Inheritance Patterns of Drosophila melanogaster, the Fruit Fly

Size: px
Start display at page:

Download "Inheritance Patterns of Drosophila melanogaster, the Fruit Fly"

Transcription

1 InheritancePatternsofDrosophilamelanogaster,theFruitFly KevinReynolds SchoolofNaturalSciencesatFerrumCollege Abstract Thislabwasperformedtofurtherour understanding of the basis of Mendelian genetics.wedidthisbycrossingfruitflieswe found in our laboratory. We performed four crosses:femalewild typetomaleebonybody, female white eyes to male wild type, female wild typetomalesepiaeyes/ebonybody,and femaleebonybodytomalevestigalwings.we found that each cross showed an inheritance pattern of either a standard monohybrid cross, sex linked monohybrid, dihybrid cross of unlinked genes, and a dihybrid cross of linkedgenes. Introduction Thepurposeofthislabwastofurther ourunderstandingofinheritancepatternsand to get hands on experience with Mendelian genetics. To do this we are looking at the inheritance patterns of the mutant fruit flies wediscoveredinourlaboratory.wewantto look at the phenotypic characteristics of our specimens and determine the patterns for howeachtraitisinherited. Many organisms are used to study Mandeliangeneticssuchasfruitflies,yeast,E. coli, and mice. We have chosen fruit flies to focusforafewkeyreasons;becausefruitflies are small, cheap, easy to keep in large numbers,andhaveashortlifecycle,fromegg to adult in about 10 days at room temperature, they are idea for a classroom study. In this procedure, we are looking for four distinct inheritance patterns, standard monohybrid cross, sex linked monohybrid, dihybrid cross of unlinked genes, and a dihybrid cross of linked genes. A standard monohybrid cross is a cross, of a single trait, between a homozygous dominant and a homozygous recessive to produce a heterozygous F1 generation, which when is selfed produces an expression rate of three dominant to one recessive. A sex linked monohybridcrossisacrosswherethetraitis linked to the X chromosome, since in fruit fliesamaleisdenotedbylackingasecondxchromosome. In both make and female you would see roughly equal numbers of both traitsexpressed.thethirdtypeofinheritance pattern we could have is a dihybrid cross of unlinked genes. This is a cross between two parents, one being homozygous dominant for both genes and the other being homozygous recessive for both genes. When we examine ourf1generationwewouldseethatwehave aninetothreetothreetooneratio.thenine offspring would look like the parent whom was dominant for both genes and the one offspring would look like the parent whom was homozygous recessive for both genes. The final possible inheritance pattern we could observe is a dihybrid cross of linked genes.thisiswheretwogenesaregenerally inherited together. However, due to recombinationyouwillfindbothrecombinant offspring and parental offspring. How much recombinationdependsontherecombination frequency, how often crossing over occurs between genes, which is how far apart the genes are on the chromosome. In the F2 generation we would see a deviation from a ninetothreetothreetooneratio,whereboth parental phenotypes and recombinant phenotypesarepresent,butjusthowmuchof a deviation depends on the recombination frequency. Methods ExaminationofFlies: To look at the flies we anesthetized them using flynap, which is composed of ethanolandtriethylamine.wedippedawand intotheflynapandputthatintothetubes,for aboutthreetofiveminutes,offliesuntilthey wereanesthetized,beingcarefulnottoletthe fliesescapeorfallintothefoodatthebottom ofthetubes.wethenputthefliesonanindex card to look at them under a dissecting microscope at 10X to 25X magnification. To 1

2 move the flies around we used a small paintbrush.welookedtoseeiftheflywasa maleorfemale.thiswasachievedbylooking at the size(females are usually larger), shape(the males abdomen is narrow where the female is spherical), color(the male has a largeblackdotonhisabdomen),andexternal genitalia(maleshaveadarklycoloredexternal genitaliaontheventralsideoftheabdomen). We also looked at distinguishable characteristics so we could separate the differentfliesthatwereneededforeachcross. MatingSetup: Tosetupthecrosses,weputascoop of dry food and a scoop of water into each tube;onetubewasusedforeachparentcross, and four parent crosses were done. We placed about three virgin females into each tube for every one male. We ended up with roughly ten females and three males in each tubepercross.thetubeswerethenputinan incubatorat25 C. CrossesPerformed: Weperformedfourcrosses.Ourfirst crosswasamonohybridcrossoffemalewildtype to male ebony body. Our second cross was another monohybrid cross of female whiteeyestomalewild type.thethirdcross was a dihybrid cross of female wild type to male ebony body/sepia eyes. The final cross weperformedwasfemaleebonybodytomale vestigalwings. AnalysisofF1andF2: It takes approximately ten days for flies to develop from an egg to an adult at 25 C, so after about two weeks we look at what the parental cross had produced, which arethef1generation.welookedatthemand transferred them to a separate tube for each cross. We then let the F1 generation from eachtubeselfcross.afteranothertwoweeks, when the F1 offspring had matured, we counted and looked at our F2 generation. When we looked at the flies, we examined to see what phenotype they were and to see if theyweremaleorfemale.forthef1andf2 generationwecountedonehundredflies.we countedjustaswehaddonewiththeparents. We a anesthetized them with flynap and examined them under a dissecting microscope. Results Four flies of the five we crossed had differentanddistinctcharacteristicsfromthe others. Wild type flies have a light brown body, red eyes, and long oval wings. White eyedflieshavealightbrownbody,whiteeyes, andlongovalwings.ebonybodyflieshavean ebony body, red eyes, and long oval wings. The vestigal flies have a light brown body, with re eyes, and tiny wings. The final fly type, ebony/sepia, have black bodies, brown eyes,andlongovalwings. F1PhenotypesandCounts: Table 1.1 shows the offspring from athecrossbetweenfemalewild typeandmale ebonybody(cross1). Table1.1 Phenotype #offemales #ofmales Wild type Table 1.2 shows the offspring from teh cross between female white eyes to male wild type(cross2). Table1.2 Phenotype #offemales #ofmales Whiteeyes 0 47 Wild type 53 0 Table 1.3 shows the offspring from thecrossbetweenfemalewild typeandmale ebonybody/sepiaeyes(cross3). Table1.3 Phenotype #offemales #ofmales Wild type Table 1.4 shows the offspring from the cross between female ebony body and malevestigalwings(cross4). Table1.4 Phenotype #offemales #ofmales Wild type F2PhenotypesandCounts: Table 2.1 shows the offspring when the F1 generation, from the first cross, was allowedtoself matewitheachother. 2

3 Table2.1 Phenotypes #offemales #ofmales Wild Type EbonyBody 15 8 Table 2.2 shows the offspring when thef1generation,fromthesecondcross,was allowedtoself matewitheachother. Table2.2 Phenotypes #offemales 3ofMales Whiteeye Wild type Table 2.3 shows the offspring when the F1 generation, from the third cross, was allowedtoself matewitheachother. Table2.3 Phenotype #offemales #ofmales Wild type Ebonybody 7 10 Sepiaeyes 14 1 Ebony/Sepia 5 4 Table 2.4 shows the offspring when thef1generation,fromthefourthcross,was allowedtoself matewitheachother. Table2.4 Phenotype #offemales #ofmales Wild type Ebonybody Vestigalwings 7 1 Ebony/Vestigal 0 2 Conclusions AnalysisofF1GenerationData: Because all of our parent crosses were either a homozygous monohybrid or a homozygous dihybrid, one parent being dominant and the other recessive, we can determine which traits were dominant and whichtraitswererecessive.inthefirstcross between female wild type and male ebony body all of the F1 generation were wild type, thereforewild typeisdominant. Thecrossbetweenfemalewhiteeyes andmalewild typeproducedallfemalewildtype and all white eye males. Since the parental male wild type gives his only X chromosome to his daughters, and all of his daughters express wild type, we can say that wild type is dominant and white eyes is recessive. In the cross between female wildtypeandebonybody/sepiaeyes,allofthef1 generation was wild type. Therefore, we can say that wild type is dominant to ebony body/sepiaeyes. Finally, since the cross between femaleebonybodyandvestigalwingsyielded all wild type F1 generations, we can determine wild type is dominant to both vestigal wings and ebony body, and that vestigal wings and ebony body are linked genes. AnalysisofF2GenerationData: With a first look at the data it is my hypothesis that the cross between female wild type and male ebony body will be a standardmonohybridcross.ialsohypothesis thatthefemalewhiteeyesandmalewild type isasex linkedmonohybridcross.thefemale wild type crossed with male ebony body/ sepiaeyeswillmostlikelybeadihybridcross of unlinked genes. Therefore, the cross betweenfemaleebonybodyandmalevestigal wings must be a dihybrid cross of linked genes.however,wecannotbecertainuntila Chi SquaredTestisperformed. Chi SquaredTest: Table3.1showstheChi Squaredtest on the cross of female wild type and male ebonybody. Table3.1 Traits Observed Expected (O E) 2 /E Wildtype Ebony body df=1 Σ 2= Prange= AfterperformingtheChi Squaredtest we determined or P range to be between and 0.500, therefore we can say that any discrepancies in our data is caused by random chance. So the hypothesis holds correct that this cross is a standard monohybridcross. 3

4 Prange=0.100to0.050 Prange=0.500to0.250 Here the hypothesis also holds up, showingthatthecrossisastandarddihybrid cross. Table3.4showstheChi Squaredtest on the cross of female ebony body and male vestigalwing. Table3.2showstheChi Squaredtest on the cross of female white eyes and male wild type. Table3.2 Traits Observed Expected (O E) 2 /E Wildtype White eyes df=1 Σ 2 =3.24 Again we see that because our P range is between and 0.050, our hypothesis is proven valid, and the data statistically matches the inheritance pattern ofasex linkedmonohybridcross. Table3.3showstheChi Squaredtest on the cross of female wild type and male ebonybody/sepiaeyes. Table3.3 Traits Observed Expected (O E) 2 /E Wildtype Ebony body Sepia eyes Ebony/ Sepia df=3 Σ 2 =2.714 Table3.4 Traits Observed Expected (O E) 2 /E Wildtype Ebony body Vestigal wings Ebony/ Vestigal df=3 Σ 2 =8.473 Prange=greaterthan0.050 Sincewedidnotperformattestcross withthef1generation,wecannotprovethat this is a dihybrid cross of linked genes. However, we can prove that it is not a standard dihybrid cross of unlinked genes. Since our P range is grater than 0.050, the cross fails the Chi Squared test thereby proving that the cross cannot be a standard dihybrid cross. If a test cross had been performed it is probable that parental types wouldhavebeenthemostabundantinthef2 Generationandtherewouldhavebeenasmall percentage of recombinant phenotypes presentintheresultsfromthetestcross. References 1. Hartwell, Leland H. Hood, Leroy. Goldberg,MichaelL.Reynolds,AnnE. Silver, Lee M. Verus, Ruth C. GENETICS: From Genes to Genomes Third Edition. New York: The McGrawHillCompanies,Inc., Mertens and Hammersmith. BIO 305 Introduction to Genetics LaboratoryManual.FerrumCollege FLYNAP July 13. < herresources/msds/flynap.pdf> Acknowledgments 4

5 IwouldliketothankJoshLiptak,John Harper, Ross Beckner, and Jessica Foley for theirassistancewiththislab.iwouldalsolike to thank Dr. Gazdik for her guidance throughouttheentirelab. 5

Mendelian Genetics in Drosophila

Mendelian Genetics in Drosophila Mendelian Genetics in Drosophila Lab objectives: 1) To familiarize you with an important research model organism,! Drosophila melanogaster. 2) Introduce you to normal "wild type" and various mutant phenotypes.

More information

The Genetics of Drosophila melanogaster

The Genetics of Drosophila melanogaster The Genetics of Drosophila melanogaster Thomas Hunt Morgan, a geneticist who worked in the early part of the twentieth century, pioneered the use of the common fruit fly as a model organism for genetic

More information

CCR Biology - Chapter 7 Practice Test - Summer 2012

CCR Biology - Chapter 7 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 7 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A person who has a disorder caused

More information

Chapter 9 Patterns of Inheritance

Chapter 9 Patterns of Inheritance Bio 100 Patterns of Inheritance 1 Chapter 9 Patterns of Inheritance Modern genetics began with Gregor Mendel s quantitative experiments with pea plants History of Heredity Blending theory of heredity -

More information

LAB 11 Drosophila Genetics

LAB 11 Drosophila Genetics LAB 11 Drosophila Genetics Introduction: Drosophila melanogaster, the fruit fly, is an excellent organism for genetics studies because it has simple food requirements, occupies little space, is hardy,

More information

GENETIC CROSSES. Monohybrid Crosses

GENETIC CROSSES. Monohybrid Crosses GENETIC CROSSES Monohybrid Crosses Objectives Explain the difference between genotype and phenotype Explain the difference between homozygous and heterozygous Explain how probability is used to predict

More information

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square Period Date LAB : PAPER PET GENETICS 1. Given the list of characteristics below, you will create an imaginary pet and then breed it to review the concepts of genetics. Your pet will have the following

More information

Heredity - Patterns of Inheritance

Heredity - Patterns of Inheritance Heredity - Patterns of Inheritance Genes and Alleles A. Genes 1. A sequence of nucleotides that codes for a special functional product a. Transfer RNA b. Enzyme c. Structural protein d. Pigments 2. Genes

More information

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele.

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. Genetics Problems Name ANSWER KEY Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. 1. What would be the genotype

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ Meiosis Quiz 1. (1 point) A kidney cell is an example of which type of cell? a. sex cell b. germ cell c. somatic cell d. haploid cell 2. (1 point) How many chromosomes are in a human

More information

Mendelian and Non-Mendelian Heredity Grade Ten

Mendelian and Non-Mendelian Heredity Grade Ten Ohio Standards Connection: Life Sciences Benchmark C Explain the genetic mechanisms and molecular basis of inheritance. Indicator 6 Explain that a unit of hereditary information is called a gene, and genes

More information

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Period Date LAB : THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

Chromosomes, Mapping, and the Meiosis Inheritance Connection

Chromosomes, Mapping, and the Meiosis Inheritance Connection Chromosomes, Mapping, and the Meiosis Inheritance Connection Carl Correns 1900 Chapter 13 First suggests central role for chromosomes Rediscovery of Mendel s work Walter Sutton 1902 Chromosomal theory

More information

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6 Name: Multiple-choice section Choose the answer which best completes each of the following statements or answers the following questions and so make your tutor happy! 1. Which of the following conclusions

More information

Bio 102 Practice Problems Mendelian Genetics and Extensions

Bio 102 Practice Problems Mendelian Genetics and Extensions Bio 102 Practice Problems Mendelian Genetics and Extensions Short answer (show your work or thinking to get partial credit): 1. In peas, tall is dominant over dwarf. If a plant homozygous for tall is crossed

More information

5 GENETIC LINKAGE AND MAPPING

5 GENETIC LINKAGE AND MAPPING 5 GENETIC LINKAGE AND MAPPING 5.1 Genetic Linkage So far, we have considered traits that are affected by one or two genes, and if there are two genes, we have assumed that they assort independently. However,

More information

Genetics Lecture Notes 7.03 2005. Lectures 1 2

Genetics Lecture Notes 7.03 2005. Lectures 1 2 Genetics Lecture Notes 7.03 2005 Lectures 1 2 Lecture 1 We will begin this course with the question: What is a gene? This question will take us four lectures to answer because there are actually several

More information

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully Human Blood Types: Codominance and Multiple Alleles Codominance: both alleles in the heterozygous genotype express themselves fully Multiple alleles: three or more alleles for a trait are found in the

More information

2 GENETIC DATA ANALYSIS

2 GENETIC DATA ANALYSIS 2.1 Strategies for learning genetics 2 GENETIC DATA ANALYSIS We will begin this lecture by discussing some strategies for learning genetics. Genetics is different from most other biology courses you have

More information

PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES

PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES 1. Margaret has just learned that she has adult polycystic kidney disease. Her mother also has the disease, as did her maternal grandfather and his younger

More information

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers. Heredity 1. Sarah is doing an experiment on pea plants. She is studying the color of the pea plants. Sarah has noticed that many pea plants have purple flowers and many have white flowers. Sarah crosses

More information

Genetics for the Novice

Genetics for the Novice Genetics for the Novice by Carol Barbee Wait! Don't leave yet. I know that for many breeders any article with the word genetics in the title causes an immediate negative reaction. Either they quickly turn

More information

Ringneck Doves. A Handbook of Care & Breeding

Ringneck Doves. A Handbook of Care & Breeding Ringneck Doves A Handbook of Care & Breeding With over 100 Full Color Photos, Including Examples and Descriptions of 33 Different Colors and Varieties. K. Wade Oliver Table of Contents Introduction, 4

More information

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

CHROMOSOMES AND INHERITANCE

CHROMOSOMES AND INHERITANCE SECTION 12-1 REVIEW CHROMOSOMES AND INHERITANCE VOCABULARY REVIEW Distinguish between the terms in each of the following pairs of terms. 1. sex chromosome, autosome 2. germ-cell mutation, somatic-cell

More information

Two copies of each autosomal gene affect phenotype.

Two copies of each autosomal gene affect phenotype. SECTION 7.1 CHROMOSOMES AND PHENOTYPE Study Guide KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation

More information

The Making of the Fittest: Natural Selection in Humans

The Making of the Fittest: Natural Selection in Humans OVERVIEW MENDELIN GENETIC, PROBBILITY, PEDIGREE, ND CHI-QURE TTITIC This classroom lesson uses the information presented in the short film The Making of the Fittest: Natural election in Humans (http://www.hhmi.org/biointeractive/making-fittest-natural-selection-humans)

More information

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently.

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently. Name Section 7.014 Problem Set 5 Please print out this problem set and record your answers on the printed copy. Answers to this problem set are to be turned in to the box outside 68-120 by 5:00pm on Friday

More information

17. A testcross A.is used to determine if an organism that is displaying a recessive trait is heterozygous or homozygous for that trait. B.

17. A testcross A.is used to determine if an organism that is displaying a recessive trait is heterozygous or homozygous for that trait. B. ch04 Student: 1. Which of the following does not inactivate an X chromosome? A. Mammals B. Drosophila C. C. elegans D. Humans 2. Who originally identified a highly condensed structure in the interphase

More information

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes.

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes. 1. Why is the white-eye phenotype always observed in males carrying the white-eye allele? a. Because the trait is dominant b. Because the trait is recessive c. Because the allele is located on the X chromosome

More information

I. Genes found on the same chromosome = linked genes

I. Genes found on the same chromosome = linked genes Genetic recombination in Eukaryotes: crossing over, part 1 I. Genes found on the same chromosome = linked genes II. III. Linkage and crossing over Crossing over & chromosome mapping I. Genes found on the

More information

(1-p) 2. p(1-p) From the table, frequency of DpyUnc = ¼ (p^2) = #DpyUnc = p^2 = 0.0004 ¼(1-p)^2 + ½(1-p)p + ¼(p^2) #Dpy + #DpyUnc

(1-p) 2. p(1-p) From the table, frequency of DpyUnc = ¼ (p^2) = #DpyUnc = p^2 = 0.0004 ¼(1-p)^2 + ½(1-p)p + ¼(p^2) #Dpy + #DpyUnc Advanced genetics Kornfeld problem set_key 1A (5 points) Brenner employed 2-factor and 3-factor crosses with the mutants isolated from his screen, and visually assayed for recombination events between

More information

Phenotypes and Genotypes of Single Crosses

Phenotypes and Genotypes of Single Crosses GENETICS PROBLEM PACKET- Gifted NAME PER Phenotypes and Genotypes of Single Crosses Use these characteristics about plants to answer the following questions. Round seed is dominant over wrinkled seed Yellow

More information

Ex) A tall green pea plant (TTGG) is crossed with a short white pea plant (ttgg). TT or Tt = tall tt = short GG or Gg = green gg = white

Ex) A tall green pea plant (TTGG) is crossed with a short white pea plant (ttgg). TT or Tt = tall tt = short GG or Gg = green gg = white Worksheet: Dihybrid Crosses U N I T 3 : G E N E T I C S STEP 1: Determine what kind of problem you are trying to solve. STEP 2: Determine letters you will use to specify traits. STEP 3: Determine parent

More information

DNA Determines Your Appearance!

DNA Determines Your Appearance! DNA Determines Your Appearance! Summary DNA contains all the information needed to build your body. Did you know that your DNA determines things such as your eye color, hair color, height, and even the

More information

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Ch. 8 Cell Division Cells divide to produce new cells must pass genetic information to new cells - What process of DNA allows this? Two types

More information

Influence of Sex on Genetics. Chapter Six

Influence of Sex on Genetics. Chapter Six Influence of Sex on Genetics Chapter Six Humans 23 Autosomes Chromosomal abnormalities very severe Often fatal All have at least one X Deletion of X chromosome is fatal Males = heterogametic sex XY Females

More information

MCB41: Second Midterm Spring 2009

MCB41: Second Midterm Spring 2009 MCB41: Second Midterm Spring 2009 Before you start, print your name and student identification number (S.I.D) at the top of each page. There are 7 pages including this page. You will have 50 minutes for

More information

Chapter 4 Pedigree Analysis in Human Genetics. Chapter 4 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning

Chapter 4 Pedigree Analysis in Human Genetics. Chapter 4 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning Chapter 4 Pedigree Analysis in Human Genetics Mendelian Inheritance in Humans Pigmentation Gene and Albinism Fig. 3.14 Two Genes Fig. 3.15 The Inheritance of Human Traits Difficulties Long generation time

More information

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. 1 Biology Chapter 10 Study Guide Trait A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. Genes Genes are located on chromosomes

More information

Biology Final Exam Study Guide: Semester 2

Biology Final Exam Study Guide: Semester 2 Biology Final Exam Study Guide: Semester 2 Questions 1. Scientific method: What does each of these entail? Investigation and Experimentation Problem Hypothesis Methods Results/Data Discussion/Conclusion

More information

Process 3.5. A Pour it down the sink. B Pour it back into its original container. C Dispose of it as directed by his teacher.

Process 3.5. A Pour it down the sink. B Pour it back into its original container. C Dispose of it as directed by his teacher. Process 3.5 Biology EOI sample test questions Objective numbers correspond to the State Priority Academic Student Skills (PASS) standards and objectives. This number is also referenced with the local objective

More information

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section B: Sex Chromosomes

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section B: Sex Chromosomes CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE Section B: Sex Chromosomes 1. The chromosomal basis of sex varies with the organism 2. Sex-linked genes have unique patterns of inheritance 1. The chromosomal

More information

2 18. If a boy s father has haemophilia and his mother has one gene for haemophilia. What is the chance that the boy will inherit the disease? 1. 0% 2

2 18. If a boy s father has haemophilia and his mother has one gene for haemophilia. What is the chance that the boy will inherit the disease? 1. 0% 2 1 GENETICS 1. Mendel is considered to be lucky to discover the laws of inheritance because 1. He meticulously analyzed his data statistically 2. He maintained pedigree records of various generations he

More information

BIO 184 Page 1 Spring 2013 NAME VERSION 1 EXAM 3: KEY. Instructions: PRINT your Name and Exam version Number on your Scantron

BIO 184 Page 1 Spring 2013 NAME VERSION 1 EXAM 3: KEY. Instructions: PRINT your Name and Exam version Number on your Scantron BIO 184 Page 1 Spring 2013 EXAM 3: KEY Instructions: PRINT your Name and Exam version Number on your Scantron Example: PAULA SMITH, EXAM 2 VERSION 1 Write your name CLEARLY at the top of every page of

More information

7A The Origin of Modern Genetics

7A The Origin of Modern Genetics Life Science Chapter 7 Genetics of Organisms 7A The Origin of Modern Genetics Genetics the study of inheritance (the study of how traits are inherited through the interactions of alleles) Heredity: the

More information

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Species - group of individuals that are capable of interbreeding and producing fertile offspring; genetically similar 13.7, 14.2 Population

More information

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3):

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3): Unit B: Understanding Animal Reproduction Lesson 4: Understanding Genetics Student Learning Objectives: Instruction in this lesson should result in students achieving the following objectives: 1. Explain

More information

Basics of Marker Assisted Selection

Basics of Marker Assisted Selection asics of Marker ssisted Selection Chapter 15 asics of Marker ssisted Selection Julius van der Werf, Department of nimal Science rian Kinghorn, Twynam Chair of nimal reeding Technologies University of New

More information

Mendelian inheritance and the

Mendelian inheritance and the Mendelian inheritance and the most common genetic diseases Cornelia Schubert, MD, University of Goettingen, Dept. Human Genetics EUPRIM-Net course Genetics, Immunology and Breeding Mangement German Primate

More information

Answer Key Problem Set 5

Answer Key Problem Set 5 7.03 Fall 2003 1 of 6 1. a) Genetic properties of gln2- and gln 3-: Answer Key Problem Set 5 Both are uninducible, as they give decreased glutamine synthetase (GS) activity. Both are recessive, as mating

More information

somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive

somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive CHAPTER 6 MEIOSIS AND MENDEL Vocabulary Practice somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive CHAPTER 6 Meiosis and Mendel sex

More information

Genetics and Evolution: An ios Application to Supplement Introductory Courses in. Transmission and Evolutionary Genetics

Genetics and Evolution: An ios Application to Supplement Introductory Courses in. Transmission and Evolutionary Genetics G3: Genes Genomes Genetics Early Online, published on April 11, 2014 as doi:10.1534/g3.114.010215 Genetics and Evolution: An ios Application to Supplement Introductory Courses in Transmission and Evolutionary

More information

1. You are studying three autosomal recessive mutations in the fruit fly Drosophila

1. You are studying three autosomal recessive mutations in the fruit fly Drosophila 7.03 Exams Archives 1 of 126 Exam Questions from Exam 1 Basic Genetic Tests, Setting up and Analyzing Crosses, and Genetic Mapping 1. You are studying three autosomal recessive mutations in the fruit fly

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

Incomplete Dominance and Codominance

Incomplete Dominance and Codominance Name: Date: Period: Incomplete Dominance and Codominance 1. In Japanese four o'clock plants red (R) color is incompletely dominant over white (r) flowers, and the heterozygous condition (Rr) results in

More information

Lesson Plan: GENOTYPE AND PHENOTYPE

Lesson Plan: GENOTYPE AND PHENOTYPE Lesson Plan: GENOTYPE AND PHENOTYPE Pacing Two 45- minute class periods RATIONALE: According to the National Science Education Standards, (NSES, pg. 155-156), In the middle-school years, students should

More information

7 th Grade Life Science Name: Miss Thomas & Mrs. Wilkinson Lab: Superhero Genetics Due Date:

7 th Grade Life Science Name: Miss Thomas & Mrs. Wilkinson Lab: Superhero Genetics Due Date: 7 th Grade Life Science Name: Miss Thomas & Mrs. Wilkinson Partner: Lab: Superhero Genetics Period: Due Date: The editors at Marvel Comics are tired of the same old characters. They re all out of ideas

More information

Population Genetics and Multifactorial Inheritance 2002

Population Genetics and Multifactorial Inheritance 2002 Population Genetics and Multifactorial Inheritance 2002 Consanguinity Genetic drift Founder effect Selection Mutation rate Polymorphism Balanced polymorphism Hardy-Weinberg Equilibrium Hardy-Weinberg Equilibrium

More information

Gene Mapping Techniques

Gene Mapping Techniques Gene Mapping Techniques OBJECTIVES By the end of this session the student should be able to: Define genetic linkage and recombinant frequency State how genetic distance may be estimated State how restriction

More information

Hardy-Weinberg Equilibrium Problems

Hardy-Weinberg Equilibrium Problems Hardy-Weinberg Equilibrium Problems 1. The frequency of two alleles in a gene pool is 0.19 (A) and 0.81(a). Assume that the population is in Hardy-Weinberg equilibrium. (a) Calculate the percentage of

More information

DRAGON GENETICS LAB -- Principles of Mendelian Genetics

DRAGON GENETICS LAB -- Principles of Mendelian Genetics DragonGeneticsProtocol Mendelian Genetics lab Student.doc DRAGON GENETICS LAB -- Principles of Mendelian Genetics Dr. Pamela Esprivalo Harrell, University of North Texas, developed an earlier version of

More information

Saffiyah Y. Manboard Biology Instructor Seagull Alternative High School Saffiyah.manboard@browardschools.com

Saffiyah Y. Manboard Biology Instructor Seagull Alternative High School Saffiyah.manboard@browardschools.com The Effect of Discovery Learning through Biotechnology on the Knowledge and Perception of Sickle Cell Anemia and It s Genetics on Lower Income Students Saffiyah Y. Manboard Biology Instructor Seagull Alternative

More information

Drosophila Genetics by Michael Socolich May, 2003

Drosophila Genetics by Michael Socolich May, 2003 Drosophila Genetics by Michael Socolich May, 2003 I. General Information and Fly Husbandry II. Nomenclature III. Genetic Tools Available to the Fly Geneticists IV. Example Crosses V. P-element Transformation

More information

Inheritance of Color And The Polled Trait Dr. R. R. Schalles, Dept. of Animal Sciences and Industry Kansas State University

Inheritance of Color And The Polled Trait Dr. R. R. Schalles, Dept. of Animal Sciences and Industry Kansas State University Inheritance of Color And The Polled Trait Dr. R. R. Schalles, Dept. of Animal Sciences and Industry Kansas State University Introduction All functions of an animal are controlled by the enzymes (and other

More information

Meiosis is a special form of cell division.

Meiosis is a special form of cell division. Page 1 of 6 KEY CONCEPT Meiosis is a special form of cell division. BEFORE, you learned Mitosis produces two genetically identical cells In sexual reproduction, offspring inherit traits from both parents

More information

If you crossed a homozygous, black guinea pig with a white guinea pig, what would be the phenotype(s)

If you crossed a homozygous, black guinea pig with a white guinea pig, what would be the phenotype(s) Biological Principles Name: In guinea pigs, black hair (B) is dominant to white hair (b). Homozygous black guinea pig White guinea pig Heterozygous black guinea pig Genotype Phenotype Why is there no heterozygous

More information

P1 Gold X Black. 100% Black X. 99 Black and 77 Gold. Critical Values 3.84 5.99 7.82 9.49 11.07 12.59 14.07 15.51

P1 Gold X Black. 100% Black X. 99 Black and 77 Gold. Critical Values 3.84 5.99 7.82 9.49 11.07 12.59 14.07 15.51 Questions for Exam I Fall 2005 1. Wild-type humbugs have no spots, have red eyes and brown bodies. You have isolated mutations in three new autosomal humbug genes. The mutation Sp gives a dominant phenotype

More information

B2 5 Inheritrance Genetic Crosses

B2 5 Inheritrance Genetic Crosses B2 5 Inheritrance Genetic Crosses 65 minutes 65 marks Page of 55 Q. A woman gives birth to triplets. Two of the triplets are boys and the third is a girl. The triplets developed from two egg cells released

More information

Genetics with a Smile

Genetics with a Smile Teacher Notes Materials Needed: Two coins (penny, poker chip, etc.) per student - One marked F for female and one marked M for male Copies of student worksheets - Genetics with a Smile, Smiley Face Traits,

More information

Activity 4 Probability, Genetics, and Inheritance

Activity 4 Probability, Genetics, and Inheritance Activity 4 Probability, Genetics, and Inheritance Objectives After completing this activity students will understand basic probability and single-gene inheritance. Students will be able to predict expected

More information

Trasposable elements: P elements

Trasposable elements: P elements Trasposable elements: P elements In 1938 Marcus Rhodes provided the first genetic description of an unstable mutation, an allele of a gene required for the production of pigment in maize. This instability

More information

Baby Lab. Class Copy. Introduction

Baby Lab. Class Copy. Introduction Class Copy Baby Lab Introduction The traits on the following pages are believed to be inherited in the explained manner. Most of the traits, however, in this activity were created to illustrate how human

More information

Von Mäusen und Menschen E - 1

Von Mäusen und Menschen E - 1 Von Mäusen und Menschen E - 1 Mus musculus: Genetic Portrait of the House Mouse E - 3 Outline Mouse genome Mouse life cycle Transgenic protocols Addition of genes by nuclear injection Removal of genes

More information

Recovering the Romanovs

Recovering the Romanovs Recovering the Romanovs ACTIVITY 1 The Romanov Family: Screen #4 Inheritance of a Sex-linked Trait Key: H=normal allele; h=hemophilia allele; X=X chromosome; Y=Y chromosome 1. Use a Punnett square to show

More information

Animal Behavior. Evaluation copy

Animal Behavior. Evaluation copy Animal Behavior Computer 11 Perhaps one of the most difficult fields of biology to study is ethology, the study of animal behavior. Observation of a behavior is simple; interpreting what has been observed

More information

Title: Genetics and Hearing Loss: Clinical and Molecular Characteristics

Title: Genetics and Hearing Loss: Clinical and Molecular Characteristics Session # : 46 Day/Time: Friday, May 1, 2015, 1:00 4:00 pm Title: Genetics and Hearing Loss: Clinical and Molecular Characteristics Presenter: Kathleen S. Arnos, PhD, Gallaudet University This presentation

More information

5. The cells of a multicellular organism, other than gametes and the germ cells from which it develops, are known as

5. The cells of a multicellular organism, other than gametes and the germ cells from which it develops, are known as 1. True or false? The chi square statistical test is used to determine how well the observed genetic data agree with the expectations derived from a hypothesis. True 2. True or false? Chromosomes in prokaryotic

More information

Can receive blood from: * I A I A and I A i o Type A Yes No A or AB A or O I B I B and I B i o Type B No Yes B or AB B or O

Can receive blood from: * I A I A and I A i o Type A Yes No A or AB A or O I B I B and I B i o Type B No Yes B or AB B or O Genetics of the ABO Blood Groups written by J. D. Hendrix Learning Objectives Upon completing the exercise, each student should be able: to explain the concept of blood group antigens; to list the genotypes

More information

Variations on a Human Face Lab

Variations on a Human Face Lab Variations on a Human Face Lab Introduction: Have you ever wondered why everybody has a different appearance even if they are closely related? It is because of the large variety or characteristics that

More information

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes.

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Genetic Mutations Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Agenda Warm UP: What is a mutation? Body cell? Gamete? Notes on Mutations Karyotype Web Activity

More information

Lecture 3: Mutations

Lecture 3: Mutations Lecture 3: Mutations Recall that the flow of information within a cell involves the transcription of DNA to mrna and the translation of mrna to protein. Recall also, that the flow of information between

More information

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino)

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino) Genetics 1 We all know that children tend to resemble their parents. Parents and their children tend to have similar appearance because children inherit genes from their parents and these genes influence

More information

Genetics Review for USMLE (Part 2)

Genetics Review for USMLE (Part 2) Single Gene Disorders Genetics Review for USMLE (Part 2) Some Definitions Alleles variants of a given DNA sequence at a particular location (locus) in the genome. Often used more narrowly to describe alternative

More information

This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive.

This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive. 11111 This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive. In summary Genes contain the instructions for

More information

Reebops. A model organism for teaching genetic concepts

Reebops. A model organism for teaching genetic concepts A model organism for teaching genetic concepts The activity helps to demonstrate how genetics is responsible both for similarities and variation among members of the same species. are imaginary organisms

More information

BioSci 2200 General Genetics Problem Set 1 Answer Key Introduction and Mitosis/ Meiosis

BioSci 2200 General Genetics Problem Set 1 Answer Key Introduction and Mitosis/ Meiosis BioSci 2200 General Genetics Problem Set 1 Answer Key Introduction and Mitosis/ Meiosis Introduction - Fields of Genetics To answer the following question, review the three traditional subdivisions of

More information

Chromosomal Basis of Inheritance. Ch. 3

Chromosomal Basis of Inheritance. Ch. 3 Chromosomal Basis of Inheritance Ch. 3 THE CHROMOSOME THEORY OF INHERITANCE AND SEX CHROMOSOMES! The chromosome theory of inheritance describes how the transmission of chromosomes account for the Mendelian

More information

Forensic DNA Testing Terminology

Forensic DNA Testing Terminology Forensic DNA Testing Terminology ABI 310 Genetic Analyzer a capillary electrophoresis instrument used by forensic DNA laboratories to separate short tandem repeat (STR) loci on the basis of their size.

More information

CHROMOSOME STRUCTURE CHROMOSOME NUMBERS

CHROMOSOME STRUCTURE CHROMOSOME NUMBERS CHROMOSOME STRUCTURE 1. During nuclear division, the DNA (as chromatin) in a Eukaryotic cell's nucleus is coiled into very tight compact structures called chromosomes. These are rod-shaped structures made

More information

edtpa: Task 1 Secondary Science

edtpa: Task 1 Secondary Science PART A - About the School Where You Are Teaching a. In what type of school do you teach? Middle School: High School: High School 9-12 Other (please describe): Urban: Suburban: Suburban school setting Rural:

More information

Chapter 3. Chapter Outline. Chapter Outline 9/11/10. Heredity and Evolu4on

Chapter 3. Chapter Outline. Chapter Outline 9/11/10. Heredity and Evolu4on Chapter 3 Heredity and Evolu4on Chapter Outline The Cell DNA Structure and Function Cell Division: Mitosis and Meiosis The Genetic Principles Discovered by Mendel Mendelian Inheritance in Humans Misconceptions

More information

a. what do the yellow stars represent? b. explain in your own words why the heterozygote is functionally wild type.

a. what do the yellow stars represent? b. explain in your own words why the heterozygote is functionally wild type. 6 Gene Interaction WORKING WITH THE FIGURES 1. In Figure 6-1, a. what do the yellow stars represent? b. explain in your own words why the heterozygote is functionally wild type. a. Yellow stars represent

More information

Evolution (18%) 11 Items Sample Test Prep Questions

Evolution (18%) 11 Items Sample Test Prep Questions Evolution (18%) 11 Items Sample Test Prep Questions Grade 7 (Evolution) 3.a Students know both genetic variation and environmental factors are causes of evolution and diversity of organisms. (pg. 109 Science

More information

Course Number, Section Number, and Course Title: BIOL 5312 001 Advanced Genetics

Course Number, Section Number, and Course Title: BIOL 5312 001 Advanced Genetics BIOL 5312: ADVANCED GENETICS Fall 2010 Name: Dr. Esther Betrán Office Number: Room B15 Life Science Bldg. Office Telephone Number: 817-272-1446 Email Address: betran@uta.edu Office Hours: Tuesdays and

More information

BioBoot Camp Genetics

BioBoot Camp Genetics BioBoot Camp Genetics BIO.B.1.2.1 Describe how the process of DNA replication results in the transmission and/or conservation of genetic information DNA Replication is the process of DNA being copied before

More information

Bio 101 Section 001: Practice Questions for First Exam

Bio 101 Section 001: Practice Questions for First Exam Do the Practice Exam under exam conditions. Time yourself! MULTIPLE CHOICE: 1. The substrate fits in the of an enzyme: (A) allosteric site (B) active site (C) reaction groove (D) Golgi body (E) inhibitor

More information

Sexual Reproduction. The specialized cells that are required for sexual reproduction are known as. And come from the process of: GAMETES

Sexual Reproduction. The specialized cells that are required for sexual reproduction are known as. And come from the process of: GAMETES Sexual Reproduction Sexual Reproduction We know all about asexual reproduction 1. Only one parent required. 2. Offspring are identical to parents. 3. The cells that produce the offspring are not usually

More information