab 12

Magnetic Field of a Circular Coil Lab 12 HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,

More information

Studies on the ionospheric region during low solar activity in Brazil

Studies on the ionospheric region during low solar activity in Brazil Studies on the ionospheric region during low solar activity in Brazil Claudia M. N. Candido National Institute for Space Research - INPE Brazil 1 Plasma Bubbles-Spread-F OI 630.0-nm Peak at 250 km - F-layer

More information

Electromagnetism - Lecture 2. Electric Fields

Electromagnetism - Lecture 2. Electric Fields Electromagnetism - Lecture 2 Electric Fields Review of Vector Calculus Differential form of Gauss s Law Poisson s and Laplace s Equations Solutions of Poisson s Equation Methods of Calculating Electric

More information

Observing the Sun from space: Highlights from Yohkoh, SOHO, TRACE, RHESSI. H.S. Hudson Space Sciences Lab University of California, Berkeley

Observing the Sun from space: Highlights from Yohkoh, SOHO, TRACE, RHESSI. H.S. Hudson Space Sciences Lab University of California, Berkeley Observing the Sun from space: Highlights from Yohkoh, SOHO, TRACE, RHESSI H.S. Hudson Space Sciences Lab University of California, Berkeley SUMMARY OF LECTURE I. Overview of the Sun 2. Observational technique

More information

Essay 5 Tutorial for a Three-Dimensional Heat Conduction Problem Using ANSYS Workbench

Essay 5 Tutorial for a Three-Dimensional Heat Conduction Problem Using ANSYS Workbench Essay 5 Tutorial for a Three-Dimensional Heat Conduction Problem Using ANSYS Workbench 5.1 Introduction The problem selected to illustrate the use of ANSYS software for a three-dimensional steadystate

More information

Faraday's Law of Induction and the Electromagnetic Vector Potential.

Faraday's Law of Induction and the Electromagnetic Vector Potential. Faraday's Law of Induction and the Electromagnetic Vector Potential. UNPUBLISHED. WORK IN PROGRESS Jeffrey F. Gold Department of Physics, Department of Mathematics University of Utah Abstract Faraday's

More information

Feature Commercial codes In-house codes

Feature Commercial codes In-house codes A simple finite element solver for thermo-mechanical problems Keywords: Scilab, Open source software, thermo-elasticity Introduction In this paper we would like to show how it is possible to develop a

More information

UCCS PES/ENSC 2500: Renewable Energy Spring 2014 Test 3 name:

UCCS PES/ENSC 2500: Renewable Energy Spring 2014 Test 3 name: UCCS PES/ENSC 2500: Renewable Energy Spring 2014 Test 3 name: 1. When a wind turbine is positioned between radio, television or microwave transmitter and receiver it can sometime reflect some of the in

More information

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS BOARD OF INTERMEDIATE EDUCATION, A.P., HYDERABAD REVISION OF SYLLABUS Subject PHYSICS-II (w.e.f 2013-14) Chapter ONE: WAVES CHAPTER - 1 1.1 INTRODUCTION 1.2 Transverse and longitudinal waves 1.3 Displacement

More information

6 J - vector electric current density (A/m2 )

6 J - vector electric current density (A/m2 ) Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J - vector electric current density (A/m2 ) M - vector magnetic current density (V/m 2 ) Some problems

More information

Begin creating the geometry by defining two Circles for the spherical endcap, and Subtract Areas to create the vessel wall.

Begin creating the geometry by defining two Circles for the spherical endcap, and Subtract Areas to create the vessel wall. ME 477 Pressure Vessel Example 1 ANSYS Example: Axisymmetric Analysis of a Pressure Vessel The pressure vessel shown below is made of cast iron (E = 14.5 Msi, ν = 0.21) and contains an internal pressure

More information

Counting Sunspots. Parent Prompts: Are there years with lots of sunspots? Are there years with very few sunspots?

Counting Sunspots. Parent Prompts: Are there years with lots of sunspots? Are there years with very few sunspots? Counting are magnetic storms on the Sun these dark areas are a little cooler than the rest of the Sun s atmosphere. They can be easily seen when the Sun s image is projected onto a white surface, using

More information

Progress Towards the Solar Dynamics Observatory

Progress Towards the Solar Dynamics Observatory Progress Towards the Solar Dynamics Observatory Barbara J. Thompson SDO Project Scientist W. Dean Pesnell SDO Assistant Project Scientist Page 1 SDO OVERVIEW Mission Science Objectives The primary goal

More information

LONG-TERM SOLAR CYCLE EVOLUTION: REVIEW OF RECENT DEVELOPMENTS. 1. Introduction

LONG-TERM SOLAR CYCLE EVOLUTION: REVIEW OF RECENT DEVELOPMENTS. 1. Introduction LONG-TERM SOLAR CYCLE EVOLUTION: REVIEW OF RECENT DEVELOPMENTS I. G. USOSKIN 1 and K. MURSULA 2 1 Sodankylä Geophysical Observatory (Oulu unit), POB 3000, FIN-90014, University of Oulu, Finland 2 Department

More information

Neutral Beam Injection Experiments in the MST Reversed Field Pinch

Neutral Beam Injection Experiments in the MST Reversed Field Pinch Neutral Beam Injection Experiments in the MST Reversed Field Pinch D. Liu 1, A. F. Almagri 1, J.K. Anderson 1, V. V. Belykh 2, B.E. Chapman 1, V.I. Davydenko 2, P. Deichuli 2, D.J. Den Hartog 1, S. Eilerman

More information

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

More information

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun

More information

Lab 8: DC generators: shunt, series, and compounded.

Lab 8: DC generators: shunt, series, and compounded. Lab 8: DC generators: shunt, series, and compounded. Objective: to study the properties of DC generators under no-load and full-load conditions; to learn how to connect these generators; to obtain their

More information

Modified Gravity and the CMB

Modified Gravity and the CMB Modified Gravity and the CMB Philippe Brax, IphT Saclay, France arxiv:1109.5862 PhB, A.C. Davis Work in progress PhB, ACD, B. Li Minneapolis October 2011 PLANCK will give us very precise information on

More information

COSMO-LC Data Analysis and Interpretation Magnetometry PRODUCTS and TOOLS

COSMO-LC Data Analysis and Interpretation Magnetometry PRODUCTS and TOOLS COSMO-LC Data Analysis and Interpretation Magnetometry PRODUCTS and TOOLS Sarah Gibson Enrico Landi, Steven Tomczyk, Joan Burkepile, Roberto Casini Brandon Larson, Scott Sewell, Alfred de Wijn National

More information

Indian Ocean and Monsoon

Indian Ocean and Monsoon Indo-French Workshop on Atmospheric Sciences 3-5 October 2013, New Delhi (Organised by MoES and CEFIPRA) Indian Ocean and Monsoon Satheesh C. Shenoi Indian National Center for Ocean Information Services

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 9 May 2011

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 9 May 2011 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 9 May 2011 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index (ONI)

More information

Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon

Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon Supporting Online Material for Koren et al. Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon 1. MODIS new cloud detection algorithm The operational

More information

High resolution images obtained with Solar Optical Telescope on Hinode. SOLAR-B Project Office National Astronomical Observatory of Japan (NAOJ)

High resolution images obtained with Solar Optical Telescope on Hinode. SOLAR-B Project Office National Astronomical Observatory of Japan (NAOJ) High resolution images obtained with Solar Optical Telescope on Hinode SOLAR-B Project Office National Astronomical Observatory of Japan (NAOJ) Temperature stratification of solar atmosphere G-band Ca

More information

THE LUCAS C40 DYNAMO & ITS ARMATURE.

THE LUCAS C40 DYNAMO & ITS ARMATURE. THE LUCAS C40 DYNAMO & ITS ARMATURE. H. Holden, March 2011. The Dynamo as a DC generating machine was used extensively in the pre- Alternator era, from the early 1900 s up to the late 1960 s and early

More information

Kinetic physics of the solar wind

Kinetic physics of the solar wind "What science do we need to do in the next six years to prepare for Solar Orbiter and Solar Probe Plus?" Kinetic physics of the solar wind Eckart Marsch Max-Planck-Institut für Sonnensystemforschung Complementary

More information

Coverage Characteristics of Earth Satellites

Coverage Characteristics of Earth Satellites Coverage Characteristics of Earth Satellites This document describes two MATLAB scripts that can be used to determine coverage characteristics of single satellites, and Walker and user-defined satellite

More information

3-rd lecture: Modified gravity and local gravity constraints

3-rd lecture: Modified gravity and local gravity constraints 3-rd lecture: Modified gravity and local gravity constraints Local gravity tests If we change gravity from General Relativity, there are constraints coming from local gravity tests. Solar system tests,

More information

LECTURE N 3. - Solar Energy and Solar Radiation- IDES-EDU

LECTURE N 3. - Solar Energy and Solar Radiation- IDES-EDU LECTURE N 3 - Solar Energy and Solar Radiation- Lecture contributions Coordinator & contributor of the lecture: Prof. Marco Perino, DENERG Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino,

More information

Application Information

Application Information Moog Components Group manufactures a comprehensive line of brush-type and brushless motors, as well as brushless controllers. The purpose of this document is to provide a guide for the selection and application

More information

ENERGY DISSIPATION IN CONDUCTIVE POLYMERIC FIBER BUNDLES: SIMULATION EFFORT

ENERGY DISSIPATION IN CONDUCTIVE POLYMERIC FIBER BUNDLES: SIMULATION EFFORT ENERGY DISSIPATION IN CONDUCTIVE POLYMERIC FIBER BUNDLES: SIMULATION EFFORT NSF Summer Undergraduate Fellowship in Sensor Technologies Dorci Lee Torres-Velázquez (Mathematics) - University of Puerto Rico

More information

Solar wind speed variations during an activity cycle

Solar wind speed variations during an activity cycle Solar wind speed variations during an activity cycle Rui PINTO and collaborators: Sacha Brun (CEA Saclay, AIM/SAp), Laurène Jouve (IRAP, Toulouse), Sean Matt (U. Exeter) Roland Grappin (LPP, École Polytechnique),

More information

Solar System science with the IRAM interferometer. Recent Solar System science with the IRAM Plateau de Bure interferometer

Solar System science with the IRAM interferometer. Recent Solar System science with the IRAM Plateau de Bure interferometer Recent Solar System science with the IRAM Plateau de Bure interferometer J. Boissier (Institut de radioastronomie millimétrique) Contact: boissier@iram.fr Outline Planet moons Io Titan Planets Mars Comets

More information

Solar Wind Heating by MHD Turbulence

Solar Wind Heating by MHD Turbulence Solar Wind Heating by MHD Turbulence C. S. Ng, A. Bhattacharjee, and D. Munsi Space Science Center University of New Hampshire Acknowledgment: P. A. Isenberg Work partially supported by NSF, NASA CMSO

More information