High resolution images obtained with Solar Optical Telescope on Hinode. SOLAR-B Project Office National Astronomical Observatory of Japan (NAOJ)

Size: px
Start display at page:

Download "High resolution images obtained with Solar Optical Telescope on Hinode. SOLAR-B Project Office National Astronomical Observatory of Japan (NAOJ)"

Transcription

1 High resolution images obtained with Solar Optical Telescope on Hinode SOLAR-B Project Office National Astronomical Observatory of Japan (NAOJ)

2 Temperature stratification of solar atmosphere G-band Ca II H Temperature minimum Most of visible light is emitted from the photosphere, 500-km thin layer around the surface of the Sun.

3 The Solar Optical Telescope (SOT) on Hinode observes photosphere and chromosphere Corona Chromosphrer Temperature minimum Photosphere Magnetic field

4 Fine structures on the solar surface seen by the Solar Optical Telescope (SOT)

5 Microscopic observation by SOT 50000km (size of Earth) 430nm wavelength band (G-band) Solar Optical Telescope (SOT) on Hinode is the largest solar telescope flown in space, which provides the best spatial resolution. Its microscopic observation allows to observe fine structures in a Sun spot.

6 Close-up of granules 16000km 4000km 0.2 arcsec Granules and bright points corresponding to tiny magnetic features are clearly seen in the movie. Obtained data proves that SOT achieves the diffraction limit resolution of 50cmaperture telescope, 2 arcsec in the wavelength of 430 nm.

7 Long-lasting stability SOT/Hinode Ground-based telescope Ground-based observation is disturbed by turbulence of Earth s atmosphere. Good seeing condition does not last for a long time on the ground. On the other hand, SOT/Hinode realizes seeing-free observation 24 hours a day, which allows to trace dynamic behavior of the Sun.

8 Implication of chromospheric heating G-band (Photosphere) Ca II H (Chromosphere) SOT/Hinode can simultaneously observe photosphere and chromosphere. G-band bright points indicate strong magnetic fluxs. Bright structures in Ca II H implies heating in the chromosphere. These precious data set provide a clue to the chromospheric heating.

9 Evolution of magnetic fields around a Sun spot

10 50000km G-band (430nm) SOT/Hinode can measure magnetic field photosphere and observe the chromosphere above by selecting filters. This function allows us study dynamic phenomena such as the heating around Sun spot, flares, and jets.

11 50000km Longitudinal magnetic field (Fe I 630nm) White and black of the magnetogram shows N and S polarities, respectively. Strength of magnetic field reaches 3000 Gauss in the Sun spot. Localized magnetic fluxes up to 1000 Gauss are observed outside the Sun spot.

12 50000km Ca II H (397nm) Spectral line of Ca II H mainly represents the chromosphere above the photoshere. Brightness indicates the strength of heating in the chromosphere, which coincide with magnetic field concentration on the photosphere.

13 Decaying Sun spot 半 暗 部 の 絵 Longitudinal magnetic field Ca II H Fragment of magnetic flux and bright points in Ca II H are flowing away from the Sun spot. Accompanying the movement, number of small brightening and flare are observed. This data set successfully tracked the process of magnetic energy build-up and its release.

14 Dynamic eruption above Sun spot 82000km This movie in Ca II H shows an active region near the limb of the Sun. It highlights brightenings and dynamic eruption around the Sun spot. Thanks to its low stray-light and distortion-free observation, SOT/Hinode has captured this dynamic phenomena for the first time.

15 Appendix

16 1) Granule and small magnetic feature Tiny magnetic flux upflow Visible cellular pattern of the photosphere is caused by convection below the photosphere. Hot upflow and cool downflow are seen bright and dark, respectively. Magnetic fluxes are swept by convection flow and concentrated in the converging region. Their typical size is 0.2 arcsec, or 140km on the Sun. downflow downflow

17 2) Structure of Sun spot Magnetic Field A Sun spot consists of central dark umbra and surrounding penumbra. In the umbra, strong magnetic flux prevents heat flux fro m deeper layer, which causes decreased temperature hence dark umbra. More inclined fields exists in the penumbra, which are observed as threads of magnetic field. Umbra Penumbra

The Sun. 1a. The Photosphere. A. The Solar Atmosphere. 1b. Limb Darkening. A. Solar Atmosphere. B. Phenomena (Sunspots) C.

The Sun. 1a. The Photosphere. A. The Solar Atmosphere. 1b. Limb Darkening. A. Solar Atmosphere. B. Phenomena (Sunspots) C. The Sun 1 The Sun A. Solar Atmosphere 2 B. Phenomena (Sunspots) Dr. Bill Pezzaglia C. Interior Updated 2006Oct31 A. The Solar Atmosphere 1. Photosphere 2. Chromosphere 3. Corona 4. Solar Wind 3 1a. The

More information

Hidrodinámica y magnetismo estelares

Hidrodinámica y magnetismo estelares Hidrodinámica y magnetismo estelares la convección estelar y las erupciones solares gigantes la convección estelar y las erupciones solares gigantes Fernando Moreno Insertis Instituto de Astrofisica de

More information

Our Sun: the view from outside

Our Sun: the view from outside Our Sun: the view from outside 1. The Sun is hot. Really hot. The visible "surface" of the Sun, called the photosphere, has a temperature of about 5800 Kelvin. That's equivalent to roughly 10,000 Fahrenheit.

More information

Progress Towards the Solar Dynamics Observatory

Progress Towards the Solar Dynamics Observatory Progress Towards the Solar Dynamics Observatory Barbara J. Thompson SDO Project Scientist W. Dean Pesnell SDO Assistant Project Scientist Page 1 SDO OVERVIEW Mission Science Objectives The primary goal

More information

The Sun. Astronomy 291 1

The Sun. Astronomy 291 1 The Sun The Sun is a typical star that generates energy from fusion of hydrogen into helium. Stars are gaseous bodies that support their weight by internal pressure. Astronomy 291 1 The Sun: Basic Properties

More information

The Sun ASTR /14/2016

The Sun ASTR /14/2016 The Sun ASTR 101 11/14/2016 1 Radius: 700,000 km (110 R ) Mass: 2.0 10 30 kg (330,000 M ) Density: 1400 kg/m 3 Rotation: Differential, about 25 days at equator, 30 days at poles. Surface temperature: 5800

More information

Chapter 10 Our Star. Why does the Sun shine? Radius: m (109 times Earth) Mass: kg (300,000 Earths)

Chapter 10 Our Star. Why does the Sun shine? Radius: m (109 times Earth) Mass: kg (300,000 Earths) Chapter 10 Our Star X-ray visible Radius: 6.9 10 8 m (109 times Earth) Mass: 2 10 30 kg (300,000 Earths) Luminosity: 3.8 10 26 watts (more than our entire world uses in 1 year!) Why does the Sun shine?

More information

TRANSIT OF VENUS 2012, Observation with PICARD/SODISM during transit

TRANSIT OF VENUS 2012, Observation with PICARD/SODISM during transit TRANSIT OF VENUS 2012, Observation with PICARD/SODISM during transit SODISM (Solar Diameter Imager and Surface Mapper): An instrument of the PICARD payload, is a high resolution imaging telescope. SODISM

More information

The Sun: Our Star (Chapter 14)

The Sun: Our Star (Chapter 14) The Sun: Our Star (Chapter 14) Based on Chapter 14 No subsequent chapters depend on the material in this lecture Chapters 4, 5, and 8 on Momentum, energy, and matter, Light, and Formation of the solar

More information

Name Date Per Teacher

Name Date Per Teacher Reading Guide: Chapter 28.1 (read text pages 571-575) STRUCTURE OF THE SUN 1e Students know the Sun is a typical star and is powered by nuclear reactions, primarily the fusion of hydrogen to form helium.

More information

Observing the Sun NEVER LOOK DIRECTLY AT THE SUN!!! Image taken from the SOHO web-site http://sohowww.nascom.nasa.gov/gallery/solarcorona/uvc003.

Observing the Sun NEVER LOOK DIRECTLY AT THE SUN!!! Image taken from the SOHO web-site http://sohowww.nascom.nasa.gov/gallery/solarcorona/uvc003. name Observing the Sun NEVER LOOK DRECTLY AT THE SUN!!! mage taken from the SOHO web-site http://sohowww.nascom.nasa.gov/gallery/solarcorona/uvc003.html Explanation: The Sun is a pretty active star. You

More information

THE VORTICITY OF SOLAR PHOTOSPHERIC FLOWS ON THE SCALE OF GRANU- LATION. А.А. Pevtsov 1.

THE VORTICITY OF SOLAR PHOTOSPHERIC FLOWS ON THE SCALE OF GRANU- LATION. А.А. Pevtsov 1. THE VORTICITY OF SOLAR PHOTOSPHERIC FLOWS ON THE SCALE OF GRANU- LATION. А.А. Pevtsov 1 1 National Solar Observatory, Sunspot, NM UNITED STATES e-mail apevtsov@nso.edu We employ time sequences of images

More information

8.1 Radio Emission from Solar System objects

8.1 Radio Emission from Solar System objects 8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio

More information

Solar Ast ro p h y s ics

Solar Ast ro p h y s ics Peter V. Foukal Solar Ast ro p h y s ics Second, Revised Edition WI LEY- VCH WILEY-VCH Verlag Co. KCaA Contents Preface 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.3

More information

Ch 6: Light and Telescope. Wave and Wavelength. Wavelength, Frequency and Speed. v f

Ch 6: Light and Telescope. Wave and Wavelength. Wavelength, Frequency and Speed. v f Ch 6: Light and Telescope Wave and Wavelength..\..\aTeach\PhET\wave-on-a-string_en.jar Wavelength, Frequency and Speed Wave and Wavelength A wave is a disturbance that moves through a medium or through

More information

Unit 8 Lesson 3 The Sun. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 8 Lesson 3 The Sun. Copyright Houghton Mifflin Harcourt Publishing Company The Sun: The Center of Attention Where is the sun located? The sun rises every day in the east and appears to travel across the sky before it sets in the west. This led astronomers to believe the sun moved

More information

Solar Active Regions. Solar Active Regions E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS

Solar Active Regions. Solar Active Regions E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS Solar Active Regions Solar active regions form where the tops of loops of magnetic flux, shaped like the Greek letter omega ( ), emerge into the solar atmosphere where they can be seen. These loops are

More information

Introduction to Astronomy. Lecture 4: Our star, the Sun

Introduction to Astronomy. Lecture 4: Our star, the Sun Introduction to Astronomy Lecture 4: Our star, the Sun 1 Sun Facts Age = 4.6 x 10 9 years Mean Radius = 7.0x10 5 km = 1.1x10 2 R = 1R Volume = 1.4x10 18 km 3 = 1.3x10 6 R = 1V Mass = 2x10 30 kg = 3.3x10

More information

CHAPTER 9: STARS AND GALAXIES

CHAPTER 9: STARS AND GALAXIES CHAPTER 9: STARS AND GALAXIES Characteristics of the Sun 1. The Sun is located about 150 million kilometres from the Earth. 2. The Sun is made up of hot gases, mostly hydrogen and helium. 3. The size of

More information

Arrange the following forms of radiation from shortest wavelength to longest. optical gamma ray infrared x-ray ultraviolet radio

Arrange the following forms of radiation from shortest wavelength to longest. optical gamma ray infrared x-ray ultraviolet radio Arrange the following forms of radiation from shortest wavelength to longest. optical gamma ray infrared x-ray ultraviolet radio Which of the wavelength regions can completely penetrate the Earth s atmosphere?

More information

Counting Sunspots. Parent Prompts: Are there years with lots of sunspots? Are there years with very few sunspots?

Counting Sunspots. Parent Prompts: Are there years with lots of sunspots? Are there years with very few sunspots? Counting are magnetic storms on the Sun these dark areas are a little cooler than the rest of the Sun s atmosphere. They can be easily seen when the Sun s image is projected onto a white surface, using

More information

STUDY GUIDE: Earth Sun Moon

STUDY GUIDE: Earth Sun Moon The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all

More information

Proton-proton cycle 3 steps PHYS 162 1

Proton-proton cycle 3 steps PHYS 162 1 Proton-proton cycle 3 steps PHYS 162 1 The proton proton chain in action PHYS 162 2 Layers of the Sun Mostly Hydrogen with about 25% Helium. Small amounts of heavier elements Gas described by Temperature,

More information

Observing the Sun from space: Highlights from Yohkoh, SOHO, TRACE, RHESSI. H.S. Hudson Space Sciences Lab University of California, Berkeley

Observing the Sun from space: Highlights from Yohkoh, SOHO, TRACE, RHESSI. H.S. Hudson Space Sciences Lab University of California, Berkeley Observing the Sun from space: Highlights from Yohkoh, SOHO, TRACE, RHESSI H.S. Hudson Space Sciences Lab University of California, Berkeley SUMMARY OF LECTURE I. Overview of the Sun 2. Observational technique

More information

Climate Discovery Teacher s Guide

Climate Discovery Teacher s Guide Unit: Sun-Earth Lesson: 3 Materials & Preparation Time: Preparation: 30 min Teaching: one or two class periods Materials for the Teacher: Overhead projector Transparency of p.5 Materials for the Class:

More information

1. has (have) wavelengths that are longer than visible light. a. Gamma-rays b. Ultraviolet light c. Infrared radiation d. X-rays e.

1. has (have) wavelengths that are longer than visible light. a. Gamma-rays b. Ultraviolet light c. Infrared radiation d. X-rays e. DeAnza College Astro 04 Practice Test 2 Fall Quarter 2007 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Mark choice on Scantron. DO NOT MARK

More information

Worksheet 4.2 (Answer Key)

Worksheet 4.2 (Answer Key) Worksheet 4.2 (Answer Key) 1. How are the stars we see at night related to the Sun? How are they different? The Sun is a star, but the Sun is very close and the stars are very, very far away. 2. How big

More information

Howard Eskildsen often uploads some of his wonderful and exquisite solar

Howard Eskildsen often uploads some of his wonderful and exquisite solar Solar Images Taken with Calcium K-Line Filters Howard L. Cohen January 2014 (Rev. March 2015) Howard Eskildsen s beautiful images of the Sun uploaded to the AAC website may appear strange and unfamiliar

More information

3D MODEL ATMOSPHERES OF THE SUN AND LATE-TYPE STARS. Remo Collet Australian National University

3D MODEL ATMOSPHERES OF THE SUN AND LATE-TYPE STARS. Remo Collet Australian National University 3D MODEL ATMOSPHERES OF THE SUN AND LATE-TYPE STARS Remo Collet Australian National University STELLAR SPECTRA Stellar spectra carry the information about the physical properties and compositions of stars

More information

Direct Imaging of Exoplanets. Techniques & Results

Direct Imaging of Exoplanets. Techniques & Results Direct Imaging of Exoplanets Techniques & Results Challenge 1: Large ratio between star and planet flux (Star/Planet) Reflected light from Jupiter 10 9 Stars are a billion times brighter than the planet

More information

Introduction to the Sun by Stephen Ramsden

Introduction to the Sun by Stephen Ramsden Introduction to the Sun by Stephen Ramsden Solar astronomy is the fastest growing hobbyist segment of astronomy in the world today. Solar astronomers use highly refined, narrowband telescopes to observe

More information

DeAnza College Astronomy 04 Practice Final Examination Fall 2011

DeAnza College Astronomy 04 Practice Final Examination Fall 2011 DeAnza College Astronomy 04 Practice Final Examination Fall 2011 Multiple Choice: Mark answer on Scantron. 1. Which of the following motions of Earth causes the Sun to rise in the east and set in the west?

More information

The Sun and It s Domain. Know about the Sun s Energy Know about the Sun s Core, Atmosphere, and Sunspots Comprehend the Solar System s Structure

The Sun and It s Domain. Know about the Sun s Energy Know about the Sun s Core, Atmosphere, and Sunspots Comprehend the Solar System s Structure The Sun and It s Domain Know about the Sun s Energy Know about the Sun s Core, Atmosphere, and Sunspots Comprehend the Solar System s Structure Lesson Overview The Sun s Energy The Sun s Core, Atmosphere,

More information

Solar Activity and Earth's Climate

Solar Activity and Earth's Climate Rasmus E. Benestad Solar Activity and Earth's Climate Second Edition Published in association with Springer Praxis ids Publishing Publisl PRAXI Chichester, UK Contents Preface to the second edition Preface

More information

Climate Discovery Teacher s Guide

Climate Discovery Teacher s Guide Unit: Sun-Earth Lesson: 1 Materials & Preparation Time: Preparation: 30 min Teaching: 50 min Materials for the Teacher: Sun Image Thumbnails printed in color onto transparency PowerPoint presentation and

More information

Understanding Solar Variability as Groundwork for Planet Transit Detection

Understanding Solar Variability as Groundwork for Planet Transit Detection Stars as Suns: Activity, Evolution, and Planets IAU Symposium, Vol. 219, 2004 A. K. Dupree and A. O. Benz, Eds. Understanding Solar Variability as Groundwork for Planet Transit Detection Andrey D. Seleznyov,

More information

Read the lesson. Use the words in the box to complete the concept web. The Sun is a, star or a fiery ball of hot gases.

Read the lesson. Use the words in the box to complete the concept web. The Sun is a, star or a fiery ball of hot gases. Lesson 1 Study Guide What is? Read the lesson. Use the words in the box to complete the concept web. chromosphere corona innermost photosphere prominences solar flare star sunspots Use with pages 257 259.

More information

4 th & 5 th lectures; Mon & Tues, July 7 & 8Crib notes 7/6/20087/6/2008. Sun and processes

4 th & 5 th lectures; Mon & Tues, July 7 & 8Crib notes 7/6/20087/6/2008. Sun and processes 4 th & 5 th lectures; Mon & Tues, July 7 & 8Crib notes 7/6/20087/6/2008 Topics Sun and processes Chart of spectrum and features has been uploaded To blackboard and web Ask how many students have accessed

More information

Four Centuries of Discovery. Visions of the Universe. torms. on thes. supplemental materials

Four Centuries of Discovery. Visions of the Universe. torms. on thes. supplemental materials Visions of the Universe ~ Four Centuries of Discovery S torms on thes un supplemental materials Storms on the Sun Table of Contents - Exhibit Overview... 3 Science Background... 4 Science Misconceptions...

More information

Introduction to Light, Color, and Shadows

Introduction to Light, Color, and Shadows Introduction to Light, Color, and Shadows What is light made out of? -waves, photons, Electromagnetic waves (don t know this one) How do you get color? - different wavelengths of light. What does it mean

More information

Unit 1: Astronomy, Part 1: The Big Bang

Unit 1: Astronomy, Part 1: The Big Bang Earth Science Notes Packet #1 Unit 1: Astronomy, Part 1: The Big Bang 1.1: Big Bang The universe is How do we know this? All matter and energy in the universe was once condensed into a single point bya

More information

CHARACTERISTISTICS OF PLAGE FRAGMENTS WITH PHOTOSPHERIC NETWORK PROPERTIES. D. J. NAUER, R. G. TESKE, and G. E. ELSTE

CHARACTERISTISTICS OF PLAGE FRAGMENTS WITH PHOTOSPHERIC NETWORK PROPERTIES. D. J. NAUER, R. G. TESKE, and G. E. ELSTE CHARACTERISTISTICS OF PLAGE FRAGMENTS WITH PHOTOSPHERIC NETWORK PROPERTIES D. J. NAUER, R. G. TESKE, and G. E. ELSTE Department of Astronomy, The University of Michigan, Ann Arbor, Mich., U.S.A. (Received

More information

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski WELCOME to Aurorae In the Solar System Aurorae in the Solar System Sponsoring Projects Galileo Europa Mission Jupiter System Data Analysis Program ACRIMSAT Supporting Projects Ulysses Project Outer Planets

More information

Cosmic Structure Formation and Dynamics: Cosmological N-body Simulations of Galaxy Formation and Magnetohydrodynamic Simulations of Solar Atmosphere

Cosmic Structure Formation and Dynamics: Cosmological N-body Simulations of Galaxy Formation and Magnetohydrodynamic Simulations of Solar Atmosphere Chapter 3 Epoch Making Simulation Cosmic Structure Formation and Dynamics: Cosmological N-body Simulations of Galaxy Formation and Magnetohydrodynamic Simulations of Solar Atmosphere Project Representative

More information

Inclinations of small quiet-sun magnetic features

Inclinations of small quiet-sun magnetic features Inclinations of small quiet-sun magnetic features Shahin Jafarzadeh Max Planck Institute for Solar System Research Sami K. Solanki, Andreas Lagg, Michiel van Noort, Alex Feller, Sanja Danilovic Max Planck

More information

SPRING network for real-time space weather predictions

SPRING network for real-time space weather predictions SPRING network for real-time space weather predictions Sanjay Gosain 1,2, Markus Roth 2, Frank Hill 1, Michael Thompson 3 1. National Solar Observatory, Tucson (Boulder), AZ (CO), USA 2. Kiepenheuer Institute

More information

Stars. Flux and luminosity Brightness of stars Spectrum of light Temperature and color/spectrum How the eye sees color

Stars. Flux and luminosity Brightness of stars Spectrum of light Temperature and color/spectrum How the eye sees color Stars Flux and luminosity Brightness of stars Spectrum of light Temperature and color/spectrum How the eye sees color Which is of these part of the Sun is the coolest? A) Core B) Radiative zone C) Convective

More information

CHROMOSPHERIC DYNAMICS FROM RHESSI AND RESIK DATA

CHROMOSPHERIC DYNAMICS FROM RHESSI AND RESIK DATA CHROMOSPHERIC DYNAMICS FROM RHESSI AND RESIK DATA T. Mrozek 1,2, S. Kołomański 2,B. Sylwester 1, A. Kępa 1, J. Sylwester 1, S. Gburek 1, M. Siarkowski 1, M. Gryciuk 1, M. Stęślicki 1 1 Solar Physics Division,

More information

Name Period Date Unit 5 Test: Earth-Sun-Moon System. 1. The diagram below shows the relative positions of Earth and the Moon and rays of sunlight.

Name Period Date Unit 5 Test: Earth-Sun-Moon System. 1. The diagram below shows the relative positions of Earth and the Moon and rays of sunlight. Name Period Date Unit 5 Test: Earth-Sun-Moon System Multiple Choice: 30 questions at 2 points each (60 points) 1. The diagram below shows the relative positions of Earth and the Moon and rays of sunlight.

More information

Energy Transfer in the Atmosphere

Energy Transfer in the Atmosphere Energy Transfer in the Atmosphere Essential Questions How does energy transfer from the sun to Earth and the atmosphere? How are air circulation patterns with the atmosphere created? Vocabulary Radiation:

More information

The sun is one of the 100 billion stars that make up the Milky Way

The sun is one of the 100 billion stars that make up the Milky Way Section 24.3 24.3 The Sun FOCUS Section Objectives 24.7 Explain the structure of the sun. 24.8 Describe the physical features on the surface of the sun. 24.9 Explain how the sun produces energy. Build

More information

Clouds and the Energy Cycle

Clouds and the Energy Cycle August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and

More information

The Sun. We know the most about the sun. How does the sun produce energy? Inside the sun Models of the solar interior. We can see surface details.

The Sun. We know the most about the sun. How does the sun produce energy? Inside the sun Models of the solar interior. We can see surface details. The Sun We know the most about the sun We can see surface details. Other stars are points of light. Magnetic fields, wind, flares How does the sun produce energy? Inside the sun Models of the solar interior

More information

Association of Mid-Infrared Solar Plages With Calcium K Line Emissions and Magnetic Structures

Association of Mid-Infrared Solar Plages With Calcium K Line Emissions and Magnetic Structures Association of Mid-Infrared Solar Plages With Calcium K Line Emissions and Magnetic Structures R.MARCON 1 Institute of Physics Gleb Watagin, State University of Campinas, Campinas, Brazil P.KAUFMANN 2,3,

More information

Astro Lecture 16 The Sun [Chapter 10 in the Essential Cosmic Perspective]

Astro Lecture 16 The Sun [Chapter 10 in the Essential Cosmic Perspective] Astro 110-01 Lecture 16 The Sun [Chapter 10 in the Essential Cosmic Perspective] Habbal Lecture 16 1 For problems with Mastering Astronomy Contact: Jessica Elbern Jessica.Elbern@Pearson.com 808-372-6897

More information

The He I and He II chromospheric shells and the Transition Region

The He I and He II chromospheric shells and the Transition Region The He I and He II chromospheric shells and the Transition Region Cyril Bazin 1, Serge Koutchmy 1 and Ehsan Tavabi 2 1 Institut d Astrophysique de Paris, UMR7095 CNRS and UPMC (France) bazin.cyrille@neuf.fr

More information

Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date:

Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date: Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date: 1. If stellar parallax can be measured to a precision of about 0.01 arcsec using telescopes on Earth to observe stars, to what distance

More information

Advanced Technology Solar Telescope

Advanced Technology Solar Telescope Advanced Technology Solar Telescope a d v a n c e d t e c h n o l o g y s o l a r t e l e s c o p e Inside front cover left blank Advanced Technology Solar Telescope The Need: We are positioned for a new

More information

Magnetic Reconnection and Solar Flares

Magnetic Reconnection and Solar Flares Magnetic Reconnection and Solar Flares 1. Magnetic reconnection We have already discussed an magnetic X-point (or a null point). In 2D it is given by the equation B = yˆx + xŷ. The field lines of this

More information

Francesco Piacentini. Title. Page 1

Francesco Piacentini. Title. Page 1 Page 1 Page 2 Layers core -- nuclear burning central part of the Sun radiative zone -- the layer below convection zone where energy is transported by photons convection zone -- layer of the Sun just below

More information

HF Radio Wave Propagation

HF Radio Wave Propagation HF Radio Wave Propagation Introduction Understanding radio wave propagation can mean the difference between making and missing a contact to a particular part of the world. This presentation examines HF

More information

Solar Irradiance Variability Observed During Solar Cycle 23

Solar Irradiance Variability Observed During Solar Cycle 23 Solar Irradiance Variability Observed During Solar Cycle 23 Introduction Solar Cycle Results for Climate Change Solar Cycle Results for Space Weather Tom Woods LASP / University

More information

Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset.

Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset. Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning:! How does your eye form an image?! How do we record images? How does your eye form an image?

More information

SOLAR SPECTROSCOPY FOR THE AMATEUR

SOLAR SPECTROSCOPY FOR THE AMATEUR SOLAR SPECTROSCOPY FOR THE AMATEUR By David Lyon With the increasing availability of commercially made telescopes, many new amateur astronomers are missing the optical basics of the hobby. The construction

More information

Comparative Planetology

Comparative Planetology Group Members: Comparative Planetology Introduction: You will explore the solar system using a series of images taken by many different spacecraft. One of the most important areas of astronomy is the field

More information

ACTIVE REGION 9612 EVOLUTION

ACTIVE REGION 9612 EVOLUTION ACTIVE REGION 9612 EVOLUTION LILIANA DUMITRU, CRISTIANA DUMITRACHE Astronomical Institute of the Romanian Academy Str. Cuţitul de Argint 5, 040557 Bucharest, Romania E-mail: lyly@aira.astro.ro, crisd@aira.astro.ro

More information

Corso di Fisica Te T cnica Ambientale Solar Radiation

Corso di Fisica Te T cnica Ambientale Solar Radiation Solar Radiation Solar radiation i The Sun The Sun is the primary natural energy source for our planet. It has a diameter D = 1.39x10 6 km and a mass M = 1.989x10 30 kg and it is constituted by 1/3 of He

More information

Investigation of plasma velocity field in solar flare footpoints from RHESSI observations

Investigation of plasma velocity field in solar flare footpoints from RHESSI observations Investigation of plasma velocity field in solar flare footpoints from RHESSI observations T. Mrozek1,2, S. Kołomański2, B. Sylwester1, A. Kępa1, J. Sylwester1, S. Gburek1, M. Siarkowski1, M. Gryciuk1,

More information

From Nobeyama to ALMA

From Nobeyama to ALMA Highlights of Nobeyama Solar Results: From Nobeyama to ALMA Kiyoto Shibasaki Nobeyama Solar Radio Observatory 2013/1/15 Solar ALMA WS @ Glasgow 1 Outline Short history Solar physics with radio observations

More information

Physics 1230: Light and Color

Physics 1230: Light and Color Physics 1230: Light and Color Exam 1 is tomorrow, Wed. June 9, in class. Covers material from Chapter 1, pgs 1-25, Lectures and Homework 1-3. HW4 will be up soon. Due Thursday, 5PM Lecture 5: Shadows,

More information

Jupiter (Earth for Scale) Galilean moons. Europa

Jupiter (Earth for Scale) Galilean moons. Europa OUTER PLANETS MINOR MEMBERS OF THE SOLAR SYSTEM SUN Jupiter (Earth for Scale) Jupiter s bands are clouds Hubble view of Jupiter Arrow shows entry point of Galileo probe, Dec. 1995 Galilean moons Io True

More information

MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW

MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW OVERVIEW More than ever before, Physics in the Twenty First Century has become an example of international cooperation, particularly in the areas of astronomy and cosmology. Astronomers work in a number

More information

Astrophysics for Icarus

Astrophysics for Icarus Astrophysics for Icarus Kelly Lepo 1. Black Body Radiation Like lots of things in astronomy, black body radiation is a terrible name. When you see the phrase, think hot, glowing thing. For example, an

More information

AFG Observations of the Sun

AFG Observations of the Sun AFG-216 - Observations of the Sun Pål Brekke Norwegian Space Centre/UNIS Types of telescopes Refractor - light passes through a primary lense and a eyepiece lens Reflector - light is reflected and focussed

More information

TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE

TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE CHAPTER 18 The Sun and Other Stars 1 18-1 How are stars formed? 2 18-2 How is spectroscopy used to study stars? 3 18-3 What is magnitude? 4 18-4

More information

Assignment 6. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Assignment 6. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Assignment 6 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which part of the Sun has the greatest density? a. the photosphere b. the core

More information

TEACHER RESOURCE INFORMATION

TEACHER RESOURCE INFORMATION EXPLORE T HE S UN TEACHER RESOURCE INFORMATION SUNSTRUCK AN INTEGRATED SOLAR EDUCATIONAL EXPERIENCE TEACHER RESOURCES Background Sun Earth Relationship Sun s Energy-Nuclear Fusion Light-Photons/distance

More information

Coronal Heating Problem

Coronal Heating Problem Mani Chandra Arnab Dhabal Raziman T V PHY690C Course Project Indian Institute of Technology Kanpur Outline 1 2 3 Source of the energy Mechanism of energy dissipation Proposed mechanisms Regions of the

More information

Reconstruction of the telescopes HSFA1 and HSFA2

Reconstruction of the telescopes HSFA1 and HSFA2 Reconstruction of the telescopes HSFA1 and HSFA2 Miroslav Klvaňa and Michal Sobotka Astronomical Institute, Academy of Sciences of the Czech Republic, CZ-25165 Ondřejov Historical remarks About 20 years

More information

Infrared Thermometer Guidance

Infrared Thermometer Guidance Infrared Thermometer Guidance Infrared thermometers can be used to answer a range of questions, including: - What is the temperature of the clouds? - What is the greenhouse effect? - If it is sunny, how

More information

Our Sun a typical but above average star

Our Sun a typical but above average star Our Sun a typical but above average star Relative Abundances of the Stellar Types Type Colour Proportion 0 Blue 0.003% B Blue-white 0.13% A White 0.63% F White-yellow 3.1% G Yellow 8% K Orange 13% M Red

More information

The Milky Way Galaxy Chapter 15

The Milky Way Galaxy Chapter 15 The Milky Way Galaxy Chapter 15 Topics to be covered: 1. Contents of our Galaxy: Interstellar Medium(ISM) and Stars. Nebulae 2. Distribution of galactic clusters and center of our Galaxy. 3. Structure

More information

Lecture 11 The Holocene and Recent Climate Change

Lecture 11 The Holocene and Recent Climate Change Lecture 11 The Holocene and Recent Climate Change Over the past 2 million years, the Earth has had ice sheets which have varied in size, causing alternations between ice ages and interglacial periods.

More information

AFG-216 - Introduction to the Sun

AFG-216 - Introduction to the Sun AFG-216 - Introduction to the Sun Pål Brekke Norwegian Space Centre/UNIS The Sun The Sun is a normal star: middle aged (4.5 Gyr) main sequence star of spectral type G2 The Sun is a special star: it is

More information

Greenhouse Effect and Radiative Balance on Earth and Venus

Greenhouse Effect and Radiative Balance on Earth and Venus Venus Exploration Advisory Group Greenhouse Effect and Radiative Balance on Earth and Venus Dave Crisp November 5, 2007-1- Venus and Earth: An Unlikely Pair Most theories of solar system evolution assume

More information

Warning : HαT telescope must NOT be used for solar observation without additional filters. This is the user responsibility to check that his filter

Warning : HαT telescope must NOT be used for solar observation without additional filters. This is the user responsibility to check that his filter For high resolution chromosphere observation and imaging in Hα band Warning : HαT telescope must NOT be used for solar observation without additional filters. This is the user responsibility to check that

More information

I. Introduction. II. Review

I. Introduction. II. Review I. Introduction Seismic Emission from Solar Flares C. Lindsey NorthWest Research Associates Colorado Research Associates Division A.-C. Donea, D. Besliu-Ionescu, H. Moradi and P. S. Cally Centre from Stellar

More information

M. Rovira Instituto de Astronomía y Física del Espacio C.C.67 Suc.28 (1428) Buenos Aires. in Argentina

M. Rovira Instituto de Astronomía y Física del Espacio C.C.67 Suc.28 (1428) Buenos Aires. in Argentina Recent Observations of the solar corona with a new ground-based coronagraph in Argentina (MICA) G. Stenborg, R. Schwenn, N. Srivastava, B. Inhester, B. Podlipnik Max-Planck-Institut für Aeronomie Max-Planck-Str.

More information

Electromagnetic Radiation

Electromagnetic Radiation Electromagnetic Radiation Wave - a traveling disturbance, e.g., displacement of water surface (water waves), string (waves on a string), or position of air molecules (sound waves). [ π λ ] h = h sin (

More information

Optics and Telescope. Chapter Six

Optics and Telescope. Chapter Six Optics and Telescope Chapter Six ASTR 111 003 Fall 2007 Lecture 06 Oct. 09, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15) Chap.

More information

TELESCOPE CONCEPTS. Telescopes collect and detect light, like giant eyes. Telescopes advantages over eyes include: larger light-collecting areas

TELESCOPE CONCEPTS. Telescopes collect and detect light, like giant eyes. Telescopes advantages over eyes include: larger light-collecting areas SUPER VIEWS OF SPACE TELESCOPE CONCEPTS Telescopes collect and detect light, like giant eyes Telescopes advantages over eyes include: larger light-collecting areas collecting light for longer periods of

More information

Physics 1010: The Physics of Everyday Life. TODAY Black Body Radiation, Greenhouse Effect

Physics 1010: The Physics of Everyday Life. TODAY Black Body Radiation, Greenhouse Effect Physics 1010: The Physics of Everyday Life TODAY Black Body Radiation, Greenhouse Effect 1 Admin Stuff Exams are at back of room, alphabetically in four piles. Please collect AFTER class Grades posted

More information

Astronomy 110 Homework #05 Assigned: 02/13/2007 Due: 02/20/2007. Name: (Answer Key)

Astronomy 110 Homework #05 Assigned: 02/13/2007 Due: 02/20/2007. Name: (Answer Key) Astronomy 110 Homework #05 Assigned: 02/13/2007 Due: 02/20/2007 Name: (Answer Key) Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures thus

More information

Demonstration of Data Analysis using the Gnumeric Spreadsheet Solver to Estimate the Period for Solar Rotation

Demonstration of Data Analysis using the Gnumeric Spreadsheet Solver to Estimate the Period for Solar Rotation Demonstration of Data Analysis using the Gnumeric Spreadsheet Solver to Estimate the Period for Solar Rotation Ron Larham Hart Plain Institute for Studies Introduction This paper serves two purposes, the

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

We know the shape of the solar spectrum. Let s consider that the earth atmosphere is 8000 km thick.

We know the shape of the solar spectrum. Let s consider that the earth atmosphere is 8000 km thick. We know the shape of the solar spectrum. How is this spectral shape and irradiance of the solar light affected by the earth s atmosphere? Let s consider that the earth atmosphere is 8000 km thick. The

More information

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris

More information

LIGHT CONCEPTS. Most light is invisible to our eyes. Light is a streaming code that tells about the chemical composition of its source

LIGHT CONCEPTS. Most light is invisible to our eyes. Light is a streaming code that tells about the chemical composition of its source ITS SECRETS REVEALED LIGHT CONCEPTS Most light is invisible to our eyes Light is a streaming code that tells about the chemical composition of its source Light from a glowing object can reveal its temperature

More information

Climate Discovery Teacher s Guide

Climate Discovery Teacher s Guide Climate Discovery eacher s Guide Sunspots and Climate Unit:Little Ice Age Lesson: 7 Materials & Preparation ime: Preparation: 10 min eaching: 60 min Materials for the eacher: Overhead projector ransparencies

More information

8. The Sun as a Star

8. The Sun as a Star Astronomy 110: SURVEY OF ASTRONOMY 8. The Sun as a Star 1. Inside the Sun 2. Solar Energy 3. Solar Activity The Sun is not only the largest object in our solar system it is also the nearest example of

More information