Solar Wind Heating by MHD Turbulence

Size: px
Start display at page:

Download "Solar Wind Heating by MHD Turbulence"

Transcription

1 Solar Wind Heating by MHD Turbulence C. S. Ng, A. Bhattacharjee, and D. Munsi Space Science Center University of New Hampshire Acknowledgment: P. A. Isenberg Work partially supported by NSF, NASA CMSO General Meeting, June 4, 2007 University of New Hampshire, Durham, NH

2 Hydrodynamic turbulence Kolmogorov (1941): can get energy spectrum by dimensional analysis Energy cascade rate:!(k) " k # E(k) $! " = 5/ 2, # = 3/ 2 Kolmogorov spectrum: { Energy spectrum: Kolmogorov constant: C K ~ 1.4! 2 = constant E(k) ~ C K! 2 / 3 k "5/ 3! E(k) dk = total energy

3 MHD turbulence Additional dependence on the Alfvén speed V A!(k) " k # E(k) $ % Energy cascade rate: V A! " = (5 #$ ) / 2, % = (3 #$ ) / 2 Spectral index: ν = α / β = (5 γ ) (3 γ ) = constant! = 0 : Kolmogorov spectrum E(k) ~ C K! 2 / 3 k "5/ 3 E(k) ~ C IK ε 1/ 2 1/ 2 3/ 2 γ = 1 : IK spectrum V A k Iroshnikov (1963), Kraichnan (1965) C IK ~ Dimensionless parameter:! " k1/ 2 E k 1/ 2 V A #1 = v k / V A << 1

4 Weak MHD turbulence Energy cascade possible only if two Alfvén wave packets propagating in opposite directions collide Weak turbulence: χ << 1 Time scales: Eddy turn-over time! N ~ 1/ kv k Alfvén time! A ~ 1/ kv A = "! N <<! N Energy cascade time! E ~! A / " 2 =! N / " >>! N Kolmogorov cascade rate:! K ~ v k 2 / " N ~ k 5/ 2 E k 3/ 2 IK cascade rate:! IK ~ v k 2 / " E ~! K # ~ k 3 E k 2 V A $1 <<! K

5 simulations of 2D MHD turbulence no B 0 k - 3/2 energy spectrum [Ng et al. 2003] 1D energy spectrum decaying periodic in x,y consistent with IK spectrum magnetic energy kinetic energy

6 Energy cascade rate! Fit numerical values of or #3 / " = C 2 K " K = C #2 IK " IK where ε IK = k 3 E 2 1 k V! A by IK theory ε K = k 5 / 2 E k 3/ 2 by Kolmogorov theory E(k) = C K " 2 / 3 k #5 / 3 = C IK " 1/ 2 V A 1/ 2 k #3 / 2 C IK 1.8 C K More consistent with IK theory c.f. usually found values: C K ~ 1.4 2, C IK ~

7 Energy cascade rate ! E energy cascade rate ε IK = k 3 E k 2 VA 1 ε A amplitude changing rate ε K = k 5/ 2 E k 3/2 More consistent with IK theory

8 Energy cascade rate -- observations From [Vasquez et al. 2007, preprint], scatter plot of the Kolmogorov cascade rate (red diamonds - left), the IK cascade rate (red diamonds -right), and expected heating rate (blue crosses) as a function of proton temperature T pr. The Kolmogorov rate exceeds the expected one by a factor of 10 or more, while the IK rate is roughly in agreement.

9 Solar wind turbulence model The steady state solar wind turbulence model developed by [Matthaeus et al. 1994, 1996] and later developments: Assumptions: Steady state Radially expanding solar wind with uniform speed V sw 1D (radial position r) Turbulence characterized by two fields: fluctuation velocity (Z) and correlation length (λ) Kolmogorov type cascade rate Solar wind (proton) temperature can be calculated passively

10 Solar wind turbulence model The steady state solar wind turbulence model developed by [Matthaeus et al. 1994, 1996] and later developments: dz 2 dr = " AZ 2 r " #Z 3 $V SW + Q V SW d" dr = # C" r + $Z V SW # $"Q V SW Z 2! dt dr = " 4T 3r + m#z 3 3k B $V SW Z 2 :! average turbulence energy with Z = Z " λ: turbulence correlation length T: solar! wind proton temperature Q: turbulence generation rate due to pickup ions (interstellar neutral particles entering the! heliosphere and get ionized)

11 Solar wind turbulence model vs observations From [Smith et al. 2001]

12 Temperature comparison with pickup ions From [Isenberg et al. 2003]

13 Solar wind model with IK cascade The solar wind turbulence model changed to [Matthaeus et al. 1994, Hossain et al. 1995]: dz 2 dr = " AZ 2 r " #Z 4 $V SW V A + Q V SW d" dr = # C" r + $ % Z 4 ( ' * # $"Q V SW & V A ) V SW Z 2! dt dr = " 4T 3r + m#z 4 3k B $V SW V A Z 2!: average turbulence energy with Z = Z " λ: turbulence correlation length T:! solar wind temperature Q: turbulence generation rate due to pickup ions! 1/ 3

14 Comparisons with observations IK without Q IK with Q Kolmogorov with Q Kolmogorov without Q c.f. [Isenberg et al. 2003]

15 Comparisons with observations Kolmogorov without Q Kolmogorov with Q C.f. [Smith et al. 2001], with corrected temperature equation.

16 Comparisons with observations Kolmogorov without Q Kolmogorov with Q IK without Q C.f. [Smith et al. 2001], with corrected temperature equation.

17 Comparisons with observations Kolmogorov without Q Kolmogorov with Q IK without Q IK with Q C.f. [Smith et al. 2001], with corrected temperature equation.

18 Conclusion 2D MHD turbulence is found in simulations to be weak 3 /2 with IK spectrum E(k) k and the energy cascade rate is found to be more consistent with IK scaling. Although a solar wind model based on Kolmogorov cascade compares well with proton temperature observations with contributions from pickup ions, it is also consistent with IK cascade with or without that. The predication of correlation length based on IK cascade with or without pickup ions agrees better with data than Kolmogorov cascade with pickup ions. Ion heating based on IK cascade is a possible alternative to Kolmogorov based theories and should be investigated more extensively.

Kolmogorov versus Iroshnikov-Kraichnan spectra: Consequences for ion heating in

Kolmogorov versus Iroshnikov-Kraichnan spectra: Consequences for ion heating in Kolmogorov versus Iroshnikov-Kraichnan spectra: Consequences for ion heating in the solar wind C. S. Ng 1, A. Bhattacharjee 2, D. Munsi 2, P. A. Isenberg 2, and C. W. Smith 2 1 Geophysical Institute, University

More information

Coronal Heating Problem

Coronal Heating Problem Mani Chandra Arnab Dhabal Raziman T V PHY690C Course Project Indian Institute of Technology Kanpur Outline 1 2 3 Source of the energy Mechanism of energy dissipation Proposed mechanisms Regions of the

More information

Kinetic effects in the turbulent solar wind: capturing ion physics with a Vlasov code

Kinetic effects in the turbulent solar wind: capturing ion physics with a Vlasov code Kinetic effects in the turbulent solar wind: capturing ion physics with a Vlasov code Francesco Valentini francesco.valentini@fis.unical.it S. Servidio, D. Perrone, O. Pezzi, B. Maruca, F. Califano, W.

More information

Temperature anisotropy in the solar wind

Temperature anisotropy in the solar wind Introduction Observations Simulations Summary in the solar wind Petr Hellinger Institute of Atmospheric Physics & Astronomical Institute AS CR, Prague, Czech Republic Kinetic Instabilities, Plasma Turbulence

More information

Correlation of speed and temperature in the solar wind

Correlation of speed and temperature in the solar wind Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006ja011636, 2006 Correlation of speed and temperature in the solar wind W. H. Matthaeus, 1 H. A. Elliott, 2 and D.

More information

Wave-particle and wave-wave interactions in the Solar Wind: simulations and observations

Wave-particle and wave-wave interactions in the Solar Wind: simulations and observations Wave-particle and wave-wave interactions in the Solar Wind: simulations and observations Lorenzo Matteini University of Florence, Italy In collaboration with Petr Hellinger, Simone Landi, and Marco Velli

More information

Proton and He 2+ Temperature Anisotropies in the Solar Wind Driven by Ion Cyclotron Waves

Proton and He 2+ Temperature Anisotropies in the Solar Wind Driven by Ion Cyclotron Waves Chin. J. Astron. Astrophys. Vol. 5 (2005), No. 2, 184 192 (http:/www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Proton and He 2+ Temperature Anisotropies in the Solar Wind Driven by Ion Cyclotron

More information

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8 References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that

More information

Statistical Study of Magnetic Reconnection in the Solar Wind

Statistical Study of Magnetic Reconnection in the Solar Wind WDS'13 Proceedings of Contributed Papers, Part II, 7 12, 2013. ISBN 978-80-7378-251-1 MATFYZPRESS Statistical Study of Magnetic Reconnection in the Solar Wind J. Enžl, L. Přech, J. Šafránková, and Z. Němeček

More information

11 Navier-Stokes equations and turbulence

11 Navier-Stokes equations and turbulence 11 Navier-Stokes equations and turbulence So far, we have considered ideal gas dynamics governed by the Euler equations, where internal friction in the gas is assumed to be absent. Real fluids have internal

More information

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary

More information

Coronal expansion and solar wind

Coronal expansion and solar wind Coronal expansion and solar wind The solar corona over the solar cycle Coronal and interplanetary temperatures Coronal expansion and solar wind acceleration Origin of solar wind in magnetic network Multi-fluid

More information

Hybrid simulation of ion cyclotron resonance in the solar wind: Evolution of velocity distribution functions

Hybrid simulation of ion cyclotron resonance in the solar wind: Evolution of velocity distribution functions JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2005ja011030, 2005 Hybrid simulation of ion cyclotron resonance in the solar wind: Evolution of velocity distribution functions Xing Li Institute

More information

Kinetic physics of the solar wind

Kinetic physics of the solar wind "What science do we need to do in the next six years to prepare for Solar Orbiter and Solar Probe Plus?" Kinetic physics of the solar wind Eckart Marsch Max-Planck-Institut für Sonnensystemforschung Complementary

More information

Kinetic processes and wave-particle interactions in the solar wind

Kinetic processes and wave-particle interactions in the solar wind Kinetic processes and wave-particle interactions in the solar wind Eckart Marsch Institute for Experimental and Applied Physics (IEAP), Christian Albrechts University at Kiel, 24118 Kiel, Germany Seminar

More information

Solar Wind: Theory. Parker s solar wind theory

Solar Wind: Theory. Parker s solar wind theory Solar Wind: Theory The supersonic outflow of electrically charged particles, mainly electrons and protons from the solar CORONA, is called the SOLAR WIND. The solar wind was described theoretically by

More information

Heating & Cooling in Molecular Clouds

Heating & Cooling in Molecular Clouds Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core

More information

Chapter 9 Summary and outlook

Chapter 9 Summary and outlook Chapter 9 Summary and outlook This thesis aimed to address two problems of plasma astrophysics: how are cosmic plasmas isotropized (A 1), and why does the equipartition of the magnetic field energy density

More information

Interstellar Cosmic-Ray Spectrum from Gamma Rays and Synchrotron

Interstellar Cosmic-Ray Spectrum from Gamma Rays and Synchrotron Interstellar Cosmic-Ray Spectrum from Gamma Rays and Synchrotron Chuck Naval Research Laboratory, Washington, DC charles.dermer@nrl.navy.mil Andy Strong Max-Planck-Institut für extraterrestrische Physik,

More information

The heliosphere-interstellar medium interaction: One shock or two?

The heliosphere-interstellar medium interaction: One shock or two? 1 The heliosphere-interstellar medium interaction: One shock or two? John D. Richardson M.I.T. Abstract. The issue of whether a shock forms in the interstellar medium as it approaches the heliopause has

More information

The Solar Wind. Chapter 5. 5.1 Introduction. 5.2 Description

The Solar Wind. Chapter 5. 5.1 Introduction. 5.2 Description Chapter 5 The Solar Wind 5.1 Introduction The solar wind is a flow of ionized solar plasma and an associated remnant of the solar magnetic field that pervades interplanetary space. It is a result of the

More information

MHD Modeling of the Interaction Between the Solar Wind and Solar System Objects

MHD Modeling of the Interaction Between the Solar Wind and Solar System Objects 554 MHD Modeling of the Interaction Between the Solar Wind and Solar System Objects Andreas Ekenbäck and Mats Holmström Swedish Institute of Space Physics (IRF) P.O. Box 81 98134 Kiruna, Sweden {andreas.ekenback,mats.holmstrom}@irf.se

More information

Proton temperature and Plasma Volatility

Proton temperature and Plasma Volatility The microstate of the solar wind Radial gradients of kinetic temperatures Velocity distribution functions Ion composition and suprathermal electrons Coulomb collisions in the solar wind Waves and plasma

More information

Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering

Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering Intended Audience: Main Campus Students Distance (online students) Both Purpose:

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

The microstate of the solar wind

The microstate of the solar wind The microstate of the solar wind Radial gradients of kinetic temperatures Velocity distribution functions Ion composition and suprathermal electrons Coulomb collisions in the solar wind Waves and plasma

More information

Solar Wind and Pickup Protons

Solar Wind and Pickup Protons Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.109/005ja011533, 006 A three-dimensional MHD solar wind model with pickup protons A. V. Usmanov 1, and M. L. Goldstein 3 Received

More information

Solar-Wind Models and Energy Planets

Solar-Wind Models and Energy Planets DRAFT VERSION DECEMBER 6, 2011 Preprint typeset using L A TEX style emulateapj v. 08/22/09 INCORPORATING KINETIC PHYSICS INTO A TWO-FLUID SOLAR-WIND MODEL WITH TEMPERATURE ANISOTROPY AND LOW-FREQUENCY

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge

More information

The solar wind (in 90 minutes) Mathew Owens

The solar wind (in 90 minutes) Mathew Owens The solar wind (in 90 minutes) Mathew Owens 5 th Sept 2013 STFC Advanced Summer School m.j.owens@reading.ac.uk Overview There s simply too much to cover in 90 minutes Hope to touch on: Formation of the

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

Diagnostics. Electric probes. Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://www.ipfn.ist.utl.

Diagnostics. Electric probes. Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://www.ipfn.ist.utl. C. Silva Lisboa, Jan. 2014 IST Diagnostics Electric probes Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://www.ipfn.ist.utl.pt Langmuir probes Simplest diagnostic

More information

Sporadic E A Mystery Solved?

Sporadic E A Mystery Solved? Sporadic E A Mystery Solved? In Part 1 of this QST exclusive, one of the world s leading ionospheric scientists explains the physics of sporadic E and discusses unresolved problems in understanding its

More information

On Solar Wind Magnetic Fluctuations and Their Influence on the Transport of Charged Particles in the Heliosphere

On Solar Wind Magnetic Fluctuations and Their Influence on the Transport of Charged Particles in the Heliosphere On Solar Wind Magnetic Fluctuations and Their Influence on the Transport of Charged Particles in the Heliosphere DISSERTATION zur Erlangung des Grades eines Doktors der Naturwissenschaften in der Fakultät

More information

Keywords: Geomagnetic storms Dst index Space Weather Recovery phase.

Keywords: Geomagnetic storms Dst index Space Weather Recovery phase. MAGNETOSPHERE BEHAVIOUR DURING THE RECOVERY PHASE OF GEOMAGNETIC STORMS JESÚS AGUADO, CONSUELO CID, YOLANDA CERRATO, ELENA SAIZ Departamento de Física. Universidad de Alcalá, E-28871 Alcalá de Henares,

More information

Acceleration of the Solar Wind as a Result of the Reconnection of Open Magnetic Flux with Coronal Loops

Acceleration of the Solar Wind as a Result of the Reconnection of Open Magnetic Flux with Coronal Loops Acceleration of the Solar Wind as a Result of the Reconnection of Open Magnetic Flux with Coronal Loops L. A. Fisk 1, G. Gloeckler 1,2, T. H. Zurbuchen 1, J. Geiss 3, and N. A. Schwadron 4 1 Department

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

Nonlinear processes in heliospheric plasma: models and observations

Nonlinear processes in heliospheric plasma: models and observations Mem. S.A.It. Vol. 74, 425 c SAIt 2003 Memorie della Nonlinear processes in heliospheric plasma: models and observations M. Velli 1, G. Einaudi 2, C. Chiuderi 1, P. L. Veltri 3, and the MM02242342 project

More information

Indiana Content Standards for Educators

Indiana Content Standards for Educators Indiana Content for Educators SCIENCE PHYSICAL SCIENCE teachers are expected to have a broad understanding of the knowledge and skills needed for this educator license, and to use that knowledge to help

More information

Chapter 19 Magnetic Forces and Fields

Chapter 19 Magnetic Forces and Fields Chapter 19 Magnetic Forces and Fields Student: 3. The magnetism of the Earth acts approximately as if it originates from a huge bar magnet within the Earth. Which of the following statements are true?

More information

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of: ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

More information

SPACE WEATHER INTERPRETING THE WIND. Petra Vanlommel & Luciano Rodriguez

SPACE WEATHER INTERPRETING THE WIND. Petra Vanlommel & Luciano Rodriguez SPACE WEATHER INTERPRETING THE WIND Petra Vanlommel & Luciano Rodriguez THE SUN LOSES ENERGY Radiation Mass Particles THE SUN LOSES ENERGY PHYSICAL REPHRASING Total Solar Irradiance Solar Wind Fast Particles

More information

Solar cycle. Auringonpilkkusykli. 1844 Heinrich Schwabe: 11 year solar cycle. ~11 years

Solar cycle. Auringonpilkkusykli. 1844 Heinrich Schwabe: 11 year solar cycle. ~11 years Sun Solar cycle Auringonpilkkusykli 1844 Heinrich Schwabe: 11 year solar cycle ~11 years Auringonpilkkusykli Solar cycle Butterfly diagram: Edward Maunder 1904 New cycle Spots appear at mid-latitudes Migration

More information

The Interplanetary Medium and The Solar Wind

The Interplanetary Medium and The Solar Wind The Interplanetary Medium and The Solar Wind The eruption of a looped solar filament that is rooted in a magnetically-active region near the apparent edge, or limb, of the Sun. The image, from the TRACE

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

39th International Physics Olympiad - Hanoi - Vietnam - 2008. Theoretical Problem No. 3

39th International Physics Olympiad - Hanoi - Vietnam - 2008. Theoretical Problem No. 3 CHANGE OF AIR TEMPERATURE WITH ALTITUDE, ATMOSPHERIC STABILITY AND AIR POLLUTION Vertical motion of air governs many atmospheric processes, such as the formation of clouds and precipitation and the dispersal

More information

Electromagnetic Radiation (EMR) and Remote Sensing

Electromagnetic Radiation (EMR) and Remote Sensing Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through

More information

The Birth of the Universe Newcomer Academy High School Visualization One

The Birth of the Universe Newcomer Academy High School Visualization One The Birth of the Universe Newcomer Academy High School Visualization One Chapter Topic Key Points of Discussion Notes & Vocabulary 1 Birth of The Big Bang Theory Activity 4A the How and when did the universe

More information

Lecture 8 - Turbulence. Applied Computational Fluid Dynamics

Lecture 8 - Turbulence. Applied Computational Fluid Dynamics Lecture 8 - Turbulence Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Turbulence What is turbulence? Effect of turbulence

More information

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK

More information

Three-dimensional Simulation of Magnetized Cloud Fragmentation Induced by Nonlinear Flows and Ambipolar Diffusion

Three-dimensional Simulation of Magnetized Cloud Fragmentation Induced by Nonlinear Flows and Ambipolar Diffusion accepted by Astrophysical Journal Letters Three-dimensional Simulation of Magnetized Cloud Fragmentation Induced by Nonlinear Flows and Ambipolar Diffusion Takahiro Kudoh 1 and Shantanu Basu 2 ABSTRACT

More information

Lesson 3: Isothermal Hydrostatic Spheres. B68: a self-gravitating stable cloud. Hydrostatic self-gravitating spheres. P = "kt 2.

Lesson 3: Isothermal Hydrostatic Spheres. B68: a self-gravitating stable cloud. Hydrostatic self-gravitating spheres. P = kt 2. Lesson 3: Isothermal Hydrostatic Spheres B68: a self-gravitating stable cloud Bok Globule Relatively isolated, hence not many external disturbances Though not main mode of star formation, their isolation

More information

Physics 30 Worksheet #10 : Magnetism From Electricity

Physics 30 Worksheet #10 : Magnetism From Electricity Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron

More information

A subgrid-scale model for the scalar dissipation rate in nonpremixed combustion

A subgrid-scale model for the scalar dissipation rate in nonpremixed combustion Center for Turbulence Research Proceedings of the Summer Program 1998 11 A subgrid-scale model for the scalar dissipation rate in nonpremixed combustion By A. W. Cook 1 AND W. K. Bushe A subgrid-scale

More information

Theory of electrons and positrons

Theory of electrons and positrons P AUL A. M. DIRAC Theory of electrons and positrons Nobel Lecture, December 12, 1933 Matter has been found by experimental physicists to be made up of small particles of various kinds, the particles of

More information

Heating & Cooling in the Interstellar Medium

Heating & Cooling in the Interstellar Medium Section 7 Heating & Cooling in the Interstellar Medium 7.1 Heating In general terms, we can imagine two categories of heating processes in the diuse ISM: 1 large-scale (mechanical, e.g., cloud-cloud collisions),

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

Solar Wind Control of Density and Temperature in the Near-Earth Plasma Sheet: WIND-GEOTAIL Collaboration. Abstract

Solar Wind Control of Density and Temperature in the Near-Earth Plasma Sheet: WIND-GEOTAIL Collaboration. Abstract 1 Geophys. Res. Letters, 24, 935-938, 1997. Solar Wind Control of Density and Temperature in the Near-Earth Plasma Sheet: WIND-GEOTAIL Collaboration T. Terasawa 1, M. Fujimoto 2, T. Mukai 3, I. Shinohara

More information

Heating diagnostics with MHD waves

Heating diagnostics with MHD waves Heating diagnostics with MHD waves R. Erdélyi & Y. Taroyan Robertus@sheffield.ac.uk SP 2 RC, Department of Applied Mathematics, The University of Sheffield (UK) The solar corona 1860s coronium discovered

More information

Lecture 14. Introduction to the Sun

Lecture 14. Introduction to the Sun Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum

More information

Interpolation error in DNS simulations of turbulence: consequences for particle tracking

Interpolation error in DNS simulations of turbulence: consequences for particle tracking Interpolation error in DNS simulations of turbulence: consequences for particle tracking Michel van Hinsberg Department of Physics, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The

More information

Meeting the Grand Challenge of Protecting an Astronaut s Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions

Meeting the Grand Challenge of Protecting an Astronaut s Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions Meeting the Grand Challenge of Protecting an Astronaut s Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions Ram Tripathi NASA Langley Research Center NIAC 2012 Spring Symposium,

More information

Quantum Mechanics and Atomic Structure 1

Quantum Mechanics and Atomic Structure 1 Quantum Mechanics and Atomic Structure 1 INTRODUCTION The word atom is derived from the Greek word, atomos, which means uncut or indivisible. It was Dalton (1808) who established that elementary constituents

More information

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012 O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749

More information

Simulation of collisional relaxation of trapped ion clouds in the presence of space charge fields

Simulation of collisional relaxation of trapped ion clouds in the presence of space charge fields Simulation of collisional relaxation of trapped ion clouds in the presence of space charge fields J. H. Parks a) and A. Szöke Rowland Institute for Science, Cambridge, Massachusetts 14-197 Received 1 January

More information

Cross section, Flux, Luminosity, Scattering Rates

Cross section, Flux, Luminosity, Scattering Rates Cross section, Flux, Luminosity, Scattering Rates Table of Contents Paul Avery (Andrey Korytov) Sep. 9, 013 1 Introduction... 1 Cross section, flux and scattering... 1 3 Scattering length λ and λ ρ...

More information

Measurement and Simulation of Electron Thermal Transport in the MST Reversed-Field Pinch

Measurement and Simulation of Electron Thermal Transport in the MST Reversed-Field Pinch 1 EX/P3-17 Measurement and Simulation of Electron Thermal Transport in the MST Reversed-Field Pinch D. J. Den Hartog 1,2, J. A. Reusch 1, J. K. Anderson 1, F. Ebrahimi 1,2,*, C. B. Forest 1,2 D. D. Schnack

More information

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number 2.1 Composition of the Atom Atomic Calculations number of protons + number of neutrons = mass number number of neutrons = mass number - number of protons number of protons = number of electrons IF positive

More information

Charges, voltage and current

Charges, voltage and current Charges, voltage and current Lecture 2 1 Atoms and electrons Atoms are built up from Positively charged nucleus Negatively charged electrons orbiting in shells (or more accurately clouds or orbitals) -

More information

Energy. Mechanical Energy

Energy. Mechanical Energy Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance

More information

Numerical Model for the Study of the Velocity Dependence Of the Ionisation Growth in Gas Discharge Plasma

Numerical Model for the Study of the Velocity Dependence Of the Ionisation Growth in Gas Discharge Plasma Journal of Basrah Researches ((Sciences)) Volume 37.Number 5.A ((2011)) Available online at: www.basra-science -journal.org ISSN 1817 2695 Numerical Model for the Study of the Velocity Dependence Of the

More information

Physical Principle of Formation and Essence of Radio Waves

Physical Principle of Formation and Essence of Radio Waves Physical Principle of Formation and Essence of Radio Waves Anatoli Bedritsky Abstract. This article opens physical phenomena which occur at the formation of the radio waves, and opens the essence of the

More information

Neutralization Reactions. Evaluation copy

Neutralization Reactions. Evaluation copy Neutralization Reactions Computer 6 If an acid is added to a base, a chemical reaction called neutralization occurs. An example is the reaction between nitric acid, HNO 3, and the base potassium hydroxide,

More information

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise. Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

More information

DEM modelling of the dynamic penetration process on Mars as a part of the NASA InSight Mission

DEM modelling of the dynamic penetration process on Mars as a part of the NASA InSight Mission Proceedings of the 4th European Young Geotechnical Engineers Conference (EYGEC), Durham, UK Osman, A.S. & Toll, D.G. (Eds.) 05 ISBN 978-0-9933836-0 DEM modelling of the dynamic penetration process on Mars

More information

Unit 2 Lesson 1 Introduction to Energy. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 2 Lesson 1 Introduction to Energy. Copyright Houghton Mifflin Harcourt Publishing Company Get Energized! What are two types of energy? Energy is the ability to cause change. Energy takes many different forms and causes many different effects. There are two general types of energy: kinetic energy

More information

Kinetic Models of Solar Wind Electrons, Protons and Heavy Ions

Kinetic Models of Solar Wind Electrons, Protons and Heavy Ions 10 Kinetic Models of Solar Wind Electrons, Protons and Heavy Ions Viviane Pierrard Belgian Institute for Space Aeronomy and Université Catholique de Louvain Belgium 1. Introduction In the present chapter,

More information

Fundamentals of Plasma Physics Waves in plasmas

Fundamentals of Plasma Physics Waves in plasmas Fundamentals of Plasma Physics Waves in plasmas APPLAuSE Instituto Superior Técnico Instituto de Plasmas e Fusão Nuclear Vasco Guerra 1 Waves in plasmas What can we study with the complete description

More information

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which

More information

A SIMPLIFIED DISCUSSION OF RECONNECTION AND ITS MYTHS By Forrest Mozer

A SIMPLIFIED DISCUSSION OF RECONNECTION AND ITS MYTHS By Forrest Mozer A SIMPLIFIED DISCUSSION OF RECONNECTION AND ITS MYTHS By Forrest Mozer 1 WHY A SIMPLIFIED DISCUSSION OF RECONNECTION? For many people, magnetic field reconnection is too complicated to understand in the

More information

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

More information

1 Stellar winds and magnetic fields

1 Stellar winds and magnetic fields 1 Stellar winds and magnetic fields by Viggo Hansteen The solar wind is responsible for maintaining the heliosphere, and for being the driving agent in the magnetospheres of the planets but also for being

More information

PHYS 1624 University Physics I. PHYS 2644 University Physics II

PHYS 1624 University Physics I. PHYS 2644 University Physics II PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus- based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus

More information

1. COSIMA Scientific Objectives

1. COSIMA Scientific Objectives 1. COSIMA Scientific Objectives For the COSIMA investigation the following scientific objectives were established: elemental composition of solid cometary particles to characterize comets in the framework

More information

Ion Propulsion Engine Simulation

Ion Propulsion Engine Simulation Ion Propulsion Ion Propulsion Engine Simulation STUDENT ACTIVITY AND REPORT SHEET This activity must be completed at a computer with Internet access. Part 1: Procedure 1. Go to http://dawn.jpl.nasa.gov/mission/ion_engine_interactive/index.html

More information

Data representation and analysis in Excel

Data representation and analysis in Excel Page 1 Data representation and analysis in Excel Let s Get Started! This course will teach you how to analyze data and make charts in Excel so that the data may be represented in a visual way that reflects

More information

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function. 7. DYNAMIC LIGHT SCATTERING 7. First order temporal autocorrelation function. Dynamic light scattering (DLS) studies the properties of inhomogeneous and dynamic media. A generic situation is illustrated

More information

Free Convection Film Flows and Heat Transfer

Free Convection Film Flows and Heat Transfer Deyi Shang Free Convection Film Flows and Heat Transfer With 109 Figures and 69 Tables < J Springer Contents 1 Introduction 1 1.1 Scope 1 1.2 Application Backgrounds 1 1.3 Previous Developments 2 1.3.1

More information

What the Characteristics of Wind and Solar Electric Power Production Mean for Their Future

What the Characteristics of Wind and Solar Electric Power Production Mean for Their Future What the Characteristics of Wind and Solar Electric Power Production Mean for Their Future Jay Apt Tepper School of Business and Department of Engineering & Public Policy Carnegie Mellon University March

More information

What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)

What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure

More information

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

More information

Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

More information

8 Radiative Cooling and Heating

8 Radiative Cooling and Heating 8 Radiative Cooling and Heating Reading: Katz et al. 1996, ApJ Supp, 105, 19, section 3 Thoul & Weinberg, 1995, ApJ, 442, 480 Optional reading: Thoul & Weinberg, 1996, ApJ, 465, 608 Weinberg et al., 1997,

More information

CFD Based Air Flow and Contamination Modeling of Subway Stations

CFD Based Air Flow and Contamination Modeling of Subway Stations CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George

More information

Chemical Waves in the Belousov-Zhabotinsky Reaction: Determining a Rate Constant with a Ruler

Chemical Waves in the Belousov-Zhabotinsky Reaction: Determining a Rate Constant with a Ruler Chemical Waves in the Belousov-Zhabotinsky Reaction: Determining a Rate Constant with a Ruler John A. Pojman Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg,

More information

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation

More information

Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops

Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A4, 1157, doi:10.1029/2002ja009284, 2003 Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops L. A. Fisk

More information

Limits on the core temperature anisotropy of solar wind protons

Limits on the core temperature anisotropy of solar wind protons Limits on the core temperature anisotropy of solar wind protons E. Marsch, L. Zhao, C.-Y. Tu To cite this version: E. Marsch, L. Zhao, C.-Y. Tu. Limits on the core temperature anisotropy of solar wind

More information