Respiratory System #2

Size: px
Start display at page:

Download "Respiratory System #2"

Transcription

1 Respiratory System #2 The goal of these lectures is to discuss basic respiratory physiology. This lecture will discuss gas transport, control, hypoxia and non-respiratory functions of lungs. The sections for this lecture are: Transport of gases PO2, PCO2, H + conc, t C, DPG, Hb saturation Bhor, Haldane, respiratory acidosis / alkalosis Neural control of ventilation Rhythmical breathing, PO2, PCO2, and H + conc. Exercise, other ventilatory responses Hypoxia and non-respiratory functions of lungs) Hypoxia and acclimatization to high altitude Non-respiratory functions of the lungs (start kidney) 12 Life is a series of chemical reactions occurring in compartmentalized environments. The main purpose of life is to keep itself alive Physiology, the study of how life works, is based on the simultaneous occurrence of the following three concepts: levels of organization structure / function relationship homeostatic regulation FROM YOUR FACEBOOK SITE S receptor E Dr. Advis Class Help (a Facebook site developed and run by undergraduate students) 1

2 Course Outline Topic # Topic lecture Silverthorn Week 1 to week 2 Topic #1 Topic #2 Introduction (pre-requisite material) Membranes (pre-requisite material) Pre-requisite Material (chapter # 5) Topic #3 Homeostasis and Signal Transduction 6 lectures, Topic #4 Endocrine Communication and the Endocrine System 7 recitations, Topic #5 Neural Communication and the Sensory System 8-11 office hours, review, Topic #6 Muscle, Muscle Contraction and their Regulation exam1 (chapter # 8) REVIEW #1 material from topic #01 #06 EXAM #1 material from topic #01 #06 (33%) Week 3 to week 4 Topic #7 Topic #8 Basic Physiology of the Cardiovascular System Basic Physiology of the Respiratory System lectures, recitations, review, exam2 Topic #9 Basic Physiology of the Renal System (chapter # 7) REVIEW #2 material from topic #01 #09 EXAM #2 material from topic #01 #09 (33%) Week 5 to week 6 Topic #10 Topic #11 Basic Physiology of the Gastrointestinal System Food Intake, Metabolism, Energy Balance and Exercise lectures, recitations, review, exam3 Topic #12 From Sexual Differentiation to Adult Reproduction 26 (chapter # 6) REVIEW #3 material from topic #01 #12 EXAM #3 material from topic #01 #12 (33%) (all tests are cumulative) PCO2 PO2 ph Pa inputs neural CV center cardio + cardio - vasoconstriction output chemo & baroreceptors extrinsic periphery heart intrinsic lung (local control) (local control) baroreceptor mechanism (e.g. carotid sinus) where we would like to be at the end of the cardiovascular and respiratory sections, by the end of this week 2

3 Respiratory System ( lectures ) Introduction (lecture #11) Structure / function, gas laws, lungs / chest wall relations, pressures / forces Lung mechanics (lecture #11) Ventilation, inspiration / expiration, complience / resitance Lung volume /capacities, alveolar ventilation / dead space Partial pressures of gases and their diffusion in liquids Alveolar gas pressures and alveolar - blood exchange Matching alveolar ventilation and alveolar blood flow Gas exchange in tissues Transport of O2, CO2 & H ions in blood (lecture #12) Hemoglobin (Hb), effect of PO2 on Hb saturation Blood PCO2, H + conc, t C, DPG on Hb saturation Carbamino compounds and carbonic anhydrase Total blood carbon dioxide and the Haldane effect Respiratory acidosis and respiratory alkalosis Control of respiration (lecture #12) Neural generation of rhythmical breathing Control of ventilation by PO2, PCO2, and H + conc Control of ventilation during exercise Other ventilatory responses Hypoxia and non-respiratory functions of lungs (lecture #12) Hypoxia and acclimatization to high altitude Non-respiratory functions of the lungs Transport of gases ( Hb role ) Hemoglobin (Hb), effect of PO2 on Hb saturation Blood PCO2, H + conc, t C, DPG on Hb saturation Carbamino compounds and carbonic anhydrase Total blood carbon dioxide and the Haldane effect Respiratory acidosis and respiratory alkalosis 3

4 Transport of gases ( Hb role ) Hemoglobin (Hb), effect of PO2 on Hb saturation Blood PCO2, H + conc, t C, DPG on Hb saturation Carbamino compounds and carbonic anhydrase Total blood carbon dioxide and the Haldane effect Respiratory acidosis and respiratory alkalosis Transport of gases ( Hb role ) Hemoglobin (Hb), effect of PO2 on Hb saturation Blood PCO2, H + conc, t C, DPG on Hb saturation Carbamino compounds and carbonic anhydrase Total blood carbon dioxide and the Haldane effect Respiratory acidosis and respiratory alkalosis 4

5 Transport of gases ( Hb role ) Hemoglobin (Hb), effect of PO2 on Hb saturation Blood PCO2, H + conc, t C, DPG on Hb saturation Carbamino compounds and carbonic anhydrase Total blood carbon dioxide and the Haldane effect Respiratory acidosis and respiratory alkalosis Gas exchange as function of capillary length Transport of gases ( Hb role ) Hemoglobin (Hb), effect of PO2 on Hb saturation Blood PCO2, H + conc, t C, DPG on Hb saturation Carbamino compounds and carbonic anhydrase Total blood carbon dioxide and the Haldane effect Respiratory acidosis and respiratory alkalosis 5

6 Transport of gases ( O2 diffusion ) Hemoglobin (Hb), effect of PO2 on Hb saturation Blood PCO2, H + conc, t C, DPG on Hb saturation Carbamino compounds and carbonic anhydrase Total blood carbon dioxide and the Haldane effect Respiratory acidosis and respiratory alkalosis 6

7 Transport of gases ( O2 diffusion ) Hemoglobin (Hb), effect of PO2 on Hb saturation Blood PCO2, H + conc, t C, DPG on Hb saturation Carbamino compounds and carbonic anhydrase Total blood carbon dioxide and the Haldane effect Respiratory acidosis and respiratory alkalosis HCO3 ph = pk + log H2CO3 (increased affinity) (decreased affinity) base ph = pk + log acid ph = pk + log Bohr effect HCO3 PCO2 Transport of gases ( O2 diffusion ) Hemoglobin (Hb), effect of PO2 on Hb saturation Blood PCO2, H + conc, t C, DPG on Hb saturation Carbamino compounds and carbonic anhydrase Total blood carbon dioxide and the Haldane effect Respiratory acidosis and respiratory alkalosis In the lungs ph = pk + log base acid HCO3 ph = pk + log H2CO3 ph = pk + log HCO3 PCO2 7

8 In the lungs Transport of gases ( CO2 diffusion ) Hemoglobin (Hb), effect of PO2 on Hb saturation Blood PCO2, H + conc, t C, DPG on Hb saturation Carbamino compounds and carbonic anhydrase Total blood carbon dioxide and the Haldane effect Respiratory acidosis and respiratory alkalosis HCO3 ph = pk + log H2CO3 ph = pk + log HCO3 PCO2 8

9 Transport of gases ( O2-Hb ) Hemoglobin (Hb), effect of PO2 on Hb saturation Blood PCO2, H + conc, t C, DPG on Hb saturation Carbamino compounds and carbonic anhydrase Total blood carbon dioxide and the Haldane effect Respiratory acidosis and respiratory alkalosis (increased affinity) (increased affinity) (decreased affinity) (decreased affinity) (increased affinity) ph = pk + log base acid (decreased affinity) HCO3 ph = pk + log H2CO3 ph = pk + log HCO3 PCO2 9

10 Transport of gases ( O2-Hb ) Hemoglobin (Hb), effect of PO2 on Hb saturation Blood PCO2, H + conc, t C, DPG on Hb saturation Carbamino compounds and carbonic anhydrase Total blood carbon dioxide and the Haldane effect Respiratory acidosis and respiratory alkalosis 10

11 Transport of gases ( O2-Hb ) Hemoglobin (Hb), effect of PO2 on Hb saturation Blood PCO2, H + conc, t C, DPG on Hb saturation Carbamino compounds and carbonic anhydrase In the tissue Total blood carbon dioxide and the Haldane effect Respiratory acidosis and respiratory alkalosis ph = pk + log base acid HCO3 ph = pk + log H2CO3 ph = pk + log HCO3 PCO2 In the tissue 11

12 Transport of gases ( CO2 diffusion ) Hemoglobin (Hb), effect of PO2 on Hb saturation Blood PCO2, H + conc, t C, DPG on Hb saturation Carbamino compounds and carbonic anhydrase Total blood carbon dioxide and the Haldane effect Respiratory acidosis and respiratory alkalosis H ion binding by Hb 12

13 Transport of gases ( CO2 diffusion ) Hemoglobin (Hb), effect of PO2 on Hb saturation Blood PCO2, H + conc, t C, DPG on Hb saturation Carbamino compounds and carbonic anhydrase Total blood carbon dioxide and the Haldane effect Respiratory acidosis and respiratory alkalosis CO2 mechanism for B & C??? mechanism for B & C??? CO2 13

14 Transport of gases ( dysfunctions ) Hemoglobin (Hb), effect of PO2 on Hb saturation Blood PCO2, H + conc, t C, DPG on Hb saturation Carbamino compounds and carbonic anhydrase Total blood carbon dioxide and the Haldane effect Respiratory acidosis and respiratory alkalosis 1, respiratory acidosis 2, respiratory alkalosis 3, metabolic acidosis 4, metabolic alkalosis HCO mmhg 40 mmhg 4 2 PCO2 20 mmhg ph = pk + log HCO3 PCO ph Control of respiration ( structures ) Neural generation of rhythmical breathing ventilation by PO2, PCO2, and H + conc ventilation during exercise stimulatory inhibitory Inspiratory center is tonically active E Expiratory center is active only when stimulated I PONS pneumotaxic apneustic MEDULLA other inputs SPINAL CORD control of respiration means control of amplitude and frequency lung stretch receptors inspiratory muscles expiratory muscles 14

15 Control of respiration ( structures ) Neural generation of rhythmical breathing 15

16 Control of respiration ( baroreceptors ) Neural generation of rhythmical breathing ventilation by PO2, PCO2, and H + conc ventilation during exercise Control of respiration ( chemoreceptors ) Neural generation of rhythmical breathing ventilation by PO2, PCO2, and H + conc ventilation during exercise 16

17 Control of respiration ( ventilation ) Neural generation of rhythmical breathing ventilation by PO2, PCO2, and H + conc ventilation during exercise 17

18 Control of respiration ( ventilation ) Neural generation of rhythmical breathing 2 ventilation by PO2, PCO2, and H + conc ventilation during exercise 2 18

19 Control of respiration ( ventilation ) Neural generation of rhythmical breathing ventilation by PO2, PCO2, and H + conc ventilation during exercise S receptor E 19

20 Control of respiration ( ventilation ) Neural generation of rhythmical breathing ventilation by PO2, PCO2, and H + conc ventilation during exercise stimulate inspiratory center periphereal mechanoreceptors (skin, joints, etc..) inhibit inspiratory center upper respiratory tract (swallowing, diving reflex) increase baroreceptor activity decreases inspiration & venous return decrease baroreceptor activity increases inspiration & venous return increase PCO2 --> increases Va decrease PCO2 --> decrease Va increase H --> increase Va decrease H --> decrease Va increase Po2 --> decrease Va decrease PO2 --> increase Va Control of respiration Low PO2 High PCO2 20

21 Low PO2 S receptor E High PCO2 S receptor E 21

22 Control of respiration ( high PCO2 ) Neural generation of rhythmical breathing ventilation by PO2, PCO2, and H + conc ventilation during exercise 22

23 Control of respiration Neural generation of rhythmical breathing ventilation by PO2, PCO2, and H + conc ventilation during exercise 23

24 Control of respiration ( exercise ) Neural generation of rhythmical breathing ventilation by PO2, PCO2, and H + conc ventilation during exercise Hypoxia ( dysfunctions ) Hypoxia and acclimatization to high altitude 24

25 25

26 Hypoxia ( dysfunctions ) Hypoxia and acclimatization to high altitude Hypoxia ( dysfunctions ) Hypoxia and acclimatization to high altitude 26

27 Respiratory System 27

28 Respiratory System S receptor E Respiratory / cardiovascular interaction DR=PD x A x DC / D (DC, CO2 = 20 DC, O2) V=RF x TV CO=HR x SV control of amplitud & frequency venous return VA / Q ventilatory pump circulatory pump CNS PO2 chemoreceptors baroreceptors BP O2 content O2 supply blood flow Hemoglobin integrators compare what it should be with what it actually is and generate an error signal 28

29 Respiratory System AP NEURAL RESPIRATORY CENTER inputs AP inspiratory expiratory O2 CO2 THORACIC COMPO- NENTS O2 CO2 O2 CO2 Distribution Center DISTRIBUTION CENTER PCO2 ph PO2 Pa O2 CO2 S receptor E METABOLIC COMPONENTS (all cells) blood related neurogenics AP integrators compare what it should be with what it actually is and generate an error signal PCO2 PO2 ph Pa inputs neural CV center cardio + cardio - vasoconstriction output chemo & baroreceptors extrinsic periphery heart intrinsic lung (local control) (local control) baroreceptor mechanism (e.g. carotid sinus) where we would like to be at the end of the cardiovascular and respiratory sections, by the end of this week 29

30 AT THE MIDDLE OF THE ROAD I wonder how will I look after the next section??? Kidney hat Resp hat CV hat metabolism hat GI hat repro hat I D RATHER BE AT THE BEACH 30

TRANSPORT OF BLOOD GASES From The Lungs To The Tissues & Back

TRANSPORT OF BLOOD GASES From The Lungs To The Tissues & Back TRANSPORT OF BLOOD GASES From The Lungs To The Tissues & Back Dr. Sally Osborne Department of Cellular & Physiological Sciences University of British Columbia Room 3602, D.H Copp Building 604 822-3421

More information

What, roughly, is the dividing line between the upper and lower respiratory tract? The larynx. What s the difference between the conducting zone and

What, roughly, is the dividing line between the upper and lower respiratory tract? The larynx. What s the difference between the conducting zone and What, roughly, is the dividing line between the upper and lower respiratory tract? The larynx. What s the difference between the conducting zone and the respiratory zone? Conducting zone is passageways

More information

Arterial Blood Gas Case Questions and Answers

Arterial Blood Gas Case Questions and Answers Arterial Blood Gas Case Questions and Answers In the space that follows you will find a series of cases that include arterial blood gases. Each case is then followed by an explanation of the acid-base

More information

Gas Exchange Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl.

Gas Exchange Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl. Gas Exchange Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl.com/bc) Page 1. Introduction Oxygen and carbon dioxide diffuse between

More information

ACID- BASE and ELECTROLYTE BALANCE. MGHS School of EMT-Paramedic Program 2011

ACID- BASE and ELECTROLYTE BALANCE. MGHS School of EMT-Paramedic Program 2011 ACID- BASE and ELECTROLYTE BALANCE MGHS School of EMT-Paramedic Program 2011 ACID- BASE BALANCE Ions balance themselves like a see-saw. Solutions turn into acids when concentration of hydrogen ions rises

More information

Autonomic Nervous System Dr. Ali Ebneshahidi

Autonomic Nervous System Dr. Ali Ebneshahidi Autonomic Nervous System Dr. Ali Ebneshahidi Nervous System Divisions of the nervous system The human nervous system consists of the central nervous System (CNS) and the Peripheral Nervous System (PNS).

More information

Oxygenation and Oxygen Therapy Michael Billow, D.O.

Oxygenation and Oxygen Therapy Michael Billow, D.O. Oxygenation and Oxygen Therapy Michael Billow, D.O. The delivery of oxygen to all body tissues is the essence of critical care. Patients in respiratory distress/failure come easily to mind as the ones

More information

Acid/Base Homeostasis (Part 3)

Acid/Base Homeostasis (Part 3) Acid/Base Homeostasis (Part 3) Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) 27. Effect of Hypoventilation Now let's look at how the

More information

Essentials of Human Anatomy & Physiology. 7 th edition Marieb, Elaine, 2003. Chapters 10-11. Lab Manual, 2 nd edition and coloring book, 7 th edition

Essentials of Human Anatomy & Physiology. 7 th edition Marieb, Elaine, 2003. Chapters 10-11. Lab Manual, 2 nd edition and coloring book, 7 th edition Topic/Unit: Anatomy & Physiology Circulatory System Curricular Goals/ Learning Outcomes: Students will be able to identify the composition of blood and its function. Students will be able to differentiate

More information

North Bergen School District Benchmarks

North Bergen School District Benchmarks Grade: 10,11, and 12 Subject: Anatomy and Physiology First Marking Period Define anatomy and physiology, and describe various subspecialties of each discipline. Describe the five basic functions of living

More information

PULMONARY PHYSIOLOGY

PULMONARY PHYSIOLOGY I. Lung volumes PULMONARY PHYSIOLOGY American College of Surgeons SCC Review Course Christopher P. Michetti, MD, FACS and Forrest O. Moore, MD, FACS A. Tidal volume (TV) is the volume of air entering and

More information

Pathophysiology of hypercapnic and hypoxic respiratory failure and V/Q relationships. Dr.Alok Nath Department of Pulmonary Medicine PGIMER Chandigarh

Pathophysiology of hypercapnic and hypoxic respiratory failure and V/Q relationships. Dr.Alok Nath Department of Pulmonary Medicine PGIMER Chandigarh Pathophysiology of hypercapnic and hypoxic respiratory failure and V/Q relationships Dr.Alok Nath Department of Pulmonary Medicine PGIMER Chandigarh Jan 2006 Respiratory Failure inadequate blood oxygenation

More information

LECTURE NOTES ON HUMAN RESPIRATORY SYSTEM PHYSIOLOGY

LECTURE NOTES ON HUMAN RESPIRATORY SYSTEM PHYSIOLOGY 1 LECTURE NOTES ON HUMAN RESPIRATORY SYSTEM PHYSIOLOGY CONTENTS (Dr. GÜL ERDEMLI) 1. MECHANICS OF BREATHING: 2. REGULATION AND CONTROL OF BREATHING: 3. VENTILATION 4. LUNG VOLUMES AND PULMONARY FUNCTION

More information

Gas Exchange. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com)

Gas Exchange. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Gas Exchange Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction Oxygen and carbon dioxide diffuse between the alveoli

More information

6 Easy Steps to ABG Analysis

6 Easy Steps to ABG Analysis 6 Easy Steps to ABG Analysis E-Booklet David W. Woodruff, MSN, RN- BC, CNS, CMSRN, CEN 571 Ledge Road, Macedonia, OH 44056 Telephone (800) 990-2629 Fax (800) 990-2585 1997-2012 Ed4Nurses, Inc. All rights

More information

Water Homeostasis. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.

Water Homeostasis. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc. Water Homeostasis Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) 1. Water Homeostasis The body maintains a balance of water intake

More information

Cardiovascular Physiology

Cardiovascular Physiology Cardiovascular Physiology Heart Physiology for the heart to work properly contraction and relaxation of chambers must be coordinated cardiac muscle tissue differs from smooth and skeletal muscle tissues

More information

Questions on The Nervous System and Gas Exchange

Questions on The Nervous System and Gas Exchange Name: Questions on The Nervous System and Gas Exchange Directions: The following questions are taken from previous IB Final Papers on Topics 6.4 (Gas Exchange) and 6.5 (Nerves, hormones and homeostasis).

More information

Oxygenation. Chapter 21. Anatomy and Physiology of Breathing. Anatomy and Physiology of Breathing*

Oxygenation. Chapter 21. Anatomy and Physiology of Breathing. Anatomy and Physiology of Breathing* Oxygenation Chapter 21 Anatomy and Physiology of Breathing Inspiration ~ breathing in Expiration ~ breathing out Ventilation ~ Movement of air in & out of the lungs Respiration ~ exchange of O2 & carbon

More information

Ventilation Perfusion Relationships

Ventilation Perfusion Relationships Ventilation Perfusion Relationships VENTILATION PERFUSION RATIO Ideally, each alveolus in the lungs would receive the same amount of ventilation and pulmonary capillary blood flow (perfusion). In reality,

More information

Lab #11: Respiratory Physiology

Lab #11: Respiratory Physiology Lab #11: Respiratory Physiology Background The respiratory system enables the exchange of O 2 and CO 2 between the cells and the atmosphere, thus enabling the intake of O 2 into the body for aerobic respiration

More information

CHAPTER 19: RESPIRATORY SYSTEM

CHAPTER 19: RESPIRATORY SYSTEM OBJECTIVES: 1. Fully explain the process (5 parts of) respiration. 2. Describe the significance of oxygen and carbon dioxide in human cells. 3. Explain the structure and function of mucous membranes that

More information

Acid/Base Homeostasis (Part 4)

Acid/Base Homeostasis (Part 4) Acid/Base Homeostasis (Part 4) Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) 5. The newly formed bicarbonate moves into the plasma.

More information

Engage: Brainstorming Body Systems. Record the structures and function of each body system in the table below.

Engage: Brainstorming Body Systems. Record the structures and function of each body system in the table below. Engage: Brainstorming Body s Record the structures and function of each body system in the table below. Body Nervous Circulatory Excretory Immune Digestive Respiratory Skeletal Muscular Endocrine Integumentary

More information

Vascular System The heart can be thought of 2 separate pumps from the right ventricle, blood is pumped at a low pressure to the lungs and then back

Vascular System The heart can be thought of 2 separate pumps from the right ventricle, blood is pumped at a low pressure to the lungs and then back Vascular System The heart can be thought of 2 separate pumps from the right ventricle, blood is pumped at a low pressure to the lungs and then back to the left atria from the left ventricle, blood is pumped

More information

Determinants of Blood Oxygen Content Instructor s Guide

Determinants of Blood Oxygen Content Instructor s Guide Determinants of Blood Oxygen Content Instructor s Guide Time to Complete This activity will take approximately 75 minutes, but can be shortened depending on how much time the instructor takes to review

More information

THE PHYSIOLOGY OF COMPRESSED GAS DIVING

THE PHYSIOLOGY OF COMPRESSED GAS DIVING THE PHYSIOLOGY OF COMPRESSED GAS DIVING Simon Mitchell INTRODUCTION The breathing of compressed gas while immersed and exposed to increased ambient pressure imposes significant homeostatic challenges on

More information

TRANSPORT OF OXYGEN AND CARBON DIOXIDE IN BLOOD

TRANSPORT OF OXYGEN AND CARBON DIOXIDE IN BLOOD TRANSPORT OF OXYGEN AND CARBON DIOXIDE IN BLOOD CONTENTS INTRODUCTION OXYGEN CASCADE OXYGEN DELIVERY DURING EXERCISE OXYGEN DELIVERY DURING CRITICAL ILLNESS CARBON DIOXIDE TRANSPORT O2 TRANSPORT REQUIREMENTS

More information

Paramedic Program Anatomy and Physiology Study Guide

Paramedic Program Anatomy and Physiology Study Guide Paramedic Program Anatomy and Physiology Study Guide Define the terms anatomy and physiology. List and discuss in order of increasing complexity, the body from the cell to the whole organism. Define the

More information

UNIT 3 : MAINTAINING DYNAMIC EQUILIBRIUM

UNIT 3 : MAINTAINING DYNAMIC EQUILIBRIUM BIOLOGY - 2201 UNIT 3 : MAINTAINING DYNAMIC EQUILIBRIUM What happens to your body as you run? Breathing, heart rate, temperature, muscle pain, thirsty... Homeotasis Homeostasis is the process of maintaining

More information

Chetek-Weyerhaeuser High School

Chetek-Weyerhaeuser High School Chetek-Weyerhaeuser High School Anatomy and Physiology Units and Anatomy and Physiology A Unit 1 Introduction to Human Anatomy and Physiology (6 days) Essential Question: How do the systems of the human

More information

BLOOD GAS VARIATIONS. Respiratory Values PCO2 35-45 mmhg Normal range. PCO2 ( > 45) ph ( < 7.35) Respiratory Acidosis

BLOOD GAS VARIATIONS. Respiratory Values PCO2 35-45 mmhg Normal range. PCO2 ( > 45) ph ( < 7.35) Respiratory Acidosis BLOOD GAS VARIATIONS 1 BLOOD ph Normal range 7.35 7.45 Think of 7.40 as your new 0 or neutral If the reading is below 7.4 it is acid. Below 7.35 it is acid out of range or Acidosis If the reading is above

More information

Syllabus for Biology 2402 Human Anatomy & Physiology 2 [This is a generic syllabus. Each instructor will give a syllabus customized for their course.

Syllabus for Biology 2402 Human Anatomy & Physiology 2 [This is a generic syllabus. Each instructor will give a syllabus customized for their course. Syllabus for Biology 2402 Human Anatomy & Physiology 2 [This is a generic syllabus. Each instructor will give a syllabus customized for their course.] Course Description Human Anatomy and Physiology II

More information

A. function: supplies body with oxygen and removes carbon dioxide. a. O2 diffuses from air into pulmonary capillary blood

A. function: supplies body with oxygen and removes carbon dioxide. a. O2 diffuses from air into pulmonary capillary blood A. function: supplies body with oxygen and removes carbon dioxide 1. ventilation = movement of air into and out of lungs 2. diffusion: B. organization a. O2 diffuses from air into pulmonary capillary blood

More information

Homeostasis. The body must maintain a delicate balance of acids and bases.

Homeostasis. The body must maintain a delicate balance of acids and bases. Homeostasis The body must maintain a delicate balance of acids and bases. Metabolic and respiratory processes must work together to keep hydrogen ion (H+) levels normal and stable. ph of Blood The ph of

More information

Anatomy of the Respiratory System. The Respiratory System. Respiratory system functions mainly as gas exchange system for O 2 andco 2.

Anatomy of the Respiratory System. The Respiratory System. Respiratory system functions mainly as gas exchange system for O 2 andco 2. The Respiratory System Respiratory system functions mainly as gas exchange system for O 2 andco 2! cellular respiration (energy production) closely tied to circulatory system General Functions of Respiratory

More information

ORGAN SYSTEMS OF THE BODY

ORGAN SYSTEMS OF THE BODY ORGAN SYSTEMS OF THE BODY DEFINITIONS AND CONCEPTS A. Organ a structure made up of two or more kinds of tissues organized in such a way that they can together perform a more complex function that can any

More information

Breathing and Holding Your Breath copyright, 2005, Dr. Ingrid Waldron and Jennifer Doherty, Department of Biology, University of Pennsylvania 1

Breathing and Holding Your Breath copyright, 2005, Dr. Ingrid Waldron and Jennifer Doherty, Department of Biology, University of Pennsylvania 1 Breathing and Holding Your Breath copyright, 2005, Dr. Ingrid Waldron and Jennifer Doherty, Department of Biology, University of Pennsylvania 1 Introduction Everybody breathes all day, every day. Why?

More information

CHAPTER 5 - BREATHING "THE RESPIRATORY SYSTEM"

CHAPTER 5 - BREATHING THE RESPIRATORY SYSTEM CHAPTER 5 - BREATHING "THE RESPIRATORY SYSTEM" You have read how the blood transports oxygen from the lungs to cells and carries carbon dioxide from the cells to the lungs. It is the function of the respiratory

More information

Acid-Base Balance and the Anion Gap

Acid-Base Balance and the Anion Gap Acid-Base Balance and the Anion Gap 1. The body strives for electrical neutrality. a. Cations = Anions b. One of the cations is very special, H +, and its concentration is monitored and regulated very

More information

Fundamentals of Anatomy & Physiology Course Outline, Objectives and Accreditation Information

Fundamentals of Anatomy & Physiology Course Outline, Objectives and Accreditation Information 201 Webster Building 3411 Silverside Road Wilmington, DE 19810 Phone: 1-888-658-6641 Fax: 1-302-477-9744 learn@corexcel.com www.corexcel.com Course Outline, Objectives and Accreditation Information Chapter

More information

Fetal Responses to Reduced Oxygen Delivery

Fetal Responses to Reduced Oxygen Delivery Fetal Responses to Reduced Oxygen Delivery Abraham M Rudolph Fetal Cardiology Symposium May 2016, Phoenix Faculty Disclosure Information I have no financial relationship with any manufacturer of any commercial

More information

Chapter 15 Anatomy and Physiology Lecture

Chapter 15 Anatomy and Physiology Lecture 1 THE AUTONOMIC NERVOUS SYSTEM Chapter 15 Anatomy and Physiology Lecture 2 THE AUTONOMIC NERVOUS SYSTEM Autonomic Nervous System (ANS) regulates the activity of smooth muscles, cardiac muscles, and certain

More information

Interpretation of the Arterial Blood Gas Self-Learning Packet

Interpretation of the Arterial Blood Gas Self-Learning Packet Interpretation of the Arterial Blood Gas Self-Learning Packet * See SWIFT for list of qualifying boards for continuing education hours. Table of Contents Purpose... 3 Objectives... 3 Instructions... 4

More information

Biology 2402 A&P II - Lymphatic System and Immunity Ch. 14

Biology 2402 A&P II - Lymphatic System and Immunity Ch. 14 Biology 2402 A&P II - Lymphatic System and Immunity Ch. 14 Functions: Fluid balance by returning excess tissue fluid to the blood; returning solutes (especially plasma proteins) to the blood; filter body

More information

BIO 137: CHAPTER 1 OBJECTIVES

BIO 137: CHAPTER 1 OBJECTIVES BIO 137: CHAPTER 1 OBJECTIVES 1. Define the terms anatomy and physiology, and explain their relationship using an example of a human structure with its corresponding function. A. ANATOMY = the study of

More information

Introduction to Animal Systems

Introduction to Animal Systems Human Body Systems Introduction to Animal Systems Recurring Themes in Biology 1. Correlation between structure and function( seen at many levels) 2. Life is organized at many levels from Smallest ----

More information

2161-1 - Page 1. Name: 1) Choose the disease that is most closely related to the given phrase. Questions 10 and 11 refer to the following:

2161-1 - Page 1. Name: 1) Choose the disease that is most closely related to the given phrase. Questions 10 and 11 refer to the following: Name: 2161-1 - Page 1 1) Choose the disease that is most closely related to the given phrase. a disease of the bone marrow characterized by uncontrolled production of white blood cells A) meningitis B)

More information

Examples of sample reading passage and questions. Note: paragraphs are numbered. Correct answers are underlined.

Examples of sample reading passage and questions. Note: paragraphs are numbered. Correct answers are underlined. Kaplan s Admission Test is a tool to determine if students have the academic skills necessary to perform effectively in a school of nursing. The Admission Test is a 91-question, multiplechoice test that

More information

Human Anatomy & Physiology

Human Anatomy & Physiology Human Anatomy & Physiology John Wojciakowski email: jwojciakowski@nvps.net phone ext: 28351 Room #1245 TEXTS: Text The Human Body Book author- Steve Parker copyright- 2007 Course Overview: Anatomy is a

More information

Endocrine System: Practice Questions #1

Endocrine System: Practice Questions #1 Endocrine System: Practice Questions #1 1. Removing part of gland D would most likely result in A. a decrease in the secretions of other glands B. a decrease in the blood calcium level C. an increase in

More information

CHAPTER 9 BODY ORGANIZATION

CHAPTER 9 BODY ORGANIZATION CHAPTER 9 BODY ORGANIZATION Objectives Identify the meaning of 10 or more terms relating to the organization of the body Describe the properties of life Describe the function for the structures of the

More information

Lecture Time: Online + Saturdays June 13 th to August 8 th from 1PM to 3PM Lab Time: Saturdays June 13 th to August 8 th from 3PM to 5PM:

Lecture Time: Online + Saturdays June 13 th to August 8 th from 1PM to 3PM Lab Time: Saturdays June 13 th to August 8 th from 3PM to 5PM: BIOL 170: Human Physiology Instructor: Jerome Garcia Lecture Time: Online + Saturdays June 13 th to August 8 th from 1PM to 3PM Lab Time: Saturdays June 13 th to August 8 th from 3PM to 5PM: Course Syllabus

More information

Essentials of Human Anatomy & Physiology. Chapter 15. The Urinary System. Slides 15.1 15.20. Lecture Slides in PowerPoint by Jerry L.

Essentials of Human Anatomy & Physiology. Chapter 15. The Urinary System. Slides 15.1 15.20. Lecture Slides in PowerPoint by Jerry L. Essentials of Human Anatomy & Physiology Elaine N. Marieb Seventh Edition Chapter 15 The Urinary System Slides 15.1 15.20 Lecture Slides in PowerPoint by Jerry L. Cook Functions of the Urinary System Elimination

More information

CHAPTER 1: THE LUNGS AND RESPIRATORY SYSTEM

CHAPTER 1: THE LUNGS AND RESPIRATORY SYSTEM CHAPTER 1: THE LUNGS AND RESPIRATORY SYSTEM INTRODUCTION Lung cancer affects a life-sustaining system of the body, the respiratory system. The respiratory system is responsible for one of the essential

More information

Acid-Base Balance and Renal Acid Excretion

Acid-Base Balance and Renal Acid Excretion AcidBase Balance and Renal Acid Excretion Objectives By the end of this chapter, you should be able to: 1. Cite the basic principles of acidbase physiology. 2. Understand the bicarbonatecarbon dioxide

More information

ANATOMY & PHYSIOLOGY ONLINE COURSE - SESSION 2 ORGANIZATION OF THE BODY

ANATOMY & PHYSIOLOGY ONLINE COURSE - SESSION 2 ORGANIZATION OF THE BODY ANATOMY & PHYSIOLOGY ONLINE COURSE - SESSION 2 ORGANIZATION OF THE BODY Human beings are arguably the most complex organisms on this planet. Imagine billions of microscopic parts, each with its own identity,

More information

A. All cells need oxygen and release carbon dioxide why?

A. All cells need oxygen and release carbon dioxide why? I. Introduction: Describe how the cardiovascular and respiratory systems interact to supply O 2 and eliminate CO 2. A. All cells need oxygen and release carbon dioxide why? B. Two systems that help to

More information

Oxygen Dissociation Curve

Oxygen Dissociation Curve 122 Visit http://www.anaesthesiamcq.com for details Chapter 4 Dissociation Curve Can you draw the oxygen dissociation curve of normal adult haemoglobin? How many points on the curve can you indicate with

More information

Introduction to Animals

Introduction to Animals Introduction to Animals Unity and Diversity of Life Q: What characteristics and traits define animals? 25.1 What is an animal? WHAT I KNOW SAMPLE ANSWER: Animals are different from other living things

More information

Chapter 7: The Nervous System

Chapter 7: The Nervous System Chapter 7: The Nervous System Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways involved in a withdraw reflex Define

More information

Altitude. Thermoregulation & Extreme Environments. The Stress of Altitude. Reduced PO 2. O 2 Transport Cascade. Oxygen loading at altitude:

Altitude. Thermoregulation & Extreme Environments. The Stress of Altitude. Reduced PO 2. O 2 Transport Cascade. Oxygen loading at altitude: Altitude Thermoregulation & Extreme Environments Reduced PO 2 The Stress of Altitude O 2 Transport Cascade Progressive change in environments oxygen pressure & various body areas Oxygen loading at altitude:

More information

1. DEFINITION OF PHYSIOLOGY. Study of the functions of the healthy human body. How the body works. Focus on mechanisms of action.

1. DEFINITION OF PHYSIOLOGY. Study of the functions of the healthy human body. How the body works. Focus on mechanisms of action. 1. DEFINITION OF PHYSIOLOGY Study of the functions of the healthy human body. How the body works. Focus on mechanisms of action. Anatomy & Physiology: inseparable & complementary They are complementary

More information

Circulatory System Review

Circulatory System Review Circulatory System Review 1. Draw a table to describe the similarities and differences between arteries and veins? Anatomy Direction of blood flow: Oxygen concentration: Arteries Thick, elastic smooth

More information

2.06 Understand the functions and disorders of the respiratory system

2.06 Understand the functions and disorders of the respiratory system 2.06 Understand the functions and disorders of the respiratory system 2.06 Understand the functions and disorders of the respiratory system Essential questions What are the functions of the respiratory

More information

THE RESPIRATORY SYSTEM

THE RESPIRATORY SYSTEM ANIMAL SCIENCE 8646-B THE RESPIRATORY SYSTEM INTRODUCTION Respiration* is a physical process by which living organisms inhale oxygen from the surrounding atmosphere and then exhale carbon dioxide. The

More information

Chapter 15. Autonomic Nervous System (ANS) and Visceral Reflexes. general properties Anatomy. Autonomic effects on target organs

Chapter 15. Autonomic Nervous System (ANS) and Visceral Reflexes. general properties Anatomy. Autonomic effects on target organs Chapter 15 Autonomic Nervous System (ANS) and Visceral Reflexes general properties Anatomy Autonomic effects on target organs Central control of autonomic function 15-1 Copyright (c) The McGraw-Hill Companies,

More information

MECHINICAL VENTILATION S. Kache, MD

MECHINICAL VENTILATION S. Kache, MD MECHINICAL VENTILATION S. Kache, MD Spontaneous respiration vs. Mechanical ventilation Natural spontaneous ventilation occurs when the respiratory muscles, diaphragm and intercostal muscles pull on the

More information

Human Body Systems Project By Eva McLanahan

Human Body Systems Project By Eva McLanahan Human Body Systems Project By Eva McLanahan Students will work in groups to research one of the eleven body systems as found in Holt, Rinehart, and Winston Modern Biology (2002). Research will focus on

More information

HUMAN ANATOMY AND PHYSIOLOGY KNR 182

HUMAN ANATOMY AND PHYSIOLOGY KNR 182 Human Anatomy and Physiology Notes (KNR 182) ; Page 92 HUMAN ANATOMY AND PHYSIOLOGY KNR 182 Lecture Packet for Unit V Respiratory System Professor: Dale D. Brown, Ph.D. 5120 Dept of KNR Horton Fieldhouse

More information

Physiology Chapter 1 Lecture

Physiology Chapter 1 Lecture Physiology Chapter 1 Lecture I. Anatomy and Physiology - structure and function. *many subdivisions in both areas. See Table 1.1, page 2 *structure and function are interrelated, the structure often determines

More information

Vtial sign #1: PULSE. Vital Signs: Assessment and Interpretation. Factors that influence pulse rate: Importance of Vital Signs

Vtial sign #1: PULSE. Vital Signs: Assessment and Interpretation. Factors that influence pulse rate: Importance of Vital Signs Vital Signs: Assessment and Interpretation Elma I. LeDoux, MD, FACP, FACC Associate Professor of Medicine Vtial sign #1: PULSE Reflects heart rate (resting 60-90/min) Should be strong and regular Use 2

More information

IMPAIRED BLOOD-GAS EXCHANGE. Intraoperative blood gas analysis

IMPAIRED BLOOD-GAS EXCHANGE. Intraoperative blood gas analysis IMPAIRED BLOOD-GAS EXCHANGE Intraoperative blood gas analysis When do you perform BGA Intraoperatively? Informe actual NEVER Routine:Thoracic Thoracic, Cardiac,Neurosurgery Emergency situation Drop in

More information

Blood Vessels and Circulation

Blood Vessels and Circulation 13 Blood Vessels and Circulation FOCUS: Blood flows from the heart through the arterial blood vessels to capillaries, and from capillaries back to the heart through veins. The pulmonary circulation transports

More information

ACID-BASE BALANCE AND ACID-BASE DISORDERS. I. Concept of Balance A. Determination of Acid-Base status 1. Specimens used - what they represent

ACID-BASE BALANCE AND ACID-BASE DISORDERS. I. Concept of Balance A. Determination of Acid-Base status 1. Specimens used - what they represent ACID-BASE BALANCE AND ACID-BASE DISORDERS I. Concept of Balance A. Determination of Acid-Base status 1. Specimens used - what they represent II. Electrolyte Composition of Body Fluids A. Extracellular

More information

Functions of Blood System. Blood Cells

Functions of Blood System. Blood Cells Functions of Blood System Transport: to and from tissue cells Nutrients to cells: amino acids, glucose, vitamins, minerals, lipids (as lipoproteins). Oxygen: by red blood corpuscles (oxyhaemoglobin - 4

More information

Blood Pressure. Blood Pressure (mm Hg) pressure exerted by blood against arterial walls. Blood Pressure. Blood Pressure

Blood Pressure. Blood Pressure (mm Hg) pressure exerted by blood against arterial walls. Blood Pressure. Blood Pressure Blood Pressure Blood Pressure (mm Hg) pressure exerted by blood against arterial walls Systolic pressure exerted on arteries during systole Diastolic pressure in arteries during diastole 120/80 Borderline

More information

Milwaukee School of Engineering Gerrits@msoe.edu. Case Study: Factors that Affect Blood Pressure Instructor Version

Milwaukee School of Engineering Gerrits@msoe.edu. Case Study: Factors that Affect Blood Pressure Instructor Version Case Study: Factors that Affect Blood Pressure Instructor Version Goal This activity (case study and its associated questions) is designed to be a student-centered learning activity relating to the factors

More information

12.1: The Function of Circulation page 478

12.1: The Function of Circulation page 478 12.1: The Function of Circulation page 478 Key Terms: Circulatory system, heart, blood vessel, blood, open circulatory system, closed circulatory system, pulmonary artery, pulmonary vein, aorta, atrioventricular

More information

7 Answers to end-of-chapter questions

7 Answers to end-of-chapter questions 7 Answers to end-of-chapter questions Multiple choice questions 1 B 2 B 3 A 4 B 5 A 6 D 7 C 8 C 9 B 10 B Structured questions 11 a i Maintenance of a constant internal environment within set limits i Concentration

More information

HUMAN ANATOMY & PHYSIOLOGY MAINTENANCE 30

HUMAN ANATOMY & PHYSIOLOGY MAINTENANCE 30 Curriculum Development In the Fairfield Public Schools FAIRFIELD PUBLIC SCHOOLS FAIRFIELD, CONNECTICUT HUMAN ANATOMY & PHYSIOLOGY MAINTENANCE 30 Board of Education Approved 05/22/2007 HUMAN ANATOMY & PHYSIOLOGY

More information

Blue Mountain Community College School of Nursing. Admission Test

Blue Mountain Community College School of Nursing. Admission Test Blue Mountain Community College School of Nursing Admission Test As part of BMCC nursing school s admissions process, students are required to take a Kaplan Admission Test. This computer-based test will

More information

Pulmonary Diseases. Lung Disease: Pathophysiology, Medical and Exercise Programming. Overview of Pathophysiology

Pulmonary Diseases. Lung Disease: Pathophysiology, Medical and Exercise Programming. Overview of Pathophysiology Lung Disease: Pathophysiology, Medical and Exercise Programming Overview of Pathophysiology Ventilatory Impairments Increased airway resistance Reduced compliance Increased work of breathing Ventilatory

More information

Blood Pressure Regulation

Blood Pressure Regulation Blood Pressure Regulation Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction There are two basic mechanisms for regulating

More information

Anatomy and Physiology (ANPY) CTY Course Syllabus

Anatomy and Physiology (ANPY) CTY Course Syllabus Anatomy and Physiology (ANPY) CTY Course Syllabus When Key Points / Objectives Content Day 1 INTRODUCTION HOMEOSTASIS LEVELS OF ORGANIZATION Day 2 CELLULAR AND MOLECULAR BIOLOGY GENETICS Day 3 INTEGUMENTARY

More information

Anatomy & Physiology Bio 2401 Lecture. Instructor: Daryl Beatty Day 1 Intro to Lecture 1

Anatomy & Physiology Bio 2401 Lecture. Instructor: Daryl Beatty Day 1 Intro to Lecture 1 Anatomy & Physiology Bio 2401 Lecture Instructor: Daryl Beatty Day 1 Intro to Lecture 1 Introduction: Daryl Beatty M.S. Microbiology 28 Years Dow, Research & TS&D. Family BC since 2007 More importantly:

More information

Mammalian Physiology. Autonomic Nervous System UNLV. PHYSIOLOGY, Chapter 11 Berne, Levy, Koeppen, Stanton UNIVERSITY OF NEVADA LAS VEGAS

Mammalian Physiology. Autonomic Nervous System UNLV. PHYSIOLOGY, Chapter 11 Berne, Levy, Koeppen, Stanton UNIVERSITY OF NEVADA LAS VEGAS Mammalian Physiology Autonomic Nervous System UNLV 1 UNIVERSITY OF NEVADA LAS VEGAS PHYSIOLOGY, Chapter 11 Berne, Levy, Koeppen, Stanton Objectives Describe the organization of the autonomic nervous system

More information

Renal Acid/Base. Acid Base Homeostasis... 2 H+ Balance... 2

Renal Acid/Base. Acid Base Homeostasis... 2 H+ Balance... 2 Renal Acid/Base By Adam Hollingworth Table of Contents Acid Base Homeostasis... 2 H+ Balance... 2 Acid Base Homeostasis... 2 Role of Kidneys in Acid- Base Homeostasis... 3 Renal H+ Secretion... 3 Proximal

More information

Select the one that is the best answer:

Select the one that is the best answer: MQ Kidney 1 Select the one that is the best answer: 1) n increase in the concentration of plasma potassium causes increase in: a) release of renin b) secretion of aldosterone c) secretion of H d) release

More information

Eileen Whitehead 2010 East Lancashire HC NHS Trust

Eileen Whitehead 2010 East Lancashire HC NHS Trust Eileen Whitehead 2010 East Lancashire HC NHS Trust 1 Introduction: Arterial blood gas analysis is an essential part of diagnosing and managing a patient s oxygenation status and acid-base balance However,

More information

Chapter 1 Dissolved Oxygen in the Blood

Chapter 1 Dissolved Oxygen in the Blood Chapter 1 Dissolved Oxygen in the Blood Say we have a volume of blood, which we ll represent as a beaker of fluid. Now let s include oxygen in the gas above the blood (represented by the green circles).

More information

Chapter 2 - Anatomy & Physiology of the Respiratory System

Chapter 2 - Anatomy & Physiology of the Respiratory System Chapter 2 - Anatomy & Physiology of the Respiratory System Written by - AH Kendrick & C Newall 2.1 Introduction 2.2 Gross Anatomy of the Lungs, 2.3 Anatomy of the Thorax, 2.4 Anatomy and Histology of the

More information

Nursing 113. Pharmacology Principles

Nursing 113. Pharmacology Principles Nursing 113 Pharmacology Principles 1. The study of how drugs enter the body, reach the site of action, and are removed from the body is called a. pharmacotherapeutics b. pharmacology c. pharmacodynamics

More information

RESPIRATORY VENTILATION Page 1

RESPIRATORY VENTILATION Page 1 Page 1 VENTILATION PARAMETERS A. Lung Volumes 1. Basic volumes: elements a. Tidal Volume (V T, TV): volume of gas exchanged each breath; can change as ventilation pattern changes b. Inspiratory Reserve

More information

240- PROBLEM SET INSERTION OF SWAN-GANZ SYSTEMIC VASCULAR RESISTANCE. Blood pressure = f(cardiac output and peripheral resistance)

240- PROBLEM SET INSERTION OF SWAN-GANZ SYSTEMIC VASCULAR RESISTANCE. Blood pressure = f(cardiac output and peripheral resistance) 240- PROBLEM SET INSERTION OF SWAN-GANZ 50 kg Pig Rt Jugular 0 cm Rt Atrium 10 cm Rt ventricle 15 cm Wedge 20-25 cm SYSTEMIC VASCULAR RESISTANCE Blood pressure = f(cardiac output and peripheral resistance)

More information

Pulmonary Ventilation

Pulmonary Ventilation RESPIRATORY PHYSIOLOGY The process of respiration is divided into four categories: 1- Pulmonary ventilation. 2- Diffusion of oxygen and CO2 between alveoli and tissues. 3- Transport of oxygen and CO2 in

More information

Republic Polytechnic. Continuing Education & Training. Course Structure: Anatomy & Physiology

Republic Polytechnic. Continuing Education & Training. Course Structure: Anatomy & Physiology Republic Polytechnic Continuing Education & Training Course Structure: Anatomy & Physiology Module Anatomy and Physiology Description This module introduces the basic human anatomical organization, tissue

More information

A&P Basics. a. 1,6,3,4,5,2 b. 2,4,5,6,1,3 c. 1, 3,6,5,4,2 d. 3,1,5,6,4,2 e. 1,6,3,2,5,4

A&P Basics. a. 1,6,3,4,5,2 b. 2,4,5,6,1,3 c. 1, 3,6,5,4,2 d. 3,1,5,6,4,2 e. 1,6,3,2,5,4 1. Which of the following disciplines is MOST likely to concentrate on the structure and function of organelles? a. Gross anatomy b. Histology c. Cytology d. Embryology 2. Which of the following disciplines

More information

Physiology of Ventilation

Physiology of Ventilation Physiology of Ventilation Lecturer: Sally Osborne, Ph.D. Department of Cellular & Physiological Sciences Email: sosborne@interchange.ubc.ca Useful link: www.sallyosborne.com Required Reading: Respiratory

More information

Chemistry 201. Practical aspects of buffers. NC State University. Lecture 15

Chemistry 201. Practical aspects of buffers. NC State University. Lecture 15 Chemistry 201 Lecture 15 Practical aspects of buffers NC State University The everyday ph scale To review what ph means in practice, we consider the ph of everyday substances that we know from experience.

More information