3-rd lecture: Modified gravity and local gravity constraints

Size: px
Start display at page:

Download "3-rd lecture: Modified gravity and local gravity constraints"

Transcription

1 3-rd lecture: Modified gravity and local gravity constraints

2 Local gravity tests If we change gravity from General Relativity, there are constraints coming from local gravity tests. Solar system tests, violation of equivalence principle, I will discuss the compatibility of modified gravity models (including f(r) gravity, Brans-Dicke theory, dilaton gravity, ) with such experiments.

3 There are many modified gravity models other than f(r) gravity. A few examples are: (i) Brans-Dicke theory (with a potential V) w BD is called a Brans-Dicke parameter. (ii) Dilaton gravity A scalar field couples to R. (iii) Scalar-tensor theory

4 These modified gravity models can be written in the form Matter action We perform the conformal transformation where Let us consider scalar-tensor theories Introducing a new scalar field the action in the Einstein frame is where We set " 2 =1

5 In f(r) gravity we obtain the same action with We introduce the following quantity i.e., In f (R) gravity we have For scalar-tensor models with constant coupling Q, we find Then the Jordan frame action is

6 The Jordan frame action with constant Q. where (i) Q = 0 Quintessence (GR with a scalar field) (ii) Nonzero constant Q Setting we obtain the Brans-Dicke action: with the correspondence When Q goes to 0 w BD goes to infinity. (GR case)

7 Orginal Brans-Dicke theory (1961) The potential V is absent. Massless scalar field In this case the scalar field can freely propagate. The current solar-system tests give the bound Using the relation, this bound translates into The constant Q has a meaning of a coupling between the scalar field and matter in the Einstein frame. In the absence of the potential V, such a coupling needs to be suppressed ( Q <<1).

8 Theories with large couplings Q In f(r) gravity the coupling is large: If the potential is absent, it is not possible to satisfy solar system constraints ( ). However the potential is present in f(r) gravity: (gravitational origin) It is possible to satisfy local gravity constraints if the model is designed so that the mass of the field is heavy in the region where gravity experiments are carried out. This property holds for large coupling models with a scalar-field potential.

9 Chameleon mechanism (Khoury and Weltman, 2003) The effective coupling between the field and matter can be made much smaller than Q through a chameleon mechanism. Consider the action in Jordan frame: with The action in the Einstein frame is given by where In the Einstein frame dark energy couples to matter with the coupling Q. We are basically interested in the case where the potential V of the field is responsible for dark energy, while at the same time the model is consistent with local gravity tests.

10 Two demands for large-coupling scalar fields (i) The field mass needs to be small in order to realize the acceleration today on cosmological scales. Massless chameleon (ii) The field mass needs to be large in the region of high density to avoid the propagation of the fifth force. The field changes its mass depending on the environment it is in. Chameleon field Massive chameleon

11 The scalar-field equation in the Einstein frame Taking the variation of the Einstein frame action ( ) with respect to the field, we obtain The trace of the matter is where (non-relativistic matter) The energy density in the Einstein frame is Instead we use the energy density in the Einstein frame. that is conserved The scalar field directly couples to matter.

12 An effective potential has a minimum in the presence of a matter coupling. where With a coupling Q Runaway potential (used often in quintessence) such as The coupling induces a potential minimum.

13 The field mass about the potential minimum gets larger for increasing energy density. Massive Massless Large " m Small " m (The local region with high density) (The cosmological region with low density)!!

14 Spherically symmetric configuration The field equation in the Einstein frame (for weak gravity) is where Inside and outside the body, the effective potential has maxima at U," (" A ) + Qe Q" A # A = 0,!! " B << " A!! U, ( B ) + Qe Q B # B = 0 The field values at the maxima are different inside/outside the body.

15 The spherical symmetric configuration Inside the star Outside the star (r < r c ) (r > r c ) The body has a thin-shell if the field is almost frozen around in the most region of the inside of the star and if it evolves around the surface of the star.

16 The field profile There are three regions of interest. (i) 0 < r < r 1 in this region The field is nearly frozen. The field exists around. (ii) r < r < r 1 c (r is the radius of star) c in this region under the boundary condition The field begins to evolve. The field begins to evolve because of the dominance of the matter coupling. (iii) r > r c in this region The kinetic energy is dominant. under the boundary condition

17 The coefficients A, C, D, E are known by connecting three solutions at r=r and r=r (T. Tamaki and S.T.) 1 c The field solution outside the body, for m << m, is B A The radius r is determined by the following condition 1 This corresponds to where at the surface of body. is the gravitational potential

18 Thick-shell and thin-shell solutions The solution outside the body is (i) Thick-shell solutions If the field is away from at r=0, the field rapidly rolls down the potential. This corresponds to r 1 =0 and then The coupling is of the order of Q. It is not possible to satisfy local gravity constraints unless Q <<1.

19 (ii) Thin-shell solutions Thin-shell If r is close to r and m r >>1, then 1 c A c r 1 r c where Q eff is the effective coupling given by Q eff becomes much smaller than Q when the body has a thin-shell. Using the previous relation we have where

20 Using the thin-shell parameter, the effective coupling is Q becomes smaller than Q for eff The upper bound on the thin-shell parameter can be obtained by solar-system tests and by the violation of equivalence principle.

21 Solar-system constraints The spherically symmetric metric in the Jordan frame is The Einstein frame metric is where Under the weak gravity background we have (because ) where (thin-shell solutions)

22 Under the condition we have The post Newtonian parameter is The tightest solar-system bound coming from the Shapiro time delay effect is This translates into As long as the thin-shell parameter is much smaller than 1, the solar system constraints are satisfied even for Q =O(1).

23 The fifth-force with The fifth force that exerts on a particle with a unit mass (i.e., acceleration) is (suppressed for ) The presence of the fifth force leads to the difference of accelerations of Earth and Moon toward the Sun. A detailed calculation gives Stronger than solar system constraints

24 The equivalence constraint gives where we used

25 (i) The potential Concrete models This runaway potential is often used in the context of dark energy. Solving the equation U," (" B ) + Qe Q" B # B = 0 gives! The constraint gives where we used When n=1, When n=2, Compatible with the energy scale responsible for dark energy

26 (ii) f(r) gravity In f(r) gravity the potential in the Einstein frame is where Consider the model In this case we have The equivalence constraint gives For the existence of a late-time de Sitter point we require Taking and Indistinguishable from the LCDM model

27 Models that can deviate from the LCDM model Hu Starobinsky Hu and Sawicki: (R /R f (R) = R " #R 0 ) 2n 0 (May, 2007) (R /R 0 ) 2n +1 2 Starobinsky: $ f (R) = R " #R 0 1" 1+ R 2 2 ( /R 0 ) "n ' R 0 " H 0 %& () (June, 2007)! Cosmological! constant disappears in a flat space. f (R = 0) = 0! R >> R 0 and!! The solar-system constraints are satisfied for n > 0.5 The equivalence principle constraints are satisfied for n >1 (Capozziello and S.T.) In these models the deviation from the LCDM model becomes significant around the present epoch on cosmological scales.!

Structure formation in modified gravity models

Structure formation in modified gravity models Structure formation in modified gravity models Kazuya Koyama Institute of Cosmology and Gravitation University of Portsmouth Dark energy v modified gravity Is cosmology probing the breakdown of general

More information

Modified Gravity and the CMB

Modified Gravity and the CMB Modified Gravity and the CMB Philippe Brax, IphT Saclay, France arxiv:1109.5862 PhB, A.C. Davis Work in progress PhB, ACD, B. Li Minneapolis October 2011 PLANCK will give us very precise information on

More information

Gravity Testing and Interpreting Cosmological Measurement

Gravity Testing and Interpreting Cosmological Measurement Cosmological Scale Tests of Gravity Edmund Bertschinger MIT Department of Physics and Kavli Institute for Astrophysics and Space Research January 2011 References Caldwell & Kamionkowski 0903.0866 Silvestri

More information

Cosmological and Solar System Tests of. f (R) Cosmic Acceleration

Cosmological and Solar System Tests of. f (R) Cosmic Acceleration Cosmological and Solar System Tests of f (R) Cosmic Acceleration Wayne Hu Origins Institute, May 2007 Why Study f(r)? Cosmic acceleration, like the cosmological constant, can either be viewed as arising

More information

DYNAMICAL SYSTEMS APPROACH TO F(R) GRAVITY

DYNAMICAL SYSTEMS APPROACH TO F(R) GRAVITY DYNAMICAL SYSTEMS APPROACH TO F(R) GRAVITY Sulona Kandhai University of Cape Town, South Africa Supervised by Prof. Peter Dunsby FIELD EQUATIONS OF F(R) GRAVITY Field equations are derived from the generalised

More information

Gravitation modifiée à grande distance & tests dans le système solaire 10 avril 2008

Gravitation modifiée à grande distance & tests dans le système solaire 10 avril 2008 Gravitation modifiée à grande distance et tests dans le système solaire Gilles Esposito-Farèse, GRεCO, IAP et Peter Wolf, LNE-SYRTE 10 avril 2008 Gravitation modifiée à grande distance & tests dans le

More information

Localization of scalar fields on Branes with an Asymmetric geometries in the bulk

Localization of scalar fields on Branes with an Asymmetric geometries in the bulk Localization of scalar fields on Branes with an Asymmetric geometries in the bulk Vladimir A. Andrianov in collaboration with Alexandr A. Andrianov V.A.Fock Department of Theoretical Physics Sankt-Petersburg

More information

Name Class Date. true

Name Class Date. true Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

More information

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION 1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: dsorton1@gmail.com Abstract: There are many longstanding

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.

A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great. Q12.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

More information

Exploring dark energy models with linear perturbations: Fluid vs scalar field. Masaaki Morita (Okinawa Natl. College Tech., Japan)

Exploring dark energy models with linear perturbations: Fluid vs scalar field. Masaaki Morita (Okinawa Natl. College Tech., Japan) Exploring dark energy models with linear perturbations: Fluid vs scalar field Masaaki Morita (Okinawa Natl. College Tech., Japan) September 11, 008 Seminar at IAP, 008 1 Beautiful ocean view from my laboratory

More information

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (2014-2015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question

More information

Big Bang Cosmology. Big Bang vs. Steady State

Big Bang Cosmology. Big Bang vs. Steady State Big Bang vs. Steady State Big Bang Cosmology Perfect cosmological principle: universe is unchanging in space and time => Steady-State universe - Bondi, Hoyle, Gold. True? No! Hubble s Law => expansion

More information

At the skate park on the ramp

At the skate park on the ramp At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

More information

Newton s Law of Universal Gravitation describes the attractive gravitational force that exists between any two bodies with the following equation:

Newton s Law of Universal Gravitation describes the attractive gravitational force that exists between any two bodies with the following equation: Newton s Laws & Gravitation Newton s Law of Universal Gravitation describes the attractive gravitational force that exists between any two bodies with the following equation: F G = GMm 2 r G is the gravitational

More information

Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER

Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER 1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.

More information

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the

More information

Physics 53. Gravity. Nature and Nature's law lay hid in night: God said, "Let Newton be!" and all was light. Alexander Pope

Physics 53. Gravity. Nature and Nature's law lay hid in night: God said, Let Newton be! and all was light. Alexander Pope Physics 53 Gravity Nature and Nature's law lay hid in night: God said, "Let Newton be!" and all was light. Alexander Pope Kepler s laws Explanations of the motion of the celestial bodies sun, moon, planets

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

STATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Introduction Lecture Notes: J. Walt Oler Texas Tech University Contents What is Mechanics? Fundamental

More information

Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula

Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula Origin of the Solar System Lecture 7 Formation of the Solar System Reading: Chapter 9 Quiz#2 Today: Lecture 60 minutes, then quiz 20 minutes. Homework#1 will be returned on Thursday. Our theory must explain

More information

Dark Energy, Modified Gravity and The Accelerating Universe

Dark Energy, Modified Gravity and The Accelerating Universe Dark Energy, Modified Gravity and The Accelerating Universe Dragan Huterer Kavli Institute for Cosmological Physics University of Chicago Makeup of universe today Dark Matter (suspected since 1930s established

More information

Lesson 29: Newton's Law of Universal Gravitation

Lesson 29: Newton's Law of Universal Gravitation Lesson 29: Newton's Law of Universal Gravitation Let's say we start with the classic apple on the head version of Newton's work. Newton started with the idea that since the Earth is pulling on the apple,

More information

A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant

A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant H.M.Mok Radiation Health Unit, 3/F., Saiwanho Health Centre, Hong Kong SAR Govt, 8 Tai Hong St., Saiwanho, Hong

More information

Solar Energy Production

Solar Energy Production Solar Energy Production We re now ready to address the very important question: What makes the Sun shine? Why is this such an important topic in astronomy? As humans, we see in the visible part of the

More information

Testing dark matter halos using rotation curves and lensing

Testing dark matter halos using rotation curves and lensing Testing dark matter halos using rotation curves and lensing Darío Núñez Instituto de Ciencias Nucleares, UNAM Instituto Avanzado de Cosmología A. González, J. Cervantes, T. Matos Observational evidences

More information

Gravity Field and Dynamics of the Earth

Gravity Field and Dynamics of the Earth Milan Bursa Karel Pec Gravity Field and Dynamics of the Earth With 89 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo HongKong Barcelona Budapest Preface v Introduction 1 1 Fundamentals

More information

Solar System Gravity. Jeremy Sakstein

Solar System Gravity. Jeremy Sakstein Prepared for submission to JCAP Solar System Gravity Jeremy Sakstein Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK E-mail: jeremy.sakstein@port.ac.uk Contents

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis * By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams

More information

Gravitational potential

Gravitational potential Gravitational potential Let s assume: A particle of unit mass moving freely A body of mass M The particle is attracted by M and moves toward it by a small quantity dr. This displacement is the result of

More information

Effective actions for fluids from holography

Effective actions for fluids from holography Effective actions for fluids from holography Based on: arxiv:1405.4243 and arxiv:1504.07616 with Michal Heller and Natalia Pinzani Fokeeva Jan de Boer, Amsterdam Benasque, July 21, 2015 (see also arxiv:1504.07611

More information

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical

More information

On a Flat Expanding Universe

On a Flat Expanding Universe Adv. Studies Theor. Phys., Vol. 7, 2013, no. 4, 191-197 HIKARI Ltd, www.m-hikari.com On a Flat Expanding Universe Bo Lehnert Alfvén Laboratory Royal Institute of Technology, SE-10044 Stockholm, Sweden

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

Name: Date: Period: Gravity Study Guide

Name: Date: Period: Gravity Study Guide Vocabulary: Define the following terms. Law of Universal Gravitation Gravity Study Guide Weight Weightlessness Gravitational Field Black hole Escape velocity Math: Be able to use the equation for the law

More information

A unifying description of Dark Energy (& modified gravity) David Langlois (APC, Paris)

A unifying description of Dark Energy (& modified gravity) David Langlois (APC, Paris) A unifying description of Dark Energy (& modified gravity) David Langlois (APC, Paris) Outline 1. ADM formulation & EFT formalism. Illustration: Horndeski s theories 3. Link with observations Based on

More information

4 Gravity: A Force of Attraction

4 Gravity: A Force of Attraction CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1. IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location.

Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location. Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location. If the mass of the moon were three times as large, what would the force

More information

Modified Newtonian gravity and field theory

Modified Newtonian gravity and field theory Modified Newtonian gravity and field theory Gilles Esposito-Farèse GRεCO, Institut d Astrophysique de Paris Based on Phys. Rev. D 76 (2007) 2402 in collaboration with J.-P. Bruneton, on my study of scalar-tensor

More information

How To Understand General Relativity

How To Understand General Relativity Chapter S3 Spacetime and Gravity What are the major ideas of special relativity? Spacetime Special relativity showed that space and time are not absolute Instead they are inextricably linked in a four-dimensional

More information

Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005

Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005 Dynamics of Iain M. Banks Orbitals Richard Kennaway 12 October 2005 Note This is a draft in progress, and as such may contain errors. Please do not cite this without permission. 1 The problem An Orbital

More information

Basic Nuclear Concepts

Basic Nuclear Concepts Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section

More information

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following

More information

Lessons on Teaching Undergraduate General Relativity and Differential Geometry Courses

Lessons on Teaching Undergraduate General Relativity and Differential Geometry Courses Lessons on Teaching Undergraduate General Relativity and Differential Geometry Courses Russell L. Herman and Gabriel Lugo University of North Carolina Wilmington, Wilmington, NC Abstract We describe the

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

W02D2-2 Table Problem Newton s Laws of Motion: Solution

W02D2-2 Table Problem Newton s Laws of Motion: Solution ASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 W0D- Table Problem Newton s Laws of otion: Solution Consider two blocks that are resting one on top of the other. The lower block

More information

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE 1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

More information

RETURN TO THE MOON. Lesson Plan

RETURN TO THE MOON. Lesson Plan RETURN TO THE MOON Lesson Plan INSTRUCTIONS FOR TEACHERS Grade Level: 9-12 Curriculum Links: Earth and Space (SNC 1D: D2.1, D2.2, D2.3, D2.4) Group Size: Groups of 2-4 students Preparation time: 1 hour

More information

Topologically Massive Gravity with a Cosmological Constant

Topologically Massive Gravity with a Cosmological Constant Topologically Massive Gravity with a Cosmological Constant Derek K. Wise Joint work with S. Carlip, S. Deser, A. Waldron Details and references at arxiv:0803.3998 [hep-th] (or for the short story, 0807.0486,

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

More information

The Layout of the Solar System

The Layout of the Solar System The Layout of the Solar System Planets fall into two main categories Terrestrial (i.e. Earth-like) Jovian (i.e. Jupiter-like or gaseous) [~5000 kg/m 3 ] [~1300 kg/m 3 ] What is density? Average density

More information

Earth in the Solar System

Earth in the Solar System Copyright 2011 Study Island - All rights reserved. Directions: Challenge yourself! Print out the quiz or get a pen/pencil and paper and record your answers to the questions below. Check your answers with

More information

Gravity is everywhere: Two new tests of gravity. Luca Amendola University of Heidelberg

Gravity is everywhere: Two new tests of gravity. Luca Amendola University of Heidelberg Gravity is everywhere: Two new tests of gravity Luca Amendola University of Heidelberg Gravity in polarization maps and in supernovae Gravity in polarization maps and in supernovae Why testing gravity?

More information

How Fundamental is the Curvature of Spacetime? A Solar System Test. Abstract

How Fundamental is the Curvature of Spacetime? A Solar System Test. Abstract Submitted to the Gravity Research Foundation s 2006 Essay Contest How Fundamental is the Curvature of Spacetime? A Solar System Test Robert J. Nemiroff Abstract Are some paths and interactions immune to

More information

Losing energy in classical, relativistic and quantum mechanics

Losing energy in classical, relativistic and quantum mechanics Losing energy in classical, relativistic and quantum mechanics David Atkinson ABSTRACT A Zenonian supertask involving an infinite number of colliding balls is considered, under the restriction that the

More information

Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole

Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole Kinwah Wu Mullard Space Science Laboratory University College London United Kingdom kw@mssl.ucl.ac.uk

More information

How Gravitational Forces arise from Curvature

How Gravitational Forces arise from Curvature How Gravitational Forces arise from Curvature 1. Introduction: Extremal ging and the Equivalence Principle These notes supplement Chapter 3 of EBH (Exploring Black Holes by Taylor and Wheeler). They elaborate

More information

The Sun and Solar Energy

The Sun and Solar Energy I The Sun and Solar Energy One of the most important forces behind global change on Earth is over 90 million miles distant from the planet. The Sun is the ultimate, original source of the energy that drives

More information

Problem Set #8 Solutions

Problem Set #8 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA

PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA Published by PHYSICS FOUNDATIONS SOCIETY Espoo, Finland www.physicsfoundations.org Printed by

More information

Section 1 Gravity: A Force of Attraction

Section 1 Gravity: A Force of Attraction Section 1 Gravity: A Force of Attraction Key Concept Gravity is a force of attraction between objects that is due to their masses. What You Will Learn Gravity affects all matter, including the parts of

More information

The Essence of Gravitational Waves and Energy

The Essence of Gravitational Waves and Energy The Essence of Gravitational Waves and Energy F. I. Cooperstock Department of Physics and Astronomy University of Victoria P.O. Box 3055, Victoria, B.C. V8W 3P6 (Canada) March 26, 2015 Abstract We discuss

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013 PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

More information

arxiv:1311.0239v3 [gr-qc] 5 Mar 2014

arxiv:1311.0239v3 [gr-qc] 5 Mar 2014 Mass of a Black Hole Firewall M.A. Abramowicz 1,2, W. Kluźniak 1, and J.-P. Lasota 3,1,4 1 Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warszawa, Poland 2 Department of Physics, University of

More information

Lesson 3: Isothermal Hydrostatic Spheres. B68: a self-gravitating stable cloud. Hydrostatic self-gravitating spheres. P = "kt 2.

Lesson 3: Isothermal Hydrostatic Spheres. B68: a self-gravitating stable cloud. Hydrostatic self-gravitating spheres. P = kt 2. Lesson 3: Isothermal Hydrostatic Spheres B68: a self-gravitating stable cloud Bok Globule Relatively isolated, hence not many external disturbances Though not main mode of star formation, their isolation

More information

Axion/Saxion Cosmology Revisited

Axion/Saxion Cosmology Revisited Axion/Saxion Cosmology Revisited Masahiro Yamaguchi (Tohoku University) Based on Nakamura, Okumura, MY, PRD77 ( 08) and Work in Progress 1. Introduction Fine Tuning Problems of Particle Physics Smallness

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

Notes on Elastic and Inelastic Collisions

Notes on Elastic and Inelastic Collisions Notes on Elastic and Inelastic Collisions In any collision of 2 bodies, their net momentus conserved. That is, the net momentum vector of the bodies just after the collision is the same as it was just

More information

Gravity and Falling How does gravity work?

Gravity and Falling How does gravity work? Gravity and Falling How does gravity work? About the Activity Using a bucket with stretchy fabric stretched over it, allow visitors to experiment with marbles and weights to discover some basics about

More information

Lecture 19: Planet Formation I. Clues from the Solar System

Lecture 19: Planet Formation I. Clues from the Solar System Lecture 19: Planet Formation I. Clues from the Solar System 1 Outline The Solar System:! Terrestrial planets! Jovian planets! Asteroid belt, Kuiper belt, Oort cloud Condensation and growth of solid bodies

More information

Chapter 15 Collision Theory

Chapter 15 Collision Theory Chapter 15 Collision Theory 151 Introduction 1 15 Reference Frames Relative and Velocities 1 151 Center of Mass Reference Frame 15 Relative Velocities 3 153 Characterizing Collisions 5 154 One-Dimensional

More information

World of Particles Big Bang Thomas Gajdosik. Big Bang (model)

World of Particles Big Bang Thomas Gajdosik. Big Bang (model) Big Bang (model) What can be seen / measured? basically only light (and a few particles: e ±, p, p, ν x ) in different wave lengths: microwave to γ-rays in different intensities (measured in magnitudes)

More information

So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold.

So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold. Name: MULTIPLE CHOICE: Questions 1-11 are 5 points each. 1. A safety device brings the blade of a power mower from an angular speed of ω 1 to rest in 1.00 revolution. At the same constant angular acceleration,

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

More information

Carol and Charles see their pencils fall exactly straight down.

Carol and Charles see their pencils fall exactly straight down. Section 24-1 1. Carol is in a railroad car on a train moving west along a straight stretch of track at a constant speed of 120 km/h, and Charles is in a railroad car on a train at rest on a siding along

More information

Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer

Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer Malcolm S. Longair Galaxy Formation With 141 Figures and 12 Tables Springer Contents Part I Preliminaries 1. Introduction, History and Outline 3 1.1 Prehistory 3 1.2 The Theory of the Expanding Universe

More information

GRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units:

GRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: GRAVITATIONAL FIELDS Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: Formula Description This is the formula for force due to gravity or as we call it, weight. Relevant

More information

The Search for Dark Matter, Einstein s Cosmology and MOND. David B. Cline

The Search for Dark Matter, Einstein s Cosmology and MOND. David B. Cline The Search for Dark Matter, Einstein s Cosmology and MOND David B. Cline Astrophysics Division, Department of Physics & Astronomy University of California, Los Angeles, CA 90095 USA dcline@physics.ucla.edu

More information

The Milky Way Galaxy is Heading for a Major Cosmic Collision

The Milky Way Galaxy is Heading for a Major Cosmic Collision The Milky Way Galaxy is Heading for a Major Cosmic Collision Roeland van der Marel (STScI) [based on work with a team of collaborators reported in the Astrophysical Journal July 2012] Hubble Science Briefing

More information

The Location of the Missing Dark Matter A.G. Kelly.

The Location of the Missing Dark Matter A.G. Kelly. The Location of the Missing Dark Matter A.G. Kelly. Abstract. A source of most of the missing Dark Matter is proposed. If the formation of stars was at a time, and in a position, such that the light from

More information

The Two-Body Problem

The Two-Body Problem The Two-Body Problem Abstract In my short essay on Kepler s laws of planetary motion and Newton s law of universal gravitation, the trajectory of one massive object near another was shown to be a conic

More information

Educator Guide to S LAR SYSTEM. 1875 El Prado, San Diego CA 92101 (619) 238-1233 www.rhfleet.org

Educator Guide to S LAR SYSTEM. 1875 El Prado, San Diego CA 92101 (619) 238-1233 www.rhfleet.org Educator Guide to S LAR SYSTEM 1875 El Prado, San Diego CA 92101 (619) 238-1233 www.rhfleet.org Pre-Visit Activity: Orbital Paths Materials: Plastic Plate Marble Scissors To Do: 1. Put the plate on a flat

More information

Moon Phases & Eclipses Notes

Moon Phases & Eclipses Notes Moon Phases & Eclipses Notes Melka 2014-2015 The Moon The Moon is Earth s one natural satellite. Due to its smaller size and slower speed of rotation, the Moon s gravity is 1/6 of the Earth s gravitational

More information

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8 References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that

More information

AS COMPETITION PAPER 2008

AS COMPETITION PAPER 2008 AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

More information

( ) where W is work, f(x) is force as a function of distance, and x is distance.

( ) where W is work, f(x) is force as a function of distance, and x is distance. Work by Integration 1. Finding the work required to stretch a spring 2. Finding the work required to wind a wire around a drum 3. Finding the work required to pump liquid from a tank 4. Finding the work

More information

Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009

Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Laws Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Imaginary Cannon Newton was familiar with Galileo s analysis of projectile motion, and decided to take it one step further. He imagined

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information