Processor Basic steps to process an instruction

Size: px
Start display at page:

Download "Processor Basic steps to process an instruction"

Transcription

1 Processor Basic steps to process an instruction Execute Write Back Instruction Fetch ory ccess Instruction Decode Operand Fetch EE524/CptS561 Jose G. Delgado-Frias 1 path +4 N Inst.. IR B L U. imm Instruction Fetch Inst. Dec. Op. Fetch Execute ory ccess Write Back IR [ N + 4 [IR B [IR Imm ((IR 16 ) 16 ## IR EE524/CptS561 Jose G. Delgado-Frias 2 1

2 path (arith/logic inst) +4 N Inst.. IR B L U. imm Instruction Fetch Inst. Dec. Op. Fetch Execute ory ccess Write Back IR [ N + 4 [IR B [IR Imm ((IR 16 ) 16 ## IR EE524/CptS561 Jose G. Delgado-Frias 3 path (load Inst) +4 N Inst.. IR B L U. imm Instruction Fetch Inst. Dec. Op. Fetch Execute ory ccess Write Back IR [ N + 4 [IR B [IR Imm ((IR 16 ) 16 ## IR EE524/CptS561 Jose G. Delgado-Frias 4 2

3 path (store Inst) +4 N Inst.. IR B L U. imm Instruction Fetch Inst. Dec. Op. Fetch Execute ory ccess Write Back IR [ N + 4 [IR B [IR Imm ((IR 16 ) 16 ## IR EE524/CptS561 Jose G. Delgado-Frias 5 path (branch Inst) +4 N Inst.. IR B L U. imm Instruction Fetch Inst. Dec. Op. Fetch Execute ory ccess Write Back IR [ N + 4 [IR B [IR Imm ((IR 16 ) 16 ## IR EE524/CptS561 Jose G. Delgado-Frias 6 3

4 path w/ pipeline +4 Inst.. L U. EE524/CptS561 Jose G. Delgado-Frias 7 Instruction Fetch () stage 0 /ID 4 dd +4 m u x Instruction memory [ [ IR DD R7,R2,R5 clock EE524/CptS561 Jose G. Delgado-Frias 8 4

5 Instruction Decode (ID) stage 1 /ID ID/ IR IR IR rs1 rs2 isters [R2 [R5 IR R7 Sign extend EE524/CptS561 Jose G. Delgado-Frias 9 Execution () stage 2 ID/ / [R2 [R5 SUM R7 EE524/CptS561 Jose G. Delgado-Frias 10 5

6 ory () stage 3 / / SUM ory R7 SUM EE524/CptS561 Jose G. Delgado-Frias 11 Write Back () stage 4 / SUM R7 SUM EE524/CptS561 Jose G. Delgado-Frias 12 6

7 Instruction Decode (ID) stage 4 /ID ID/ IR IR IR R7 SUM rs1 rs2 isters IR Sign extend EE524/CptS561 Jose G. Delgado-Frias 13 Instruction Fetch () stage 100 /ID 4 dd +4 m u x Instruction memory [ [ IR BNZ R5,-32 clock EE524/CptS561 Jose G. Delgado-Frias 14 7

8 Instruction Decode (ID) stage 101 /ID +4 ID/ IR IR IR rs1 rs2 isters [R5 [RX IR RY Sign extend EE524/CptS561 Jose G. Delgado-Frias 15 Execution () stage 102 ID/ T / +4 [R5 [RX RY EE524/CptS561 Jose G. Delgado-Frias 16 8

9 ory () stage 103 T / / -28 ory RY EE524/CptS561 Jose G. Delgado-Frias 17 Instruction Fetch () stage -28 /ID T dd +16 m u x Instruction memory [ IR EE524/CptS561 Jose G. Delgado-Frias 18 9

10 path w/ pipeline +4 Inst.. L U. EE524/CptS561 Jose G. Delgado-Frias 19 Pipeline 1 INSTRUCTIONS CLOCK CYCLE EE524/CptS561 Jose G. Delgado-Frias 20 10

11 Pipeline Clock cycle EE524/CptS561 Jose G. Delgado-Frias 21 Pipeline Hazards Structural Hazards two or more instructions use same hardware at the same time. Hazards dependencies Result from inst. j is needed by inst. k Control Hazards Branch changes flow, what happen with the following instruction(s) EE524/CptS561 Jose G. Delgado-Frias 22 11

12 Resources EE524/CptS561 Jose G. Delgado-Frias 23 Hazards R1 R2+R3 R5 R1+R3 R8 R1-R6 EE524/CptS561 Jose G. Delgado-Frias 24 12

13 Forwarding R1 R2+R3 R5 R1+R3 R8 R1-R6 EE524/CptS561 Jose G. Delgado-Frias 25 path w/ pipeline +4 Inst.. L U. Forwarding unit EE524/CptS561 Jose G. Delgado-Frias 26 13

14 Example DD XOR SUB R1,R2,R3 R7,R8,R1 R4,R3,R1 XOR SUB DD R7,R8,R1 R4,R3,R1 R1,R2,R3 SUB DD R4,R3,R1 R1,R2,R3 DD R1,R2,R3 +4 Inst.. L U. Forwarding unit EE524/CptS561 Jose G. Delgado-Frias 27 Example XOR R7,R8,R1 SUB R4,R3,R1 DD R Inst.. L U. Forwarding unit EE524/CptS561 Jose G. Delgado-Frias 28 14

15 Hazard Classification RW (Read fter Write) w/ forward only load presents a problem WW WR RR j: R1 k: RY R1 j: R1 k: R1 j: R1 k: R1 j: R1 k: R1 EE524/CptS561 Jose G. Delgado-Frias 29 Forwarding (load) R1 LD[ R5 R1+R3 R8 R1-R6 EE524/CptS561 Jose G. Delgado-Frias 30 15

16 hazard (load) R1 LW R1,0(R1) ID SUB R4,R1,R5 ID stall ND R6,R1,R7 OR R8,R1,R9 stall stall ID ID EE524/CptS561 Jose G. Delgado-Frias 31 Branch LBEL_: BR R1, LBEL_ DD R2,R3,R7 ND R5,R7,R11 : : LD R4,R2,005 EE524/CptS561 Jose G. Delgado-Frias 32 16

17 Branch BR R1, LBEL_ DD R2,R3,R7 ND R5,R7,R11 LD R4,R2,005 EE524/CptS561 Jose G. Delgado-Frias 33 path w/ pipeline +4 Inst.. L U. Forwarding unit EE524/CptS561 Jose G. Delgado-Frias 34 17

18 What to do w/ branch Reduce the number of cycles to decide on a branch. Delayed branch (Software Solutions) NO-OP move instructions from before from target from fall through EE524/CptS561 Jose G. Delgado-Frias 35 Branch BR R1, LBEL_ DD R2,R3,R7 LD R4,R2,005 EE524/CptS561 Jose G. Delgado-Frias 36 18

19 NO-OP Branch NO-OP EE524/CptS561 Jose G. Delgado-Frias 37 From Before Branch EE524/CptS561 Jose G. Delgado-Frias 38 19

20 From Target Branch EE524/CptS561 Jose G. Delgado-Frias 39 From Fall Through Branch EE524/CptS561 Jose G. Delgado-Frias 40 20

21 Example loop: LW R1,0(R2) R1 [R2+0 DDI SW DDI SUB R1,R1,#1 0(R2),R1 R2,R2,#4 R4,R3,R2 R1 R1+1 [R2+0 R1 R2 R2+4 R4 R3-R2 BNEZ R4,loop R4 = 0 GOTO loop Initial value: R3 = R2+396 EE524/CptS561 Jose G. Delgado-Frias 41 Dynamic Branch Prediction Hardware approach Based on past history 2-bit counter EE524/CptS561 Jose G. Delgado-Frias 42 21

22 2-bit prediction scheme Taken Predict taken Not Taken Taken Predict taken Taken Not Taken Predict not taken Not Taken Taken Predict not taken Not Taken EE524/CptS561 Jose G. Delgado-Frias 43 Branch Target Buffer (BTB) Current Predicted Branch Prediction Taken / Untaken EE524/CptS561 Jose G. Delgado-Frias 44 22

Lecture: Pipelining Extensions. Topics: control hazards, multi-cycle instructions, pipelining equations

Lecture: Pipelining Extensions. Topics: control hazards, multi-cycle instructions, pipelining equations Lecture: Pipelining Extensions Topics: control hazards, multi-cycle instructions, pipelining equations 1 Problem 6 Show the instruction occupying each stage in each cycle (with bypassing) if I1 is R1+R2

More information

EE282 Computer Architecture and Organization Midterm Exam February 13, 2001. (Total Time = 120 minutes, Total Points = 100)

EE282 Computer Architecture and Organization Midterm Exam February 13, 2001. (Total Time = 120 minutes, Total Points = 100) EE282 Computer Architecture and Organization Midterm Exam February 13, 2001 (Total Time = 120 minutes, Total Points = 100) Name: (please print) Wolfe - Solution In recognition of and in the spirit of the

More information

PROBLEMS #20,R0,R1 #$3A,R2,R4

PROBLEMS #20,R0,R1 #$3A,R2,R4 506 CHAPTER 8 PIPELINING (Corrisponde al cap. 11 - Introduzione al pipelining) PROBLEMS 8.1 Consider the following sequence of instructions Mul And #20,R0,R1 #3,R2,R3 #$3A,R2,R4 R0,R2,R5 In all instructions,

More information

WAR: Write After Read

WAR: Write After Read WAR: Write After Read write-after-read (WAR) = artificial (name) dependence add R1, R2, R3 sub R2, R4, R1 or R1, R6, R3 problem: add could use wrong value for R2 can t happen in vanilla pipeline (reads

More information

Solution: start more than one instruction in the same clock cycle CPI < 1 (or IPC > 1, Instructions per Cycle) Two approaches:

Solution: start more than one instruction in the same clock cycle CPI < 1 (or IPC > 1, Instructions per Cycle) Two approaches: Multiple-Issue Processors Pipelining can achieve CPI close to 1 Mechanisms for handling hazards Static or dynamic scheduling Static or dynamic branch handling Increase in transistor counts (Moore s Law):

More information

UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering. EEC180B Lab 7: MISP Processor Design Spring 1995

UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering. EEC180B Lab 7: MISP Processor Design Spring 1995 UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering EEC180B Lab 7: MISP Processor Design Spring 1995 Objective: In this lab, you will complete the design of the MISP processor,

More information

VLIW Processors. VLIW Processors

VLIW Processors. VLIW Processors 1 VLIW Processors VLIW ( very long instruction word ) processors instructions are scheduled by the compiler a fixed number of operations are formatted as one big instruction (called a bundle) usually LIW

More information

Pipeline Hazards. Structure hazard Data hazard. ComputerArchitecture_PipelineHazard1

Pipeline Hazards. Structure hazard Data hazard. ComputerArchitecture_PipelineHazard1 Pipeline Hazards Structure hazard Data hazard Pipeline hazard: the major hurdle A hazard is a condition that prevents an instruction in the pipe from executing its next scheduled pipe stage Taxonomy of

More information

Review: MIPS Addressing Modes/Instruction Formats

Review: MIPS Addressing Modes/Instruction Formats Review: Addressing Modes Addressing mode Example Meaning Register Add R4,R3 R4 R4+R3 Immediate Add R4,#3 R4 R4+3 Displacement Add R4,1(R1) R4 R4+Mem[1+R1] Register indirect Add R4,(R1) R4 R4+Mem[R1] Indexed

More information

Computer organization

Computer organization Computer organization Computer design an application of digital logic design procedures Computer = processing unit + memory system Processing unit = control + datapath Control = finite state machine inputs

More information

Computer Organization and Components

Computer Organization and Components Computer Organization and Components IS5, fall 25 Lecture : Pipelined Processors ssociate Professor, KTH Royal Institute of Technology ssistant Research ngineer, University of California, Berkeley Slides

More information

More on Pipelining and Pipelines in Real Machines CS 333 Fall 2006 Main Ideas Data Hazards RAW WAR WAW More pipeline stall reduction techniques Branch prediction» static» dynamic bimodal branch prediction

More information

Q. Consider a dynamic instruction execution (an execution trace, in other words) that consists of repeats of code in this pattern:

Q. Consider a dynamic instruction execution (an execution trace, in other words) that consists of repeats of code in this pattern: Pipelining HW Q. Can a MIPS SW instruction executing in a simple 5-stage pipelined implementation have a data dependency hazard of any type resulting in a nop bubble? If so, show an example; if not, prove

More information

CS352H: Computer Systems Architecture

CS352H: Computer Systems Architecture CS352H: Computer Systems Architecture Topic 9: MIPS Pipeline - Hazards October 1, 2009 University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell Data Hazards in ALU Instructions

More information

Execution Cycle. Pipelining. IF and ID Stages. Simple MIPS Instruction Formats

Execution Cycle. Pipelining. IF and ID Stages. Simple MIPS Instruction Formats Execution Cycle Pipelining CSE 410, Spring 2005 Computer Systems http://www.cs.washington.edu/410 1. Instruction Fetch 2. Instruction Decode 3. Execute 4. Memory 5. Write Back IF and ID Stages 1. Instruction

More information

Central Processing Unit (CPU)

Central Processing Unit (CPU) Central Processing Unit (CPU) CPU is the heart and brain It interprets and executes machine level instructions Controls data transfer from/to Main Memory (MM) and CPU Detects any errors In the following

More information

Using Graphics and Animation to Visualize Instruction Pipelining and its Hazards

Using Graphics and Animation to Visualize Instruction Pipelining and its Hazards Using Graphics and Animation to Visualize Instruction Pipelining and its Hazards Per Stenström, Håkan Nilsson, and Jonas Skeppstedt Department of Computer Engineering, Lund University P.O. Box 118, S-221

More information

PROBLEMS. which was discussed in Section 1.6.3.

PROBLEMS. which was discussed in Section 1.6.3. 22 CHAPTER 1 BASIC STRUCTURE OF COMPUTERS (Corrisponde al cap. 1 - Introduzione al calcolatore) PROBLEMS 1.1 List the steps needed to execute the machine instruction LOCA,R0 in terms of transfers between

More information

INSTRUCTION LEVEL PARALLELISM PART VII: REORDER BUFFER

INSTRUCTION LEVEL PARALLELISM PART VII: REORDER BUFFER Course on: Advanced Computer Architectures INSTRUCTION LEVEL PARALLELISM PART VII: REORDER BUFFER Prof. Cristina Silvano Politecnico di Milano cristina.silvano@polimi.it Prof. Silvano, Politecnico di Milano

More information

Solutions. Solution 4.1. 4.1.1 The values of the signals are as follows:

Solutions. Solution 4.1. 4.1.1 The values of the signals are as follows: 4 Solutions Solution 4.1 4.1.1 The values of the signals are as follows: RegWrite MemRead ALUMux MemWrite ALUOp RegMux Branch a. 1 0 0 (Reg) 0 Add 1 (ALU) 0 b. 1 1 1 (Imm) 0 Add 1 (Mem) 0 ALUMux is the

More information

Pipeline Hazards. Arvind Computer Science and Artificial Intelligence Laboratory M.I.T. Based on the material prepared by Arvind and Krste Asanovic

Pipeline Hazards. Arvind Computer Science and Artificial Intelligence Laboratory M.I.T. Based on the material prepared by Arvind and Krste Asanovic 1 Pipeline Hazards Computer Science and Artificial Intelligence Laboratory M.I.T. Based on the material prepared by and Krste Asanovic 6.823 L6-2 Technology Assumptions A small amount of very fast memory

More information

Addressing The problem. When & Where do we encounter Data? The concept of addressing data' in computations. The implications for our machine design(s)

Addressing The problem. When & Where do we encounter Data? The concept of addressing data' in computations. The implications for our machine design(s) Addressing The problem Objectives:- When & Where do we encounter Data? The concept of addressing data' in computations The implications for our machine design(s) Introducing the stack-machine concept Slide

More information

Chapter 9 Computer Design Basics!

Chapter 9 Computer Design Basics! Logic and Computer Design Fundamentals Chapter 9 Computer Design Basics! Part 2 A Simple Computer! Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode)

More information

Data Dependences. A data dependence occurs whenever one instruction needs a value produced by another.

Data Dependences. A data dependence occurs whenever one instruction needs a value produced by another. Data Hazards 1 Hazards: Key Points Hazards cause imperfect pipelining They prevent us from achieving CPI = 1 They are generally causes by counter flow data pennces in the pipeline Three kinds Structural

More information

CPU Performance Equation

CPU Performance Equation CPU Performance Equation C T I T ime for task = C T I =Average # Cycles per instruction =Time per cycle =Instructions per task Pipelining e.g. 3-5 pipeline steps (ARM, SA, R3000) Attempt to get C down

More information

Instruction Set Architecture. or How to talk to computers if you aren t in Star Trek

Instruction Set Architecture. or How to talk to computers if you aren t in Star Trek Instruction Set Architecture or How to talk to computers if you aren t in Star Trek The Instruction Set Architecture Application Compiler Instr. Set Proc. Operating System I/O system Instruction Set Architecture

More information

Instruction Set Architecture

Instruction Set Architecture Instruction Set Architecture Consider x := y+z. (x, y, z are memory variables) 1-address instructions 2-address instructions LOAD y (r :=y) ADD y,z (y := y+z) ADD z (r:=r+z) MOVE x,y (x := y) STORE x (x:=r)

More information

CPU Organization and Assembly Language

CPU Organization and Assembly Language COS 140 Foundations of Computer Science School of Computing and Information Science University of Maine October 2, 2015 Outline 1 2 3 4 5 6 7 8 Homework and announcements Reading: Chapter 12 Homework:

More information

LSN 2 Computer Processors

LSN 2 Computer Processors LSN 2 Computer Processors Department of Engineering Technology LSN 2 Computer Processors Microprocessors Design Instruction set Processor organization Processor performance Bandwidth Clock speed LSN 2

More information

l C-Programming l A real computer language l Data Representation l Everything goes down to bits and bytes l Machine representation Language

l C-Programming l A real computer language l Data Representation l Everything goes down to bits and bytes l Machine representation Language 198:211 Computer Architecture Topics: Processor Design Where are we now? C-Programming A real computer language Data Representation Everything goes down to bits and bytes Machine representation Language

More information

PART B QUESTIONS AND ANSWERS UNIT I

PART B QUESTIONS AND ANSWERS UNIT I PART B QUESTIONS AND ANSWERS UNIT I 1. Explain the architecture of 8085 microprocessor? Logic pin out of 8085 microprocessor Address bus: unidirectional bus, used as high order bus Data bus: bi-directional

More information

In the Beginning... 1964 -- The first ISA appears on the IBM System 360 In the good old days

In the Beginning... 1964 -- The first ISA appears on the IBM System 360 In the good old days RISC vs CISC 66 In the Beginning... 1964 -- The first ISA appears on the IBM System 360 In the good old days Initially, the focus was on usability by humans. Lots of user-friendly instructions (remember

More information

Reduced Instruction Set Computer (RISC)

Reduced Instruction Set Computer (RISC) Reduced Instruction Set Computer (RISC) Focuses on reducing the number and complexity of instructions of the ISA. RISC Goals RISC: Simplify ISA Simplify CPU Design Better CPU Performance Motivated by simplifying

More information

Design of Pipelined MIPS Processor. Sept. 24 & 26, 1997

Design of Pipelined MIPS Processor. Sept. 24 & 26, 1997 Design of Pipelined MIPS Processor Sept. 24 & 26, 1997 Topics Instruction processing Principles of pipelining Inserting pipe registers Data Hazards Control Hazards Exceptions MIPS architecture subset R-type

More information

Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language

Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,

More information

Computer Architecture TDTS10

Computer Architecture TDTS10 why parallelism? Performance gain from increasing clock frequency is no longer an option. Outline Computer Architecture TDTS10 Superscalar Processors Very Long Instruction Word Processors Parallel computers

More information

Preface. Any questions from last time? A bit more motivation, information about me. A bit more about this class. Later: Will review 1st 22 slides

Preface. Any questions from last time? A bit more motivation, information about me. A bit more about this class. Later: Will review 1st 22 slides Preface Any questions from last time? Will review 1st 22 slides A bit more motivation, information about me Research ND A bit more about this class Microsoft Later: HW 1 Review session MD McNally about

More information

Course on Advanced Computer Architectures

Course on Advanced Computer Architectures Course on Advanced Computer Architectures Surname (Cognome) Name (Nome) POLIMI ID Number Signature (Firma) SOLUTION Politecnico di Milano, September 3rd, 2015 Prof. C. Silvano EX1A ( 2 points) EX1B ( 2

More information

StrongARM** SA-110 Microprocessor Instruction Timing

StrongARM** SA-110 Microprocessor Instruction Timing StrongARM** SA-110 Microprocessor Instruction Timing Application Note September 1998 Order Number: 278194-001 Information in this document is provided in connection with Intel products. No license, express

More information

Administration. Instruction scheduling. Modern processors. Examples. Simplified architecture model. CS 412 Introduction to Compilers

Administration. Instruction scheduling. Modern processors. Examples. Simplified architecture model. CS 412 Introduction to Compilers CS 4 Introduction to Compilers ndrew Myers Cornell University dministration Prelim tomorrow evening No class Wednesday P due in days Optional reading: Muchnick 7 Lecture : Instruction scheduling pr 0 Modern

More information

Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.

Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University cwliu@twins.ee.nctu.edu. Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.tw Review Computers in mid 50 s Hardware was expensive

More information

COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING

COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING 2013/2014 1 st Semester Sample Exam January 2014 Duration: 2h00 - No extra material allowed. This includes notes, scratch paper, calculator, etc.

More information

Chapter 01: Introduction. Lesson 02 Evolution of Computers Part 2 First generation Computers

Chapter 01: Introduction. Lesson 02 Evolution of Computers Part 2 First generation Computers Chapter 01: Introduction Lesson 02 Evolution of Computers Part 2 First generation Computers Objective Understand how electronic computers evolved during the first generation of computers First Generation

More information

Chapter 2 Topics. 2.1 Classification of Computers & Instructions 2.2 Classes of Instruction Sets 2.3 Informal Description of Simple RISC Computer, SRC

Chapter 2 Topics. 2.1 Classification of Computers & Instructions 2.2 Classes of Instruction Sets 2.3 Informal Description of Simple RISC Computer, SRC Chapter 2 Topics 2.1 Classification of Computers & Instructions 2.2 Classes of Instruction Sets 2.3 Informal Description of Simple RISC Computer, SRC See Appendix C for Assembly language information. 2.4

More information

CPU Organisation and Operation

CPU Organisation and Operation CPU Organisation and Operation The Fetch-Execute Cycle The operation of the CPU 1 is usually described in terms of the Fetch-Execute cycle. 2 Fetch-Execute Cycle Fetch the Instruction Increment the Program

More information

Instruction Set Architecture (ISA) Design. Classification Categories

Instruction Set Architecture (ISA) Design. Classification Categories Instruction Set Architecture (ISA) Design Overview» Classify Instruction set architectures» Look at how applications use ISAs» Examine a modern RISC ISA (DLX)» Measurement of ISA usage in real computers

More information

COMP 303 MIPS Processor Design Project 4: MIPS Processor Due Date: 11 December 2009 23:59

COMP 303 MIPS Processor Design Project 4: MIPS Processor Due Date: 11 December 2009 23:59 COMP 303 MIPS Processor Design Project 4: MIPS Processor Due Date: 11 December 2009 23:59 Overview: In the first projects for COMP 303, you will design and implement a subset of the MIPS32 architecture

More information

BASIC COMPUTER ORGANIZATION AND DESIGN

BASIC COMPUTER ORGANIZATION AND DESIGN 1 BASIC COMPUTER ORGANIZATION AND DESIGN Instruction Codes Computer Registers Computer Instructions Timing and Control Instruction Cycle Memory Reference Instructions Input-Output and Interrupt Complete

More information

COMPUTER HARDWARE. Input- Output and Communication Memory Systems

COMPUTER HARDWARE. Input- Output and Communication Memory Systems COMPUTER HARDWARE Input- Output and Communication Memory Systems Computer I/O I/O devices commonly found in Computer systems Keyboards Displays Printers Magnetic Drives Compact disk read only memory (CD-ROM)

More information

(Refer Slide Time: 00:01:16 min)

(Refer Slide Time: 00:01:16 min) Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control

More information

Let s put together a Manual Processor

Let s put together a Manual Processor Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce

More information

Week 1 out-of-class notes, discussions and sample problems

Week 1 out-of-class notes, discussions and sample problems Week 1 out-of-class notes, discussions and sample problems Although we will primarily concentrate on RISC processors as found in some desktop/laptop computers, here we take a look at the varying types

More information

A s we saw in Chapter 4, a CPU contains three main sections: the register section,

A s we saw in Chapter 4, a CPU contains three main sections: the register section, 6 CPU Design A s we saw in Chapter 4, a CPU contains three main sections: the register section, the arithmetic/logic unit (ALU), and the control unit. These sections work together to perform the sequences

More information

EECS 427 RISC PROCESSOR

EECS 427 RISC PROCESSOR RISC PROCESSOR ISA FOR EECS 427 PROCESSOR ImmHi/ ImmLo/ OP Code Rdest OP Code Ext Rsrc Mnemonic Operands 15-12 11-8 7-4 3-0 Notes (* is Baseline) ADD Rsrc, Rdest 0000 Rdest 0101 Rsrc * ADDI Imm, Rdest

More information

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM 1 The ARM architecture processors popular in Mobile phone systems 2 ARM Features ARM has 32-bit architecture but supports 16 bit

More information

Instruction Set Architecture (ISA)

Instruction Set Architecture (ISA) Instruction Set Architecture (ISA) * Instruction set architecture of a machine fills the semantic gap between the user and the machine. * ISA serves as the starting point for the design of a new machine

More information

Introduction to Cloud Computing

Introduction to Cloud Computing Introduction to Cloud Computing Parallel Processing I 15 319, spring 2010 7 th Lecture, Feb 2 nd Majd F. Sakr Lecture Motivation Concurrency and why? Different flavors of parallel computing Get the basic

More information

Module: Software Instruction Scheduling Part I

Module: Software Instruction Scheduling Part I Module: Software Instruction Scheduling Part I Sudhakar Yalamanchili, Georgia Institute of Technology Reading for this Module Loop Unrolling and Instruction Scheduling Section 2.2 Dependence Analysis Section

More information

CS521 CSE IITG 11/23/2012

CS521 CSE IITG 11/23/2012 CS521 CSE TG 11/23/2012 A Sahu 1 Degree of overlap Serial, Overlapped, d, Super pipelined/superscalar Depth Shallow, Deep Structure Linear, Non linear Scheduling of operations Static, Dynamic A Sahu slide

More information

PROBLEMS (Cap. 4 - Istruzioni macchina)

PROBLEMS (Cap. 4 - Istruzioni macchina) 98 CHAPTER 2 MACHINE INSTRUCTIONS AND PROGRAMS PROBLEMS (Cap. 4 - Istruzioni macchina) 2.1 Represent the decimal values 5, 2, 14, 10, 26, 19, 51, and 43, as signed, 7-bit numbers in the following binary

More information

CHAPTER 7: The CPU and Memory

CHAPTER 7: The CPU and Memory CHAPTER 7: The CPU and Memory The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint slides

More information

Pipelining Review and Its Limitations

Pipelining Review and Its Limitations Pipelining Review and Its Limitations Yuri Baida yuri.baida@gmail.com yuriy.v.baida@intel.com October 16, 2010 Moscow Institute of Physics and Technology Agenda Review Instruction set architecture Basic

More information

The Microarchitecture of Superscalar Processors

The Microarchitecture of Superscalar Processors The Microarchitecture of Superscalar Processors James E. Smith Department of Electrical and Computer Engineering 1415 Johnson Drive Madison, WI 53706 ph: (608)-265-5737 fax:(608)-262-1267 email: jes@ece.wisc.edu

More information

Chapter 4 Lecture 5 The Microarchitecture Level Integer JAVA Virtual Machine

Chapter 4 Lecture 5 The Microarchitecture Level Integer JAVA Virtual Machine Chapter 4 Lecture 5 The Microarchitecture Level Integer JAVA Virtual Machine This is a limited version of a hardware implementation to execute the JAVA programming language. 1 of 23 Structured Computer

More information

Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2

Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2 Lecture Handout Computer Architecture Lecture No. 2 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3 Computer Systems Design and Architecture 2.1, 2.2, 3.2 Summary 1) A taxonomy of

More information

MICROPROCESSOR AND MICROCOMPUTER BASICS

MICROPROCESSOR AND MICROCOMPUTER BASICS Introduction MICROPROCESSOR AND MICROCOMPUTER BASICS At present there are many types and sizes of computers available. These computers are designed and constructed based on digital and Integrated Circuit

More information

COMPUTERS ORGANIZATION 2ND YEAR COMPUTE SCIENCE MANAGEMENT ENGINEERING JOSÉ GARCÍA RODRÍGUEZ JOSÉ ANTONIO SERRA PÉREZ

COMPUTERS ORGANIZATION 2ND YEAR COMPUTE SCIENCE MANAGEMENT ENGINEERING JOSÉ GARCÍA RODRÍGUEZ JOSÉ ANTONIO SERRA PÉREZ COMPUTERS ORGANIZATION 2ND YEAR COMPUTE SCIENCE MANAGEMENT ENGINEERING UNIT 1 - INTRODUCTION JOSÉ GARCÍA RODRÍGUEZ JOSÉ ANTONIO SERRA PÉREZ Unit 1.MaNoTaS 1 Definitions (I) Description A computer is: A

More information

A SystemC Transaction Level Model for the MIPS R3000 Processor

A SystemC Transaction Level Model for the MIPS R3000 Processor SETIT 2007 4 th International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 25-29, 2007 TUNISIA A SystemC Transaction Level Model for the MIPS R3000 Processor

More information

Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Systems I: Computer Organization and Architecture Lecture : Microprogrammed Control Microprogramming The control unit is responsible for initiating the sequence of microoperations that comprise instructions.

More information

A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc

A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc Other architectures Example. Accumulator-based machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc

More information

150127-Microprocessor & Assembly Language

150127-Microprocessor & Assembly Language Chapter 3 Z80 Microprocessor Architecture The Z 80 is one of the most talented 8 bit microprocessors, and many microprocessor-based systems are designed around the Z80. The Z80 microprocessor needs an

More information

An Introduction to the ARM 7 Architecture

An Introduction to the ARM 7 Architecture An Introduction to the ARM 7 Architecture Trevor Martin CEng, MIEE Technical Director This article gives an overview of the ARM 7 architecture and a description of its major features for a developer new

More information

Stack machines The MIPS assembly language A simple source language Stack-machine implementation of the simple language Readings: 9.1-9.

Stack machines The MIPS assembly language A simple source language Stack-machine implementation of the simple language Readings: 9.1-9. Code Generation I Stack machines The MIPS assembly language A simple source language Stack-machine implementation of the simple language Readings: 9.1-9.7 Stack Machines A simple evaluation model No variables

More information

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the

More information

TIMING DIAGRAM O 8085

TIMING DIAGRAM O 8085 5 TIMING DIAGRAM O 8085 5.1 INTRODUCTION Timing diagram is the display of initiation of read/write and transfer of data operations under the control of 3-status signals IO / M, S 1, and S 0. As the heartbeat

More information

Operating Systems. Virtual Memory

Operating Systems. Virtual Memory Operating Systems Virtual Memory Virtual Memory Topics. Memory Hierarchy. Why Virtual Memory. Virtual Memory Issues. Virtual Memory Solutions. Locality of Reference. Virtual Memory with Segmentation. Page

More information

Microprocessor/Microcontroller. Introduction

Microprocessor/Microcontroller. Introduction Microprocessor/Microcontroller Introduction Microprocessor/Microcontroller microprocessor - also known as a CU or central processing unit - is a complete computation engine that is fabricated on a single

More information

Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 2 Basic Structure of Computers Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Functional Units Basic Operational Concepts Bus Structures Software

More information

Chapter 07: Instruction Level Parallelism VLIW, Vector, Array and Multithreaded Processors. Lesson 05: Array Processors

Chapter 07: Instruction Level Parallelism VLIW, Vector, Array and Multithreaded Processors. Lesson 05: Array Processors Chapter 07: Instruction Level Parallelism VLIW, Vector, Array and Multithreaded Processors Lesson 05: Array Processors Objective To learn how the array processes in multiple pipelines 2 Array Processor

More information

CS:APP Chapter 4 Computer Architecture. Wrap-Up. William J. Taffe Plymouth State University. using the slides of

CS:APP Chapter 4 Computer Architecture. Wrap-Up. William J. Taffe Plymouth State University. using the slides of CS:APP Chapter 4 Computer Architecture Wrap-Up William J. Taffe Plymouth State University using the slides of Randal E. Bryant Carnegie Mellon University Overview Wrap-Up of PIPE Design Performance analysis

More information

Instruction Set Design

Instruction Set Design Instruction Set Design Instruction Set Architecture: to what purpose? ISA provides the level of abstraction between the software and the hardware One of the most important abstraction in CS It s narrow,

More information

OAMulator. Online One Address Machine emulator and OAMPL compiler. http://myspiders.biz.uiowa.edu/~fil/oam/

OAMulator. Online One Address Machine emulator and OAMPL compiler. http://myspiders.biz.uiowa.edu/~fil/oam/ OAMulator Online One Address Machine emulator and OAMPL compiler http://myspiders.biz.uiowa.edu/~fil/oam/ OAMulator educational goals OAM emulator concepts Von Neumann architecture Registers, ALU, controller

More information

The ARM Architecture. With a focus on v7a and Cortex-A8

The ARM Architecture. With a focus on v7a and Cortex-A8 The ARM Architecture With a focus on v7a and Cortex-A8 1 Agenda Introduction to ARM Ltd ARM Processors Overview ARM v7a Architecture/Programmers Model Cortex-A8 Memory Management Cortex-A8 Pipeline 2 ARM

More information

Z80 Instruction Set. Z80 Assembly Language

Z80 Instruction Set. Z80 Assembly Language 75 Z80 Assembly Language The assembly language allows the user to write a program without concern for memory addresses or machine instruction formats. It uses symbolic addresses to identify memory locations

More information

A Lab Course on Computer Architecture

A Lab Course on Computer Architecture A Lab Course on Computer Architecture Pedro López José Duato Depto. de Informática de Sistemas y Computadores Facultad de Informática Universidad Politécnica de Valencia Camino de Vera s/n, 46071 - Valencia,

More information

Levels of Programming Languages. Gerald Penn CSC 324

Levels of Programming Languages. Gerald Penn CSC 324 Levels of Programming Languages Gerald Penn CSC 324 Levels of Programming Language Microcode Machine code Assembly Language Low-level Programming Language High-level Programming Language Levels of Programming

More information

GPU Architecture. An OpenCL Programmer s Introduction. Lee Howes November 3, 2010

GPU Architecture. An OpenCL Programmer s Introduction. Lee Howes November 3, 2010 GPU Architecture An OpenCL Programmer s Introduction Lee Howes November 3, 2010 The aim of this webinar To provide a general background to modern GPU architectures To place the AMD GPU designs in context:

More information

Introducción. Diseño de sistemas digitales.1

Introducción. Diseño de sistemas digitales.1 Introducción Adapted from: Mary Jane Irwin ( www.cse.psu.edu/~mji ) www.cse.psu.edu/~cg431 [Original from Computer Organization and Design, Patterson & Hennessy, 2005, UCB] Diseño de sistemas digitales.1

More information

CSE 141L Computer Architecture Lab Fall 2003. Lecture 2

CSE 141L Computer Architecture Lab Fall 2003. Lecture 2 CSE 141L Computer Architecture Lab Fall 2003 Lecture 2 Pramod V. Argade CSE141L: Computer Architecture Lab Instructor: TA: Readers: Pramod V. Argade (p2argade@cs.ucsd.edu) Office Hour: Tue./Thu. 9:30-10:30

More information

Giving credit where credit is due

Giving credit where credit is due CSCE 230J Computer Organization Processor Architecture VI: Wrap-Up Dr. Steve Goddard goddard@cse.unl.edu http://cse.unl.edu/~goddard/courses/csce230j Giving credit where credit is due ost of slides for

More information

Microprocessor and Microcontroller Architecture

Microprocessor and Microcontroller Architecture Microprocessor and Microcontroller Architecture 1 Von Neumann Architecture Stored-Program Digital Computer Digital computation in ALU Programmable via set of standard instructions input memory output Internal

More information

Z80 Microprocessors Z80 CPU. User Manual UM008006-0714. Copyright 2014 Zilog, Inc. All rights reserved. www.zilog.com

Z80 Microprocessors Z80 CPU. User Manual UM008006-0714. Copyright 2014 Zilog, Inc. All rights reserved. www.zilog.com Z80 Microprocessors Z80 CPU UM008006-0714 Copyright 2014 Zilog, Inc. All rights reserved. www.zilog.com ii Warning: DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS. LIFE SUPPORT POLICY ZILOG S PRODUCTS

More information

Administrative Issues

Administrative Issues CSC 3210 Computer Organization and Programming Introduction and Overview Dr. Anu Bourgeois (modified by Yuan Long) Administrative Issues Required Prerequisites CSc 2010 Intro to CSc CSc 2310 Java Programming

More information

Notes on Assembly Language

Notes on Assembly Language Notes on Assembly Language Brief introduction to assembly programming The main components of a computer that take part in the execution of a program written in assembly code are the following: A set of

More information

CSE 141 Introduction to Computer Architecture Summer Session I, 2005. Lecture 1 Introduction. Pramod V. Argade June 27, 2005

CSE 141 Introduction to Computer Architecture Summer Session I, 2005. Lecture 1 Introduction. Pramod V. Argade June 27, 2005 CSE 141 Introduction to Computer Architecture Summer Session I, 2005 Lecture 1 Introduction Pramod V. Argade June 27, 2005 CSE141: Introduction to Computer Architecture Instructor: Pramod V. Argade (p2argade@cs.ucsd.edu)

More information

The WIMP51: A Simple Processor and Visualization Tool to Introduce Undergraduates to Computer Organization

The WIMP51: A Simple Processor and Visualization Tool to Introduce Undergraduates to Computer Organization The WIMP51: A Simple Processor and Visualization Tool to Introduce Undergraduates to Computer Organization David Sullins, Dr. Hardy Pottinger, Dr. Daryl Beetner University of Missouri Rolla Session I.

More information

Overview. CISC Developments. RISC Designs. CISC Designs. VAX: Addressing Modes. Digital VAX

Overview. CISC Developments. RISC Designs. CISC Designs. VAX: Addressing Modes. Digital VAX Overview CISC Developments Over Twenty Years Classic CISC design: Digital VAX VAXÕs RISC successor: PRISM/Alpha IntelÕs ubiquitous 80x86 architecture Ð 8086 through the Pentium Pro (P6) RJS 2/3/97 Philosophy

More information