Observing the Sun from space: Highlights from Yohkoh, SOHO, TRACE, RHESSI. H.S. Hudson Space Sciences Lab University of California, Berkeley

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Observing the Sun from space: Highlights from Yohkoh, SOHO, TRACE, RHESSI. H.S. Hudson Space Sciences Lab University of California, Berkeley"

Transcription

1 Observing the Sun from space: Highlights from Yohkoh, SOHO, TRACE, RHESSI H.S. Hudson Space Sciences Lab University of California, Berkeley

2 SUMMARY OF LECTURE I. Overview of the Sun 2. Observational technique 3. The solar space observatories 4. Informal access 5. Research frontiers 6. Conclusions, solved problems, new interesting questions 2

3 I. Overview of the Sun QuickTimeª and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTimeª and a TIFF (Uncompressed) decompressor are needed to see this picture. Magnetic field Yohkoh soft X-rays 3

4 Yohkoh SXT: The Solar Cycle 4

5 Solar Atmosphere Temperature and Emission Visible/IR UV/EUV 5

6 How smooth is the Sun? * * Rough structure <1 mas, Oblateness ~ 10 mas (Fivian et al. 2005) 6

7 Physical effects in transition zone Outwards through the thin layer between τ5000 = 1 and the corona involves - a drop in opacity (thick/thin) - a loss of collisionality (Maxwellian/non) - a sudden decrease of plasma beta (high/low) This structure is thus complex, dynamic, and full of waves that become shocks - confused contribution functions; 3D structure - uncertainties in magnetic-field mapping 7

8 De Pontieu et al

9 Distribution of coronal plasma β = Pg/PB CH G. A. Gary, Solar Phys. 203, 71 (2001) (va ~ 200 β-1/2 km/s) 9

10 Photosphere High Resolution Image Sunspot umbrae Granules of rising hot plasma Image from Swedish Vacuum Solar Telescope, La Palma, 24 July here comes Solar-B! 10

11 2. Observational technique Imaging (movie technique) - direct YSSST - synthesis YR Spectroscopy - simple Y - dispersive (e.g., stigmatic slit) SSS - non-dispersive (pulse counting) YYR Polarimetry Solar-B Y = Yohkoh S = SOHO T = TRACE R = RHESSI 11

12 An example of imaging and spectroscopy (HRTS rocket) QuickTimeª and a TIFF (Uncompressed) decompressor are needed to see this picture. 12

13 How to multiplex data Monochromatic imaging (x, y, λ) Stigmatic slit (x, y, λ) Non-dispersive (x, y, λ) - low resolution at longer wavelengths 13

14 3. The recent solar space observatories Yohkoh: HXT, SXT, BCS, WBS ( ) SOHO: MDI, EIT, LASCO, MDI (>1995) TRACE: UV/EUV imager (>2000) RHESSI: Rotating modulation collimators (>2002) 14

15 QuickTimeª and a MPEG-4 Video decompressor are needed to see this picture. QuickTimeª and a GIF decompressor are needed to see this picture. S Y T QuickTimeª and a Photo decompressor are needed to see this picture. R QuickTimeª and a GIF decompressor are needed to see this picture. 15

16 Some key instruments in space SXT Yohkoh HXT Yohkoh BCS Yohkoh CDS SOHO EIT SOHO LASCO SOHO MDI SOHO SUMER SOHO UVCS SOHO Imager TRACE Spectral Imager RHESSI Soft X-ray Hard X-ray X-ray spectra EUV spectra EUV images Coronagraph Visible General Flares Flares/ARs General General CMEs UV spectra Coronal UV UV/EUV HXR/γ-ray Atmosphere Corona General Flares Helioseismology, magnetography etc 16

17 4. Informal access Each of the four missions sponsors some form of Web journalism Yohkoh science nuggets ( SOHO Hot Shots ( TRACE picture of the day ( RHESSI science nuggets ( 17

18 18

19 19

20 20

21 21

22 22

23 5. Research frontiers A single TRACE movie illustrates several discoveries from this era: - Dimming (CME/flare relationship) - Instability (loop disruption) - Macroscopic loop oscillations - Initial field contraction 23

24 QuickTimeª and a Photo decompressor are needed to see this picture. 24

25 Case studies Case study: Longcope et al., 2005 Case study: Sudol & Harvey, 2005 Case study: Kopp et al.,

26 GONG SOHO/MDI db B Flare of 2003 Oct

27 Flare of 2001 Aug. 25 GONG + TRACE 1600A Other examples with GOES times 27

28 Interpretation of field changes The line-of-sight photospheric B field changes impulsively and irreversibly during every flare The patterns of change can guide us to a more complete understanding of the coronal restructuring: Will we at last have the means to observe flux transfer in flares directly? This can done much better with vector magnetograms at rapid temporal cadence (<< 1 min) - Solar-B? SDO? ATST? FASR? 28

29 Example of magnetic domain structure based on photospheric fields Longcope et al

30 Flare luminosity The major solar space observatories are not the whole story Kopp et al. (2004) => Lflare ~ 102 Lx Flare luminosity has a major contribution from the impulsive phase at UV/EUV wavelengths 30

31 Kopp et al.,

32 Conclusions The four CCD-era solar space observatories have revolutionized solar physics The data are informally accessible, but are also generally in the public domain with their software New missions will follow soon: Solar-B, STEREO, SDO 32

33 New exciting questions Can before/after magnetograms identify magnetic reconnection in flares/cmes? Does the pre-flare corona initiate the nonthermal process? Can we obtain closure on CME mass, energy, and helicity? How do we relate the solar cycle to stellar X-ray luminosities? How do we explain HXR/γ-ray footpoint disagreements? And many more 33

Progress Towards the Solar Dynamics Observatory

Progress Towards the Solar Dynamics Observatory Progress Towards the Solar Dynamics Observatory Barbara J. Thompson SDO Project Scientist W. Dean Pesnell SDO Assistant Project Scientist Page 1 SDO OVERVIEW Mission Science Objectives The primary goal

More information

Solar Irradiance Variability Observed During Solar Cycle 23

Solar Irradiance Variability Observed During Solar Cycle 23 Solar Irradiance Variability Observed During Solar Cycle 23 Introduction Solar Cycle Results for Climate Change Solar Cycle Results for Space Weather Tom Woods LASP / University

More information

Satellite Measurements of Solar Spectral Irradiance

Satellite Measurements of Solar Spectral Irradiance Satellite Measurements of Solar Spectral Irradiance LASP University of Colorado tom.woods@lasp.colorado.edu March 2006 1 Talk Outline Motivation for Solar Spectral Irradiance solar energy input climate

More information

Hidrodinámica y magnetismo estelares

Hidrodinámica y magnetismo estelares Hidrodinámica y magnetismo estelares la convección estelar y las erupciones solares gigantes la convección estelar y las erupciones solares gigantes Fernando Moreno Insertis Instituto de Astrofisica de

More information

High resolution images obtained with Solar Optical Telescope on Hinode. SOLAR-B Project Office National Astronomical Observatory of Japan (NAOJ)

High resolution images obtained with Solar Optical Telescope on Hinode. SOLAR-B Project Office National Astronomical Observatory of Japan (NAOJ) High resolution images obtained with Solar Optical Telescope on Hinode SOLAR-B Project Office National Astronomical Observatory of Japan (NAOJ) Temperature stratification of solar atmosphere G-band Ca

More information

Solar Ast ro p h y s ics

Solar Ast ro p h y s ics Peter V. Foukal Solar Ast ro p h y s ics Second, Revised Edition WI LEY- VCH WILEY-VCH Verlag Co. KCaA Contents Preface 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.3

More information

Investigation of plasma velocity field in solar flare footpoints from RHESSI observations

Investigation of plasma velocity field in solar flare footpoints from RHESSI observations Investigation of plasma velocity field in solar flare footpoints from RHESSI observations T. Mrozek1,2, S. Kołomański2, B. Sylwester1, A. Kępa1, J. Sylwester1, S. Gburek1, M. Siarkowski1, M. Gryciuk1,

More information

The Sun: Our Star (Chapter 14)

The Sun: Our Star (Chapter 14) The Sun: Our Star (Chapter 14) Based on Chapter 14 No subsequent chapters depend on the material in this lecture Chapters 4, 5, and 8 on Momentum, energy, and matter, Light, and Formation of the solar

More information

CHROMOSPHERIC DYNAMICS FROM RHESSI AND RESIK DATA

CHROMOSPHERIC DYNAMICS FROM RHESSI AND RESIK DATA CHROMOSPHERIC DYNAMICS FROM RHESSI AND RESIK DATA T. Mrozek 1,2, S. Kołomański 2,B. Sylwester 1, A. Kępa 1, J. Sylwester 1, S. Gburek 1, M. Siarkowski 1, M. Gryciuk 1, M. Stęślicki 1 1 Solar Physics Division,

More information

Chapter 10 Our Star. Why does the Sun shine? Radius: m (109 times Earth) Mass: kg (300,000 Earths)

Chapter 10 Our Star. Why does the Sun shine? Radius: m (109 times Earth) Mass: kg (300,000 Earths) Chapter 10 Our Star X-ray visible Radius: 6.9 10 8 m (109 times Earth) Mass: 2 10 30 kg (300,000 Earths) Luminosity: 3.8 10 26 watts (more than our entire world uses in 1 year!) Why does the Sun shine?

More information

Solar Active Regions. Solar Active Regions E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS

Solar Active Regions. Solar Active Regions E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS Solar Active Regions Solar active regions form where the tops of loops of magnetic flux, shaped like the Greek letter omega ( ), emerge into the solar atmosphere where they can be seen. These loops are

More information

Heating diagnostics with MHD waves

Heating diagnostics with MHD waves Heating diagnostics with MHD waves R. Erdélyi & Y. Taroyan Robertus@sheffield.ac.uk SP 2 RC, Department of Applied Mathematics, The University of Sheffield (UK) The solar corona 1860s coronium discovered

More information

Our Sun: the view from outside

Our Sun: the view from outside Our Sun: the view from outside 1. The Sun is hot. Really hot. The visible "surface" of the Sun, called the photosphere, has a temperature of about 5800 Kelvin. That's equivalent to roughly 10,000 Fahrenheit.

More information

Coronal Heating Problem

Coronal Heating Problem Mani Chandra Arnab Dhabal Raziman T V PHY690C Course Project Indian Institute of Technology Kanpur Outline 1 2 3 Source of the energy Mechanism of energy dissipation Proposed mechanisms Regions of the

More information

A CONUNDRUM? SCHWABE (1843): SUNSPOTS VARY ON AN 11-YEAR PERIOD HALE (1908): SUNSPOTS ARE MAGNETIC

A CONUNDRUM? SCHWABE (1843): SUNSPOTS VARY ON AN 11-YEAR PERIOD HALE (1908): SUNSPOTS ARE MAGNETIC A CONUNDRUM? SCHWABE (1843): SUNSPOTS VARY ON AN 11-YEAR PERIOD HALE (1908): SUNSPOTS ARE MAGNETIC A DYNAMO DEEP INSIDE THE SUN MODULATED BY CYCLIC PROCESSES PREDICTION OF TIMING AND AMPLITUDE OF UPCOMING

More information

The Sun. 1a. The Photosphere. A. The Solar Atmosphere. 1b. Limb Darkening. A. Solar Atmosphere. B. Phenomena (Sunspots) C.

The Sun. 1a. The Photosphere. A. The Solar Atmosphere. 1b. Limb Darkening. A. Solar Atmosphere. B. Phenomena (Sunspots) C. The Sun 1 The Sun A. Solar Atmosphere 2 B. Phenomena (Sunspots) Dr. Bill Pezzaglia C. Interior Updated 2006Oct31 A. The Solar Atmosphere 1. Photosphere 2. Chromosphere 3. Corona 4. Solar Wind 3 1a. The

More information

Climate Discovery Teacher s Guide

Climate Discovery Teacher s Guide Unit: Sun-Earth Lesson: 1 Materials & Preparation Time: Preparation: 30 min Teaching: 50 min Materials for the Teacher: Sun Image Thumbnails printed in color onto transparency PowerPoint presentation and

More information

Coronal Hole Properties in Solar Cycle 24

Coronal Hole Properties in Solar Cycle 24 Coronal Hole Properties in Solar Cycle 24 Adrián Arteaga Harvard College Dr. Mari Paz Miralles Harvard-Smithsonian Center for Astrophysics What is a Coronal Hole? Regions of open magnetic flux in the solar

More information

I. Introduction. II. Review

I. Introduction. II. Review I. Introduction Seismic Emission from Solar Flares C. Lindsey NorthWest Research Associates Colorado Research Associates Division A.-C. Donea, D. Besliu-Ionescu, H. Moradi and P. S. Cally Centre from Stellar

More information

8.1 Radio Emission from Solar System objects

8.1 Radio Emission from Solar System objects 8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio

More information

ACTIVE REGION 9612 EVOLUTION

ACTIVE REGION 9612 EVOLUTION ACTIVE REGION 9612 EVOLUTION LILIANA DUMITRU, CRISTIANA DUMITRACHE Astronomical Institute of the Romanian Academy Str. Cuţitul de Argint 5, 040557 Bucharest, Romania E-mail: lyly@aira.astro.ro, crisd@aira.astro.ro

More information

Magnetic Reconnection and Solar Flares

Magnetic Reconnection and Solar Flares Magnetic Reconnection and Solar Flares 1. Magnetic reconnection We have already discussed an magnetic X-point (or a null point). In 2D it is given by the equation B = yˆx + xŷ. The field lines of this

More information

AST105. Telescopes - or - My, What Big Eyes You Have

AST105. Telescopes - or - My, What Big Eyes You Have AST105 Telescopes - or - My, What Big Eyes You Have Galileo and his Telescope Telescopes serve two main purposes: To collect light To provide angular resolution Light Collection - The Eye The eye is a

More information

The Sun. Astronomy 291 1

The Sun. Astronomy 291 1 The Sun The Sun is a typical star that generates energy from fusion of hydrogen into helium. Stars are gaseous bodies that support their weight by internal pressure. Astronomy 291 1 The Sun: Basic Properties

More information

Name Date Per Teacher

Name Date Per Teacher Reading Guide: Chapter 28.1 (read text pages 571-575) STRUCTURE OF THE SUN 1e Students know the Sun is a typical star and is powered by nuclear reactions, primarily the fusion of hydrogen to form helium.

More information

Introduction to Astronomy. Lecture 4: Our star, the Sun

Introduction to Astronomy. Lecture 4: Our star, the Sun Introduction to Astronomy Lecture 4: Our star, the Sun 1 Sun Facts Age = 4.6 x 10 9 years Mean Radius = 7.0x10 5 km = 1.1x10 2 R = 1R Volume = 1.4x10 18 km 3 = 1.3x10 6 R = 1V Mass = 2x10 30 kg = 3.3x10

More information

The Sun ASTR /14/2016

The Sun ASTR /14/2016 The Sun ASTR 101 11/14/2016 1 Radius: 700,000 km (110 R ) Mass: 2.0 10 30 kg (330,000 M ) Density: 1400 kg/m 3 Rotation: Differential, about 25 days at equator, 30 days at poles. Surface temperature: 5800

More information

Solar Flares and the Chromosphere

Solar Flares and the Chromosphere Solar Flares and the Chromosphere A white paper for the Decadal Survey * L. Fletcher, R. Turkmani, H. S. Hudson, S. L. Hawley, A. Kowalski, A. Berlicki, P. Heinzel Background: The solar chromosphere is

More information

A picture of X-ray coronal sources in combined observations of SDO and RHESSI

A picture of X-ray coronal sources in combined observations of SDO and RHESSI A picture of -ray coronal sources in combined observations of SDO and RHESSI Sylwester Kołomański 1, Tomasz Mrozek 1,2, Ewa Chmielewska 1 1 Astronomical Institute, University of Wrocław, Poland 2 Space

More information

Radio and Hard X ray Images of High Energy Electrons in an X-class Solar Flare

Radio and Hard X ray Images of High Energy Electrons in an X-class Solar Flare Radio and Hard X ray Images of High Energy Electrons in an X-class Solar Flare S. M. White 1, S. Krucker 2, K. Shibasaki 3, T. Yokoyama 3, M. Shimojo 3 and M. R. Kundu 1 ABSTRACT We present the first comparison

More information

Solar atmosphere. Solar activity and solar wind. Reading for this week: Chap. 6.2, 6.3, 6.5, 6.7 Homework #2 (posted on website) due Oct.

Solar atmosphere. Solar activity and solar wind. Reading for this week: Chap. 6.2, 6.3, 6.5, 6.7 Homework #2 (posted on website) due Oct. Solar activity and solar wind Solar atmosphere Reading for this week: Chap. 6.2, 6.3, 6.5, 6.7 Homework #2 (posted on website) due Oct. 17 Photosphere - visible surface of sun. Only ~100 km thick. Features

More information

AFG Observations of the Sun

AFG Observations of the Sun AFG-216 - Observations of the Sun Pål Brekke Norwegian Space Centre/UNIS Types of telescopes Refractor - light passes through a primary lense and a eyepiece lens Reflector - light is reflected and focussed

More information

Observing the Sun NEVER LOOK DIRECTLY AT THE SUN!!! Image taken from the SOHO web-site http://sohowww.nascom.nasa.gov/gallery/solarcorona/uvc003.

Observing the Sun NEVER LOOK DIRECTLY AT THE SUN!!! Image taken from the SOHO web-site http://sohowww.nascom.nasa.gov/gallery/solarcorona/uvc003. name Observing the Sun NEVER LOOK DRECTLY AT THE SUN!!! mage taken from the SOHO web-site http://sohowww.nascom.nasa.gov/gallery/solarcorona/uvc003.html Explanation: The Sun is a pretty active star. You

More information

Climate Discovery Teacher s Guide

Climate Discovery Teacher s Guide Unit: Sun-Earth Lesson: 3 Materials & Preparation Time: Preparation: 30 min Teaching: one or two class periods Materials for the Teacher: Overhead projector Transparency of p.5 Materials for the Class:

More information

4 th & 5 th lectures; Mon & Tues, July 7 & 8Crib notes 7/6/20087/6/2008. Sun and processes

4 th & 5 th lectures; Mon & Tues, July 7 & 8Crib notes 7/6/20087/6/2008. Sun and processes 4 th & 5 th lectures; Mon & Tues, July 7 & 8Crib notes 7/6/20087/6/2008 Topics Sun and processes Chart of spectrum and features has been uploaded To blackboard and web Ask how many students have accessed

More information

Suggested. Activity Name. *This is the estimated preparation time once you have already obtained the LEGO and DUPLO blocks.

Suggested. Activity Name. *This is the estimated preparation time once you have already obtained the LEGO and DUPLO blocks. Activity Name Grades Suggested Activity Time Prep Time Resolution Matters 4-8 15-20 min 15 min* Materials** SDO images (see pages 4-7), 1 set DUPLO blocks, 1 set LEGO blocks *This is the estimated preparation

More information

Evidence in White Light of Post-CME Current Sheets Mostly Observational

Evidence in White Light of Post-CME Current Sheets Mostly Observational Evidence in White Light of Post-CME Current Sheets Mostly Observational David Webb ISR, Boston College OUTLINE Review previous results of SMM & LASCO WL rays trailing CMEs - Lifetimes, lengths (heights)

More information

Worksheet 4.2 (Answer Key)

Worksheet 4.2 (Answer Key) Worksheet 4.2 (Answer Key) 1. How are the stars we see at night related to the Sun? How are they different? The Sun is a star, but the Sun is very close and the stars are very, very far away. 2. How big

More information

INTRODUCTION TO SOLAR WEATHER & HF PROPAGATION. Lewis Thompson W5IFQ September 27, 2011

INTRODUCTION TO SOLAR WEATHER & HF PROPAGATION. Lewis Thompson W5IFQ September 27, 2011 INTRODUCTION TO SOLAR WEATHER & HF PROPAGATION Lewis Thompson W5IFQ September 27, 2011 PRESENTATION Ionospheric propagation NVIS Long-Range Frequency Selection (Critical Frequency & MUF) Propagation modeling

More information

SPRING network for real-time space weather predictions

SPRING network for real-time space weather predictions SPRING network for real-time space weather predictions Sanjay Gosain 1,2, Markus Roth 2, Frank Hill 1, Michael Thompson 3 1. National Solar Observatory, Tucson (Boulder), AZ (CO), USA 2. Kiepenheuer Institute

More information

Understanding solar eruptions: an observational perspective on space weather

Understanding solar eruptions: an observational perspective on space weather Understanding solar eruptions: an observational perspective on space weather Karel Schrijver Lockheed Martin Advanced Technology Center Solar-C; 2013/11/11; Takayama, Japan Space weather user objectives:

More information

Significant Results from SUMER/SOHO*

Significant Results from SUMER/SOHO* 1 Significant Results from SUMER/SOHO* B.N. Dwivedi Department of Applied Physics, Institute of Technology, Banaras Hindu University, Varanasi-221005, India email: bholadwivedi@yahoo.com Abstract. We briefly

More information

Proton-proton cycle 3 steps PHYS 162 1

Proton-proton cycle 3 steps PHYS 162 1 Proton-proton cycle 3 steps PHYS 162 1 The proton proton chain in action PHYS 162 2 Layers of the Sun Mostly Hydrogen with about 25% Helium. Small amounts of heavier elements Gas described by Temperature,

More information

Four Centuries of Discovery. Visions of the Universe. torms. on thes. supplemental materials

Four Centuries of Discovery. Visions of the Universe. torms. on thes. supplemental materials Visions of the Universe ~ Four Centuries of Discovery S torms on thes un supplemental materials Storms on the Sun Table of Contents - Exhibit Overview... 3 Science Background... 4 Science Misconceptions...

More information

Galactic Cosmic Ray EEE

Galactic Cosmic Ray EEE Galactic Cosmic Ray Decreases @ EEE First observations (FD) First rigorous experimental observation of Cosmic Ray Flux Decrease was obtained by S. E. Forbush in 1937-38, after deep statisitcal analysis

More information

1. INTRODUCTION 2. THE DATA SETS

1. INTRODUCTION 2. THE DATA SETS The Astrophysical Journal, 598:1387 1391, 2003 December 1 # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE RELATIONSHIP BETWEEN X-RAY RADIANCE AND MAGNETIC FLUX Alexei

More information

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski WELCOME to Aurorae In the Solar System Aurorae in the Solar System Sponsoring Projects Galileo Europa Mission Jupiter System Data Analysis Program ACRIMSAT Supporting Projects Ulysses Project Outer Planets

More information

RESIDENT ARCHIVE SERVICES OF THE YOHKOH LEGACY DATA ARCHIVE

RESIDENT ARCHIVE SERVICES OF THE YOHKOH LEGACY DATA ARCHIVE RESIDENT ARCHIVE SERVICES OF THE YOHKOH LEGACY DATA ARCHIVE A Takeda 1 *, L Acton 1, D McKenzie 1, K Yoshimura 1 and S Freeland 2 * 1Department of Physics, Montana State University, Bozeman, MT 59717,

More information

Environmental Challenges To Space Security (Space Debris and Space Weather)

Environmental Challenges To Space Security (Space Debris and Space Weather) ISU Summer Session 2009 Environmental Challenges To Space Security (Space Debris and Space Weather) Ruediger.Jehn@esa.int Space Debris Office European Space Operations Centre, Darmstadt, Germany 1 Environmental

More information

Solar Irradiance Reference Spectra (SIRS) for the 2008 Whole Heliosphere Interval (WHI)

Solar Irradiance Reference Spectra (SIRS) for the 2008 Whole Heliosphere Interval (WHI) Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L01101, doi:10.1029/2008gl036373, 2009 Solar Irradiance Reference Spectra (SIRS) for the 2008 Whole Heliosphere Interval (WHI) Thomas

More information

Unit 1: Astronomy, Part 1: The Big Bang

Unit 1: Astronomy, Part 1: The Big Bang Earth Science Notes Packet #1 Unit 1: Astronomy, Part 1: The Big Bang 1.1: Big Bang The universe is How do we know this? All matter and energy in the universe was once condensed into a single point bya

More information

The Sun. We know the most about the sun. How does the sun produce energy? Inside the sun Models of the solar interior. We can see surface details.

The Sun. We know the most about the sun. How does the sun produce energy? Inside the sun Models of the solar interior. We can see surface details. The Sun We know the most about the sun We can see surface details. Other stars are points of light. Magnetic fields, wind, flares How does the sun produce energy? Inside the sun Models of the solar interior

More information

WHI Working Group 2A: Quantifying the Quiet Sun / Irradiance for Solar Cycle Minimum (Version 2)

WHI Working Group 2A: Quantifying the Quiet Sun / Irradiance for Solar Cycle Minimum (Version 2) WHI Working Group 2A: Quantifying the Quiet Sun / Irradiance for Solar Cycle Minimum (Version 2) Tom Woods, Phil Chamberlin, Jerry Harder, Rachel Hock, Erik Richard, Marty Snow LASP / University of Colorado

More information

Counting Sunspots. Parent Prompts: Are there years with lots of sunspots? Are there years with very few sunspots?

Counting Sunspots. Parent Prompts: Are there years with lots of sunspots? Are there years with very few sunspots? Counting are magnetic storms on the Sun these dark areas are a little cooler than the rest of the Sun s atmosphere. They can be easily seen when the Sun s image is projected onto a white surface, using

More information

Unit 8 Lesson 3 The Sun. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 8 Lesson 3 The Sun. Copyright Houghton Mifflin Harcourt Publishing Company The Sun: The Center of Attention Where is the sun located? The sun rises every day in the east and appears to travel across the sky before it sets in the west. This led astronomers to believe the sun moved

More information

From Nobeyama to ALMA

From Nobeyama to ALMA Highlights of Nobeyama Solar Results: From Nobeyama to ALMA Kiyoto Shibasaki Nobeyama Solar Radio Observatory 2013/1/15 Solar ALMA WS @ Glasgow 1 Outline Short history Solar physics with radio observations

More information

The Relationship of Coronal Mass Ejections to Streamers

The Relationship of Coronal Mass Ejections to Streamers 1 To appear in the Journal of Geophysical Research, 1999. The Relationship of Coronal Mass Ejections to Streamers Prasad Subramanian Center For Earth Observing and Space Research, George Mason University,

More information

THE VORTICITY OF SOLAR PHOTOSPHERIC FLOWS ON THE SCALE OF GRANU- LATION. А.А. Pevtsov 1.

THE VORTICITY OF SOLAR PHOTOSPHERIC FLOWS ON THE SCALE OF GRANU- LATION. А.А. Pevtsov 1. THE VORTICITY OF SOLAR PHOTOSPHERIC FLOWS ON THE SCALE OF GRANU- LATION. А.А. Pevtsov 1 1 National Solar Observatory, Sunspot, NM UNITED STATES e-mail apevtsov@nso.edu We employ time sequences of images

More information

Lecture 14. Introduction to the Sun

Lecture 14. Introduction to the Sun Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum

More information

CHROMOSPHERIC AND TRANSITION REGION INTERNETWORK OSCILLATIONS: A SIGNATURE OF UPWARD-PROPAGATING WAVES AND

CHROMOSPHERIC AND TRANSITION REGION INTERNETWORK OSCILLATIONS: A SIGNATURE OF UPWARD-PROPAGATING WAVES AND THE ASTROPHYSICAL JOURNAL, 531:1150È1160, 2000 March 10 ( 2000. The American Astronomical Society. All rights reserved. Printed in U.S.A. CHROMOSPHERIC AND TRANSITION REGION INTERNETWORK OSCILLATIONS:

More information

The Extreme Solar Storms of October to November 2003

The Extreme Solar Storms of October to November 2003 S.P. Plunkett S.P. Plunkett Space Science Division The Extreme Solar Storms of October to November 2003 AN OVERVIEW OF SOLAR ACTIVITY AND SPACE WEATHER In recent decades, humans have come to rely on space

More information

Astro Lecture 16 The Sun [Chapter 10 in the Essential Cosmic Perspective]

Astro Lecture 16 The Sun [Chapter 10 in the Essential Cosmic Perspective] Astro 110-01 Lecture 16 The Sun [Chapter 10 in the Essential Cosmic Perspective] Habbal Lecture 16 1 For problems with Mastering Astronomy Contact: Jessica Elbern Jessica.Elbern@Pearson.com 808-372-6897

More information

TEACHER RESOURCE INFORMATION

TEACHER RESOURCE INFORMATION EXPLORE T HE S UN TEACHER RESOURCE INFORMATION SUNSTRUCK AN INTEGRATED SOLAR EDUCATIONAL EXPERIENCE TEACHER RESOURCES Background Sun Earth Relationship Sun s Energy-Nuclear Fusion Light-Photons/distance

More information

SST GHz. SST GHz SFU. RSTN GHz. 41 kev kev. Counts/sec. 511 kev kev. 1 MeV - 5 MeV. 6 MeV MeV

SST GHz. SST GHz SFU. RSTN GHz. 41 kev kev. Counts/sec. 511 kev kev. 1 MeV - 5 MeV. 6 MeV MeV 5 I II III IV V 4 Figure 1 3 2 1 SST - 45 GHz -1 1 8 6 4 2 SST - 212 GHz SFU 3.5 1 4 3. 1 4 2.5 1 4 2. 1 4 1.5 1 4 1. 1 4 5. 1 3 4. 1 4 BERN - 89.4 GHz (SFU/12.) RSTN - 15.4 GHz 3. 1 4 2. 1 4 1. 1 4 41

More information

The Relationship Between X-ray Radiance and Magnetic Flux

The Relationship Between X-ray Radiance and Magnetic Flux The Relationship Between X-ray Radiance and Magnetic Flux Alexei A. Pevtsov 1,GeorgeH.Fisher 2,3,LorenW.Acton 4, Dana W. Longcope 4, Christopher M. Johns-Krull 2,5, Charles C. Kankelborg 4, and Thomas

More information

Equatorial Coronal Holes and Their Relation to the High-Speed Solar Wind Streams

Equatorial Coronal Holes and Their Relation to the High-Speed Solar Wind Streams Equatorial Coronal Holes and Their Relation to the High-Speed Solar Wind Streams Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität

More information

Global warming: Is the Sun heating the Earth? Lecture 8: The Sun-Earth Connection

Global warming: Is the Sun heating the Earth? Lecture 8: The Sun-Earth Connection Global warming: Is the Sun heating the Earth? Lecture 8: The Sun-Earth Connection Solar influence on Earth The variable activity of the Sun affects Earth in many ways: short term long term Space weather

More information

Space Weather Forecasting in the Exploration Era

Space Weather Forecasting in the Exploration Era SPACE WEATHER FORECASTING Space Weather Forecasting in the Exploration Era David M. Rust, Manolis K. Georgoulis, Pietro N. Bernasconi, and Barry J. LaBonte The nation s New Vision for Space Exploration

More information

Arrange the following forms of radiation from shortest wavelength to longest. optical gamma ray infrared x-ray ultraviolet radio

Arrange the following forms of radiation from shortest wavelength to longest. optical gamma ray infrared x-ray ultraviolet radio Arrange the following forms of radiation from shortest wavelength to longest. optical gamma ray infrared x-ray ultraviolet radio Which of the wavelength regions can completely penetrate the Earth s atmosphere?

More information

Announcement of Opportunity

Announcement of Opportunity National Aeronautics January 18, 2002 and Space Administration AO 02-OSS-01 Announcement of Opportunity Solar Dynamics Observatory (SDO) and Related Missions of Opportunity Notice of Intent Due: February

More information

Teaching Time: One 45-minute class period

Teaching Time: One 45-minute class period Lesson Summary Students will learn about the magnetic fields of the Sun and Earth. This activity is a questionanswer activity where the students re using minds-on rather than hands-on inquiry. Prior Knowledge

More information

Understanding Solar Variability as Groundwork for Planet Transit Detection

Understanding Solar Variability as Groundwork for Planet Transit Detection Stars as Suns: Activity, Evolution, and Planets IAU Symposium, Vol. 219, 2004 A. K. Dupree and A. O. Benz, Eds. Understanding Solar Variability as Groundwork for Planet Transit Detection Andrey D. Seleznyov,

More information

Measuring the Doppler Shift of a Kepler Star with a Planet

Measuring the Doppler Shift of a Kepler Star with a Planet Measuring the Doppler Shift of a Kepler Star with a Planet 1 Introduction The Doppler shift of a spectrum reveals the line of sight component of the velocity vector ( radial velocity ) of the object. Doppler

More information

COSMO-LC Data Analysis and Interpretation Magnetometry PRODUCTS and TOOLS

COSMO-LC Data Analysis and Interpretation Magnetometry PRODUCTS and TOOLS COSMO-LC Data Analysis and Interpretation Magnetometry PRODUCTS and TOOLS Sarah Gibson Enrico Landi, Steven Tomczyk, Joan Burkepile, Roberto Casini Brandon Larson, Scott Sewell, Alfred de Wijn National

More information

8. The Sun as a Star

8. The Sun as a Star Astronomy 110: SURVEY OF ASTRONOMY 8. The Sun as a Star 1. Inside the Sun 2. Solar Energy 3. Solar Activity The Sun is not only the largest object in our solar system it is also the nearest example of

More information

Introduction to the Sun by Stephen Ramsden

Introduction to the Sun by Stephen Ramsden Introduction to the Sun by Stephen Ramsden Solar astronomy is the fastest growing hobbyist segment of astronomy in the world today. Solar astronomers use highly refined, narrowband telescopes to observe

More information

Suggested Activity Time. Preparation Time. Materials* Magnetic Fields of the Earth and Sun

Suggested Activity Time. Preparation Time. Materials* Magnetic Fields of the Earth and Sun Activity Name Grades Suggested Activity Time Preparation Time Materials* Magnetic Fields of the Earth and Sun 5-12 15 min 5 min For each group: Three cow magnets, one magnaprobe, magnetic field images

More information

METIS Coronagraph on Solar Orbiter and Solar Probe Synergies. INAF - Osservatorio Astronomico di Torino (Italy) & the METIS Team

METIS Coronagraph on Solar Orbiter and Solar Probe Synergies. INAF - Osservatorio Astronomico di Torino (Italy) & the METIS Team METIS Coronagraph on Solar Orbiter and Solar Probe Synergies Silvano Fineschi INAF - Osservatorio Astronomico di Torino (Italy) & the METIS Team 3rd METIS Scientific and Technical Meeting Napoli 17 th

More information

Solar Irradiance Variability

Solar Irradiance Variability Solar Radiative Output and its Variability Claus Frölich and Judith Lean Preethi Ganapathy November 22, 2005 Solar Irradiance Variability Historical Investigations Contemporary Investigations Limitations

More information

Janet Machol NOAA National Geophysical Data Center University of Colorado CIRES. Rodney Viereck NOAA Space Weather Prediction Center

Janet Machol NOAA National Geophysical Data Center University of Colorado CIRES. Rodney Viereck NOAA Space Weather Prediction Center Janet Machol NOAA National Geophysical Data Center University of Colorado CIRES Rodney Viereck NOAA Space Weather Prediction Center Andrew Jones University of Colorado LASP Inter-Calibration and Degradation

More information

Kinetic physics of the solar wind

Kinetic physics of the solar wind "What science do we need to do in the next six years to prepare for Solar Orbiter and Solar Probe Plus?" Kinetic physics of the solar wind Eckart Marsch Max-Planck-Institut für Sonnensystemforschung Complementary

More information

Ay 122 - Fall 2004. The Sun. And The Birth of Neutrino Astronomy. This printout: Many pictures missing, in order to keep the file size reasonable

Ay 122 - Fall 2004. The Sun. And The Birth of Neutrino Astronomy. This printout: Many pictures missing, in order to keep the file size reasonable Ay 122 - Fall 2004 The Sun And The Birth of Neutrino Astronomy This printout: Many pictures missing, in order to keep the file size reasonable Why Study the Sun? The nearest star - can study it in a greater

More information

3D MODEL ATMOSPHERES OF THE SUN AND LATE-TYPE STARS. Remo Collet Australian National University

3D MODEL ATMOSPHERES OF THE SUN AND LATE-TYPE STARS. Remo Collet Australian National University 3D MODEL ATMOSPHERES OF THE SUN AND LATE-TYPE STARS Remo Collet Australian National University STELLAR SPECTRA Stellar spectra carry the information about the physical properties and compositions of stars

More information

SPIRIT/CORONAS-F experiment

SPIRIT/CORONAS-F experiment SPIRIT/CORONAS-F experiment S.V. Kuzin, V.A. Slemzin, A.M. Urnov P.N. Lebedev Physics Institute of RAS Leninsky pr., 53, Moscow, Russia 1. Description of the SPIRIT instrument Spectral bands Optical design

More information

WHAT DETERMINES THE INTENSITY OF SOLAR FLARE/CME EVENTS?

WHAT DETERMINES THE INTENSITY OF SOLAR FLARE/CME EVENTS? The Astrophysical Journal, 665:1448Y1459, 007 August 0 # 007. The American Astronomical Society. All rights reserved. Printed in U.S.A. WHAT DETERMINES THE INTENSITY OF SOLAR FLARE/CME EVENTS? Yingna Su,

More information

The sun and the solar corona

The sun and the solar corona The sun and the solar corona Introduction The Sun of our solar system is a typical star of intermediate size and luminosity. Its radius is about 696000 km, and it rotates with a period that increases with

More information

Highly charged ions are amongst if not the most reactive species in the universe. These

Highly charged ions are amongst if not the most reactive species in the universe. These 1 Introduction Highly charged ions are amongst if not the most reactive species in the universe. These ions are produced in hot gases of several millions of degrees. When colliding with a neutral gas,

More information

ON THE TEMPORAL RELATIONSHIP BETWEEN CORONAL MASS EJECTIONS AND FLARES J. ZHANG,1 K. P. DERE,2 R. A. HOWARD,2 M. R. KUNDU,3 AND S. M.

ON THE TEMPORAL RELATIONSHIP BETWEEN CORONAL MASS EJECTIONS AND FLARES J. ZHANG,1 K. P. DERE,2 R. A. HOWARD,2 M. R. KUNDU,3 AND S. M. THE ASTROPHYSICAL JOURNAL, 559:452È462, 2001 September 20 ( 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A. ON THE TEMPORAL RELATIONSHIP BETWEEN CORONAL MASS EJECTIONS AND

More information

Gauribidanur radio array solar spectrograph (GRASS)

Gauribidanur radio array solar spectrograph (GRASS) Bull. Astr. Soc. India (2007) 35, 111 119 Gauribidanur radio array solar spectrograph (GRASS) E. Ebenezer, K. R. Subramanian, R. Ramesh, M. S. Sundararajan and C. Kathiravan Indian Institute of Astrophysics,

More information

# % # & ( ) +,.& / 0 / # 1 ) (123(4(.&&5 1!(3 21 6 + 4 13! ( 2

# % # & ( ) +,.& / 0 / # 1 ) (123(4(.&&5 1!(3 21 6 + 4 13! ( 2 ! # % # & ( +,.& / 0 / # 1 (123(4(.&&5 1!(3 21 6 + 4 13! ( 2 7 A&A 481, 247 252 (2008 DOI: 10.1051/0004-6361:20078610 c ESO 2008 Astronomy & Astrophysics Coronal loop oscillations and diagnostics with

More information

STUDY GUIDE: Earth Sun Moon

STUDY GUIDE: Earth Sun Moon The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all

More information

GEOPHYSICS AND GEOCHEMISTRY - Vol.III - Solar Wind And Interplanetary Magnetic Field - Schwenn R. SOLAR WIND AND INTERPLANETARY MAGNETIC FIELD

GEOPHYSICS AND GEOCHEMISTRY - Vol.III - Solar Wind And Interplanetary Magnetic Field - Schwenn R. SOLAR WIND AND INTERPLANETARY MAGNETIC FIELD SOLAR WIND AND INTERPLANETARY MAGNETIC FIELD Schwenn R. Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, Germany Keywords: Sun, corona, solar wind, plasma, magnetic field, reconnection, coronal mass

More information

Ch 6: Light and Telescope. Wave and Wavelength. Wavelength, Frequency and Speed. v f

Ch 6: Light and Telescope. Wave and Wavelength. Wavelength, Frequency and Speed. v f Ch 6: Light and Telescope Wave and Wavelength..\..\aTeach\PhET\wave-on-a-string_en.jar Wavelength, Frequency and Speed Wave and Wavelength A wave is a disturbance that moves through a medium or through

More information

Copyright Warning & Restrictions

Copyright Warning & Restrictions Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions

More information

Annual Report of RWC Korea 2013-2014

Annual Report of RWC Korea 2013-2014 Annual Report of RWC Korea 2013-2014 Korean Space Weather Center of National Radio Research Agency The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency

More information

Advanced Technology Solar Telescope

Advanced Technology Solar Telescope Advanced Technology Solar Telescope a d v a n c e d t e c h n o l o g y s o l a r t e l e s c o p e Inside front cover left blank Advanced Technology Solar Telescope The Need: We are positioned for a new

More information

TRANSIT OF VENUS 2012, Observation with PICARD/SODISM during transit

TRANSIT OF VENUS 2012, Observation with PICARD/SODISM during transit TRANSIT OF VENUS 2012, Observation with PICARD/SODISM during transit SODISM (Solar Diameter Imager and Surface Mapper): An instrument of the PICARD payload, is a high resolution imaging telescope. SODISM

More information

Space Weather Measurements. Mary Kicza Assistant Administrator NOAA Satellite & Info. Service (NESDIS) Space Weather Enterprise Forum

Space Weather Measurements. Mary Kicza Assistant Administrator NOAA Satellite & Info. Service (NESDIS) Space Weather Enterprise Forum Continuity of Critical Space Weather Measurements Mary Kicza Assistant Administrator NOAA Satellite & Info. Service (NESDIS) Space Weather Enterprise Forum May 19, 2009 NOAA Space Weather Requirements

More information

SDO Solar Dynamics Observatory

SDO Solar Dynamics Observatory SDO Solar Dynamics Observatory O U R E Y E O N T H E S U N A Guide to the Mission and Purpose of NASA s Solar Dynamics Observatory i -www.nasa.gov A Guide to the Mission and Purpose of NASA s Solar Dynamics

More information

X-rays from classical T Tauri stars Accretion and wind signatures

X-rays from classical T Tauri stars Accretion and wind signatures Accretion and wind signatures Jan Robrade Hamburger Sternwarte X-ray Universe 2008, Granada, May 2008 Overview 1 Classical T Tauri Stars Basic Concepts X-ray properties of CTTS 2 Plasma temperatures Plasma

More information