Chapter 2 Surfaces with Constant Mean Curvature


 Brianna McDaniel
 1 years ago
 Views:
Transcription
1 Chapter 2 Surfaces with Constant ean Curvature In this chapter we shall review some basic aspects of the theory of surfaces with constant mean curvature. Rather the reader should take this chapter as a first introduction to the problems and as a way to become acquainted with the methods that will be needed in successive chapters. In the process of this review, we shall obtain results on compact cmc surfaces with boundary. The surfaces with constant mean curvature will arise as solutions of a variational problem associated to the area functional and we shall relate it to the classical isoperimetric problem. Then we state the first and second variation formula for the area and we give the notion of stability of a cmc surface. Next, we shall introduce complex analysis as a basic tool in the theory and we define the Hopf differential. This will allow us to prove the Hopf theorem. In addition, we compute the Laplacians of some functions that contain geometric information of a cmc surface. As the Laplacian is an elliptic operator, we are in position to apply the maximum principle and we will obtain height estimates of a graph of constant mean curvature. Finally, and with the aid of the expression of these Laplacians, we will derive the Barbosado Carmo theorem that characterizes a round sphere within the family of closed stable cmc surfaces of Euclidean space. 2.1 The Variational Formula for the Area Let be a connected orientable (smooth) surface with possibly nonempty boundary. Denote by int() = \ the set of interior points of. Letx : R 3 be an immersion of in Euclidean threespace R 3. We say that is immersed in R 3 if the immersion x is assumed. If p, we write p instead of x(p),orsimply,x. We represent by N : S 2 a Gauss map (or an orientation), where S 2 denotes the unit sphere of R 3. An immersion x is called an embedding if x : x() is a homeomorphism and we say that the surface is embedded in R 3.If is compact, this is equivalent to x() having no selfintersections and we will identify the surface with its image x(). Let Γ R 3 be a (smooth) space curve. Consider an immersion x : R 3 of a surface. We say that Γ is the boundary of the immersion x if x : Γ is R. López, Constant ean Curvature Surfaces with Boundary, Springer onographs in athematics, DOI 1.17/ _2, SpringerVerlag Berlin Heidelberg
2 14 2 Surfaces with Constant ean Curvature a diffeomorphism. In particular, we prohibit that x turns many times around Γ. We also say that x (or ) spans Γ or that Γ is the boundary of x(). Ifx is an embedding we will use interchangeably and Γ. We endow with the Euclidean metric, induced by the immersion x. If is a compact surface, the areaof is defined by A = d, where d denotes the area element of. Now we introduce the volume of the immersion and we motivate the definition by considering a closed embedded surface. In such case, defines a bounded 3domain W R 3. We call the volume V enclosed by the Lebesgue volume of W. An expression of V in terms of an integral on may be derived by an easy application of the divergence theorem. The divergence of the vector field Y(x,y,z) = (x,y,z)is 3 and thus V = 1 = 1 Div(Y ) = 1 d = W 3 W 3 N,Y 1 N,x d, 3 where N is the Gauss map on that points towards W. In general, if x : R 3 is an immersion of a compact surface with possibly nonempty boundary, the algebraic volume of x with respect to the orientation N is defined by V = 1 N,x d. (2.1) 3 When, the number V measures the algebraic volume determined by the surface together with the cone C formed by and the origin of R 3. This follows if we parametrize C as φ(s,t)= tα(s), with α : x( ) a parametrization of x( ) and t 1. Since C together with forms a 2cycle, the same vector field Y gives 3V = N,x d N C,φ dc, C where N C is the unit normal vector to C. Finally, observe that N C,φ =. We remark that the volume of the immersion depends on the origin, or in other words, the number V changes by translations of the initial surface. However, when the boundary is planar, and as a consequence of the divergence theorem again, we have: Proposition Let x : R 3 be an immersion of a compact surface. Assume that x( ) = Γ is contained in a plane P. Then the volume is invariant provided the origin lies in P. A particular case occurs when is the graph of a function u C 2 (Ω) C (Ω), where Ω R 2 is a bounded domain and u = on Ω. Choose on the usual
3 2.1 The Variational Formula for the Area 15 parametrization of a graph, namely, Ψ(x,y) = (x,y,u(x,y)) and the orientation given by N ( x,y,u(x,y) ) 1 = ( u x, u y, 1). (2.2) 1 + u 2 x + u2 y As d = 1 + u 2 x + u2 y dxdy,wehave V = 1 3 N,Ψ d = 1 3 Ω (xu x + yu y u) dx dy. Define on Ω the vector field Y(q)= u(q)q. Then Div(Y ) = xu x + yu y + 2u and using that u = on Ω, we find that (xu x + yu y + 2u) dx dy = u n,q ds =, Ω where n is the inward conormal vector of Ω along Ω. We conclude that V = udxdy. (2.3) Ω As was noted in Chap. 1, the mean curvature of the surface can be motivated if we consider the socalled isoperimetric problem. Isoperimetric problem: Among all compact surfaces in Euclidean space R 3 enclosing a given volume, find the surface of least area. If we modify the question and we only ask for those surfaces that are solutions of the isoperimetric problem up to the first order, the problem becomes the following: Variational problem: Characterize a compact surface in Euclidean space R 3 whose area is critical among all variations that preserve the volume of the surface. Definition A variation of an immersion x : R 3 is a differentiable map X : ( ε, ε) R 3 such that for each t ( ε, ε), the maps x t : R 3 given by x t (p) = X(p,t) are immersions for all t, and for t =, x = x. The variational vector field of the variation {x t } is defined by ξ(p) = X(p,t) t Ω, p. t= The variation {x t } is said to be admissible if preserves the boundary of x, that is, x t (p) = x(p) for every p. In particular, ξ = on. Assume is a compact surface. Consider the area A(t) and the volume V(t)of induced by the immersion x t : A(t) = d t, V(t)= 1 N t,x t d t, 3
4 16 2 Surfaces with Constant ean Curvature where d t and N t stand for the area element of induced by x t and the unit normal field of x t, respectively. In particular, A() and V() are the area and the volume of the initial immersion x. We obtain the variation formula for A(t) and V(t)at t =. Proposition (First variation for the area) The area functional A(t) is differentiable at t = and A () = 2 H N,ξ d ν,ξ ds, (2.4) where ν is the inward unit conormal vector of along and H is the mean curvature of the immersion. The mean curvature H is defined by H(p)= κ 1(p) + κ 2 (p), p, 2 where κ 1 (p) and κ 2 (p) are the principal curvatures of x at p, i.e., the eigenvalues of the Weingarten endomorphism A p = (dn) p : T p T p. In particular, the sign of H changes by reversing the orientation N. On the other hand, the second fundamental form of the immersion is σ p (u, v) = (dn) p (u), v, u,v T p. Then the value 2H(p) agrees with the trace of σ p. Recall that the norm σ of σ is σ 2 = 4H 2 2K, where K = κ 1 κ 2 is the Gauss curvature of the surface. oreover, σ 2 2H 2 on and equality holds at a point p if and only if p is umbilical. Proof of Proposition A proof of (2.4) appears in Proposition A..1, Appendix A. Here we restrict to the case when the variational vector field is perpendicular to the surface. Let x t : R 3 be the variation of x given by x t (p) = x(p) + tf (p)n(p), t ( ε, ε) with f C (). The variational vector field is normal to the surface because ξ = fn. A computation leads to (dx t ) p (v) = v + tf (p) dn p (v) + tdf p (v)n(p), for v T p. By the compactness of, we can choose ε> sufficiently small in order to obtain (dx t ) p (v) for all tangent vectors v and thus, x t is an immersion. Let e i denote the principal directions at p. Then The Jacobian of x t is (dx t ) p (e i ) = ( 1 tκ i (p)f (p) ) e i + tdf p (e i )N(p).
5 2.1 The Variational Formula for the Area 17 Jac(x t )(p) = (dx t ) p (e 1 ) (dx t ) p (e 2 ) = t ( 1 tκ 2 (p)f (p) ) df p (e 1 )e 1 t ( 1 tκ 1 (p)f (p) ) df p (e 2 )e 2 ( 1 2tH (p)f (p) + t 2 K(p)f (p) 2) N(p). Hence it follows that d dt Jac(x t )(p) = 2H(p)f (p). (2.5) t= Finally, by (2.5) and the formula for change of variables, we find that A d () = dt Jac(x t )d = 2 Hf d = 2 H N,ξ d, t= showing (2.4). Observe that the boundary integral in (2.4) vanishes because ξ(p) T p. We say that is a surface with constant mean curvature if the function H is constant. We abbreviate this by saying that is a cmc surface or an H surface if we want to emphasize the value H of the mean curvature. In the particular case that H = on, we say that is a minimal surface. In view of Proposition 2.1.3, we obtain the following characterization of a minimal surface: Theorem Let x : R 3 be an immersion of a compact surface. Then the immersion is minimal if and only if A () = for any admissible variation of x. Proof If H =, then (2.4) gives immediately A () =. Conversely, let f C () be a function with f>inint() and f = on. Define the variation x t (p) = x(p) + tf (p)h (p)n(p), which is admissible and ξ = fhn. Then (2.4) yields = A () = 2 H N,ξ d = 2 fh 2 d. As f is positive on int(), then H = on. This theorem establishes that a compact surface is minimal if and only it is a critical point of the area for any admissible variation. As a consequence, if Γ is a closed curve and is a surface of least area among all surfaces spanning Γ, then is a minimal surface since for any variation of, the functional A(t) has a minimum at t =, hence, A () =. The reverse process does not hold in general and there exist compact minimal surfaces that are not minimizers. A special case is studied in Proposition below.
6 18 2 Surfaces with Constant ean Curvature Proposition (First variation for the volume) The volume functional V(t) is differentiable at t = and V () = N,ξ d. (2.6) For a proof, see Proposition A..2, Appendix A. Once the formulas for the first variation for the area and for the volume have been obtained, we have the conditions for characterizing a surface with constant mean curvature. If we recall the motivation of cmc surfaces by soap bubbles given in the preceding chapter, we require that the perturbations made on the soap bubble keep the enclosed volume of air constant. Thus we give the next definition. A variation is said to be volume preserving if the functional V(t) is constant. In particular, V (t) =. Comparing with the proof of Theorem for minimal surfaces and viewing the integral in (2.6), for a cmc surface it does not suffice that f = on. For this reason, we need the following result [BC84]. Lemma Let x : R 3 be an immersion of a compact surface and let f C () with fd=. Then there exists a volume preserving variation whose variational vector field is ξ = fn. Furthermore, if f = on, then the variation can be assumed admissible. Proof Let g be a differentiable function on such that g = on and gd. If I = ( ε, ε), define X : I I R 3, X(p,t,s)= x(p) + ( tf (p) + sg(p) ) N(p). For ε> sufficiently small, the function X may be seen as a variation of x fixing s or fixing t, with X(p,, ) = x(p).letv(t,s)be the volume of the surface X(,t,s): R 3 and consider the equation V(t,s)= c, where c is a constant. By (2.6), V(t,s) s = (t,s)=(,) gd. The implicit function theorem guarantees the existence of a diffeomorphism ϕ : I 1 I 2, where I 1 and I 2 are open intervals around, such that ϕ() = and V(t,ϕ(t))= c for all t I 1. This allows us to consider the volume preserving variation of x given by x t (p) = X(p,t,ϕ(t)). We show that ξ = fn. The derivative of V(t,ϕ(t))= c with respect to t yields = V t () + ϕ () V ( () = f + ϕ ()g ) d = ϕ () gd. s
7 2.1 The Variational Formula for the Area 19 This says that ϕ () =. Thus ξ(p) = x t t = ( f(p)+ ϕ ()g(p) ) N(p)= f (p)n(p). t= In the particular case that f = along, and since g = on,wehavex t (p) = x(p) along and thus the variation is admissible. Theorem Let x : R 3 be an immersion of a compact surface. Then x has constant mean curvature if and only if A () = for all volume preserving admissible variations. Proof Assume that the mean curvature H is constant. For a volume preserving variation of x, V (t) =. In addition, if the variation is admissible, ξ = on. Since H is constant, the expression of A () in (2.4)gives A () = 2H N,ξ d = 2HV () =. Conversely, assume that x is a critical point of the area for any volume preserving admissible variation. Let H = 1 Hd, A where A is the area of and define the function f = H H. Observe that H is constant if and only if f =. By contradiction, assume that at an interior point, f. As fd =, the sets + ={p int() : f(p)>} and ={p int() : f(p)<} are nonempty. Fix points p + +, p and consider the corresponding bump functions ϕ +,ϕ : R, that is, smooth nonnegative functions with supp(ϕ + ) +, supp(ϕ ) and ϕ + (p + ) = ϕ (p ) = 1. In particular, ϕ +,ϕ = on.let α + = ϕ + fd>, α = ϕ fd< and λ> be the real number such that α + + λα =. Define ϕ = ϕ + + λϕ.this nonzero function satisfies ϕ onint(), ϕ = on and ϕf d = ϕ + fd+ λ ϕ fd=. (2.7) + From the preceding lemma, there exists an admissible variation of x that preserves the volume and whose variational vector field is ξ = ϕf N. Then (2.4) and (2.7)now give = A () = 2 Hϕf d = 2 (H H )ϕf d = 2 ϕf 2 d.
8 2 2 Surfaces with Constant ean Curvature Thus ϕf 2 = on. However, at the point p +, (ϕf ) 2 (p + ) = f(p + ) 2 >, a contradiction. For cmc graphs, we have: Proposition Let Ω R 2 be a bounded domain and let be a compact cmc graph on Ω. Then minimizes the area among all graphs spanning and with the same volume as. Proof Suppose that is an H graph of a function u defined on Ω and let be another graph with = and the same volume as. Then determines an oriented 3domain W R 3 with zero volume V because the volumes of and agree. On W define the vector field Y(x,y,z) = N(x,y,u(x,y)), where N is the unit normal field of according to (2.2). We compute the divergence of Y. Taking into account (1.5) we see that ( ) ( ) ( ) u x u y 1 Div(Y ) = x + y + z 1 + u u u 2 u = div = 2H. 1 + u 2 The divergence theorem gives = 2HV = W = area() + Y,N d, Div(Y ) = Y,N d + Y,N d where N is the unit normal of pointing outwards from W. Hence, and as Y,N 1, we conclude area() = Y,N d d = area ( ). In fact, a more general result asserts that a minimal graph over a convex domain is areaminimizing among all compact surfaces with the same boundary [Fed69, or95]. Since a surface is locally the graph of a function defined in a convex domain, then we conclude that a minimal surface locally minimizes area. There exists another variational characterization of a surface with constant mean curvature using Lagrange multipliers. Given a (not necessarily volume preserving) admissible variation X and λ R, define the functional J λ as J λ (t) = A(t) 2λV (t), t ( ε, ε). (2.8)
9 2.1 The Variational Formula for the Area 21 By (2.4) and (2.6), J λ () = 2 (H λ) N,ξ d. (2.9) Theorem Let x : R 3 be an immersion of a compact surface. Then x has constant mean curvature H if and only if J H () = for all admissible variations. Proof If x has constant mean curvature H,takeλ = H in (2.9). To prove the converse, assume that there exists a λ R such that J λ () = for any admissible variation. In particular, it holds for any volume preserving admissible variation {x t }, and since λ is a constant, we have = J λ () = A () 2λV () = A (). Since A () = holds for all volume preserving admissible variation, we apply Theorem concluding that H is constant. This characterization of a cmc surface is related to the Plateau problem (1.2), where the solutions are obtained by minimizing D H in a suitable space of immersions from a disk into R 3, as was remarked in Chap. 1. Comparing the expressions of J λ and D H in (2.8) and (1.4) respectively, the area integral is replaced by the Dirichlet integral and the volume V by its formulation for a parametric surface. Among all critical points of the area, we consider those that are local minimizers. Then it is natural to study the second variation of the area because for a surface of least area, the second derivative A () is not negative. Since a surface with constant mean curvature is characterized in variational terms by Theorems and 2.1.9, there are two different notions of stability. Definition Let be a compact surface and let x : R 3 be an immersion of constant mean curvature H. 1. The immersion x is said to be stable if A () for all volume preserving admissible variations. 2. The immersion x is said strongly stable if J H () for all admissible variations. With respect to the first definition, some authors prefer to use the term volume preserving stable rather than stable. Proposition (Second variation for the area) Let be a compact surface and let x : R 3 be an immersion of constant mean curvature H. If {x t } is a volume preserving admissible variation with f = N,ξ, then A () = f ( f + σ 2 f ) d. (2.1) Here denotes the LaplacianBeltrami operator on.
10 22 2 Surfaces with Constant ean Curvature For a proof, see Corollary A..4 in Appendix A. The term in the parentheses of (2.1), namely, L(f ) = f + σ 2 f, is called the Jacobi operator of the immersion. As a consequence, the solutions of the isoperimetric problem are stable because they are minimizers of the area. Similarly, the formula for the second variation of the function J H is J H () = f ( f + σ 2 f ) d, for all admissible variation of the immersion. Here the function f only satisfies f = along. Let f be a smooth function on with f = on. Since div(f f)= f f+ f 2, the divergence theorem changes the expression of A () into A ( () = f 2 σ 2 f 2) d. (2.11) This allows us to extend the righthand side of (2.11) as a quadratic form I in the Sobolev space H 1,2 (), the completion of C () in L2 (): I : H 1,2 () R, I(f)= ( f 2 σ 2 f 2) d, where now f denotes the weak gradient of f. Therefore, a surface is: 1. stable if I(f) for all f H 1,2 () such that fd= ; 2. strongly stable if I(f) for all f H 1,2 (). A first example of a stable surface is the sphere. Proposition A round sphere is stable. Proof Assume without loss of generality that the sphere is S 2. Consider the spectrum of the Laplacian operator. The first eigenvalue is λ 1 = and the eigenfunctions are the constant functions. The second eigenvalue is λ 2 = 2[CH89]. By the Rayleigh characterization of λ 2, {S 2 = λ 2 = min 2 f 2 ds 2 S 2 f 2 ds 2 : f C ( S 2) }, fds 2 =. S 2 Hence S 2 f 2 ds 2 2 S 2 f 2 ds 2 for all differentiable function f with fd=. Since σ 2 = 2onS 2, this proves the stability of S 2. Proposition A planar disk and a spherical cap are stable. oreover, asmall spherical cap and a hemisphere are strongly stable but a large spherical cap is not strongly stable.
11 2.1 The Variational Formula for the Area 23 Proof If is a planar disk, then σ 2 = and I(f)= f 2 d, showing that is strongly stable. Consider now a spherical cap. Without loss of generality, assume that the radius of the spherical cap is 1. Denote by S + a hemisphere of S 2. We use the spectrum of the Laplacian with Dirichlet conditions, that is, the solutions of the eigenvalue problem f + λf = on, f = on. The first eigenvalue for the Dirichlet problem in S + is λ 1 (S + ) = 2. Now we employ the monotonicity property of λ 1 :if 1 2, then λ 1 ( 1 )>λ 1 ( 2 ) [CH89]. 1. Consider f C () with f = on and fd=. Extending f to S2 by, we obtain a function f H 1,2 (S 2 ) with S 2 fds 2 =. As S 2 is stable by the preceding proposition, I(f)= I( f). 2. Since a small spherical cap is included in a hemisphere S +, λ 1 () > λ 1 (S + ) = 2. Thus if is a small spherical cap or a hemisphere, the variational characterization of λ 1 () gives 2 λ 1 () f 2 d f 2 d for all f C (). As σ 2 = 2on, we conclude I(f). For a large spherical cap, λ 1 () < λ 1 (S + ) = 2. If f is an eigenfunction of λ 1 (), then f 2 d f 2 d = λ 1() < 2, so I(f)< and is not strongly stable. As we observe in the above proof, strongly stability is related to the eigenvalue problem associated with the Jacobi operator L = + σ 2, that is, { L(f ) + λf = on f = on. (2.12) The operator L is elliptic and thus its spectrum has many properties (see Lemma 8.1.3). For example, the first eigenvalue λ 1 (L) is characterized by { λ 1 (L) = min fl(f)d } f 2 d : f C (), f = on. Then we have immediately from (2.1): Corollary A compact cmc surface is strongly stable if and only if λ 1 (L).
12 24 2 Surfaces with Constant ean Curvature 2.2 The Hopf Differential In this section we associate to each cmc surface a holomorphic 2form, the socalled Hopf differential, that informs us about the distribution of the umbilical points on the surface. Let x : R 3 be an immersion of an orientable surface. We use the classical notation {E,F,G} and {e,f,g} for the coefficients of the first and second fundamental forms, respectively, in local coordinates x = x(u,v). Consider conformal coordinates (u, v) defined on an open subset V of, i.e., Take the Gauss map E = x u,x u =G = x v,x v, F = x u,x v =. N = x u x v x u x v, where is the cross product of R 3. The first and the second fundamental forms are, respectively,, = E ( du 2 + dv 2), σ = edu 2 + 2fdudv+ gdv 2, where e = N,x uu, f = N,x uv, g= N,x vv. The mean curvature H is given by H = e + g 2E. (2.13) In terms of the Christoffel symbols, the second derivatives of x are: On the other hand, x uu = E u 2E x u E v 2E x v + en x uv = E v 2E x u + E u 2E x v + fn (2.14) x uu = E u 2E x u + E v 2E x v + gn. N u = e E x u f E x v, N v = f E x u g E x v. (2.15) Using (2.13), (2.14) and (2.15), the Codazzi equations are e v f u = N v,x uu N u,x uv = E v 2E (e + g) = E vh, f v g u = N v,x uv N u,x vv = E u 2E (e + g) = E uh.
13 2.2 The Hopf Differential 25 By differentiating 2EH = e + g with respect to u and v,wehave 2E u H + 2EH u = e u + g u, 2E v H + 2EH v = e v + g v. With both expressions, the Codazzi equations now read as (e g) u + 2f v = 2EH u, (e g) v 2f u = 2EH v, (2.16) respectively. Let us introduce the complex notation z = u + iv, z = u iv and Define Equations (2.16) are then simplified as z = 1 2 ( u i v ), z = 1 2 ( u + i v ). Φ(z, z) = e g 2if. Φ z = EH z. (2.17) We point out that the zeroes of Φ are the umbilical points of the immersion since Φ(p) = if and only if e = g and f = atp. We express Φ as follows. Let us consider the derivatives x z and N z : Then and thus x z = 1 2 (x u ix v ), N z = 1 2 (N u in v ). x z,n z = 1 4 (e g 2if ) = 1 Φ(z, z), (2.18) 4 Φ(z, z) = 4 x z,n z. We study Φ under a change of conformal coordinates w = h(z), where h is a holomorphic function. Then x z = h (z)x w, N z = h (z)n w and Hence Φ(z, z) = 4 x z,n z = 4h (z) 2 x w,n w =h (z) 2 Φ(w, w). Φ(w, w)dw 2 = Φ(w, w)h (z) 2 dz 2 = Φ(z, z)dz 2. This equality means that Φdz 2 defines a global quadratic differential form on the surface. Definition The differential form Φdz 2 is called the Hopf differential.
14 26 2 Surfaces with Constant ean Curvature Theorem A conformal immersion x : R 3 has constant mean curvature if and only if Φ(dz) 2 is holomorphic. In such case, either the set of umbilical points is formed by isolated points, or the immersion is umbilical. Proof Given a conformal parametrization x(u,v), Eq.(2.17) givesφ z =, which is equivalent to saying that Φ is holomorphic on V. Thus the umbilical points agree with the zeroes of a holomorphic function. This means either Φ = onv or the umbilical points are isolated. In the first case, an argument of connectedness proves that the set of umbilical points is an open and closed set of and so is an umbilical surface. Theorem is also valid in hyperbolic space H 3 and for the sphere S 3. A direct consequence is the Hopf theorem [Hop83]: Theorem (Hopf) The only closed cmc surface of genus in the space forms R 3, H 3 and S 3 is the standard sphere. Proof Since the genus of is zero, the uniformization theorem says that its conformal structure is conformally equivalent to the usual structure of C. This is defined by the parametrizations z in C and w = 1/z in C {}. The intersection domain of both charts is C {} and in this open set, the Hopf differential Φ is Φ(z) = w (z) 2 Φ(w) = 1 z 4 Φ(w). It follows that ( ) 1 lim Φ(z) = lim z z z 4 Φ(w = ) =. This shows that by writing Φ = Φ(z) in terms of the parametrization z on C, Φ can be extended to by letting Φ( ) =. Therefore Φ is a bounded holomorphic function on C. Liouville s theorem asserts that the only bounded holomorphic functions on C are constant. As Φ( ) =, then Φ = onc and all points are umbilical. Finally, the only umbilical closed surface in a space form is the sphere. 2.3 Elliptic Equations for cmc Surfaces Let x : R 3 be an immersion of a surface and let N be the Gauss map. Denote by X() the space of tangent vector fields on. Recall the Gauss and Weingarten formulae: X Y = XY + σ(x,y)n, (2.19) X N = A NX = AX, σ (X, Y ) = AX, Y, (2.2)
15 2.3 Elliptic Equations for cmc Surfaces 27 for X, Y X().Here is the usual derivation of R 3, is the induced connection on and A is the Weingarten map. We calculate the Laplacian of the position vector x and the Gauss map N. In order to compute these Laplacians, we use the fact that, fixing p, there exists a geodesic frame around p, that is, an orthonormal frame {e 1,e 2 } around p such that at p, ( ei e j ) p = (for a proof see, for instance, [Car92, Chv94]). Then ( ei e j ) p is orthogonal to at p and if f is a smooth function on, the Laplacian of f is f (p) = 2 e i e i, f = 2 ( e i ei (f ) ). (2.21) The next result is valid for any immersion without the need that H is constant. Proposition Let x : R 3 be an immersion of a surface. If a R 3, then x,a =2H N,a (2.22) x 2 = 4 + 4H N,x. (2.23) Proof Fix p and let {e 1,e 2 } be a geodesic frame around p. Using(2.19) and (2.21), we obtain x,a = = 2 ( e i ei x,a ) = 2 e i e i,a = 2 σ(e i,e i ) N,a =2H N,a. 2 ei e i,a Equation (2.23) derives from (2.22) and the properties of the Laplacian. Indeed, let {a 1,a 2,a 3 } be an orthonormal basis of R 3.Letx i = x,a i and N i = N,a i.as x i 2 = 1 N 2 i,wehave x 2 = 3 x i x i x i 2 = 4H 3 x i N i ( ) 1 N 2 i = 4H N,x +4. Now assume that the mean curvature H is constant. Proposition Let x : R 3 be an immersion with constant mean curvature. Then N,a + σ 2 N,a =. (2.24) N,x = 2H σ 2 N,x. (2.25)
16 28 2 Surfaces with Constant ean Curvature Proof Fix p and let {e 1,e 2 } be as above. Using (2.19) and (2.2) and because 2H = trace(a), we know that 2H = 2 2 Ae i,e i = e i N,e i is constant on. Thus for j {1, 2} we find that = e j ( 2 = e i N,e i ) = 2 ej e 2 i N,e i + ei N, e j e i 2 ei e 2 j N,e i = e i ej N,e i. (2.26) Now we compute the Laplacian of N,a using (2.21): N,a = = = 2 e i ei N,a = 2 ( e i ei N,e j a,ej ) i,j=1 2 ( e i ej N,e i a,ej ) i,j=1 2 i,j=1 e i ( ej N,e i ) a,ej + 2 ( = ej N,e i ei a,e j ) = = i,j=1 2 ( ej N,e i ei a,e j ) i,j=1 2 ( ) ej N,e i a, ei e j i,j=1 2 σ(e i,e j ) 2 N,a = σ 2 N,a. i,j=1 We have used in (*) that v N = Av is a selfadjoint endomorphism; in the step (**) we apply (2.26). As in the proof of (2.23) and for the computation of the Laplacian of N,x, we express N,x = 3 N i x i with respect to an orthonormal basis of R 3 and use the properties of the Laplacian. Equations (2.22) and (2.24) generalize to the other space forms. Denote by 3 (c) the space forms H 3, R 3 or S 3 if c = 1, or 1, respectively. We view the threedimensional sphere S 3 as a submanifold of R 4 and the hyperbolic space H 3 as a submanifold of the 4dimensional Lorentzinkowski space L 4 (see Chap. 1). We have [KKS92, Rsb93]:
17 2.3 Elliptic Equations for cmc Surfaces 29 Proposition Let x : 3 (c) be an immersion of a surface and a R 4. Then x,a = 2c x,a +2H N,a. (2.27) If, in addition, the mean curvature H is constant, then N,a =2cH x,a σ 2 N,a. (2.28) Equations (2.22), (2.23), (2.24), (2.25) involve the Laplacian operator and thus are elliptic. oreover, the last two equations have been obtained using the property that the mean curvature is constant. This justifies the title of this section. Once we compute these Laplacians, we shall obtain some geometric results for a given cmc surface. The key ingredient is that for a linear elliptic equation, such as the equation for the Laplacian operator, there is a maximum principle. In our context of compact surfaces, if f is a smooth function on such that f (resp. ), then max f = max f (resp. min f = min f ) and if f attains a maximum (resp. minimum) at some interior point of, then f is constant [GT1]. The first result provides an estimate of the height of a compact cmc graph, usually called the Serrin estimate in the literature. This will be achieved by forming an appropriate linear combination of the functions x,a and N,a. We first need the following auxiliary result: Lemma Let be an H surface of R 3 and a R 3. Consider the function f = H x,a + N,a. Then f is constant if and only if is umbilical. Proof It is straightforward that if is an opensubsetof aplaneor asphere, then f is constant. Assume now that f is constant. By contradiction, suppose p is not umbilical. Then there exists an orthonormal frame {e 1,e 2 } of principal directions in an open set V around p, that is, e i N = κ i e i on V. Then = e i (f ) = (H κ i ) e i,a, i = 1, 2. Since there do not exist umbilical points, H κ i, i = 1, 2. We deduce that e i,a = in an open subset of V, i = 1, 2. This means that N = a in V and is part of a plane. In particular, p is an umbilical point, a contradiction. The proof of the next theorem has its origin in the use of Bonnet s parallel surfaces by H. Liebmann and later by J. Serrin [Ser69a]. Here we follow W.H. eeks III in [ee88]. Further generalizations can be found in [Lop7]. Theorem Let Ω R 2 be a bounded domain and H R. Let be an H  graph of R 3 of a function u C 2 (Ω) C (Ω). Let e 3 = (,, 1) and we orient so that N,e If H>, then min Ω u 1 H u max Ω u.
18 3 2 Surfaces with Constant ean Curvature In addition, if the equality holds at a point on the lefthand side, then is part of a sphere of radius 1/H. 2. If H<, then min Ω u u max Ω u 1 H. In addition, if the equality holds at a point on the righthand side, then is part of a sphere of radius 1/H. 3. If H =, then min Ω u u max Ω u. In the particular case H and u = along Ω, we have u 1/ H and equality attains at a point if and only if Ω is a round disk and is a hemisphere Proof Instead of working with the function u, we consider the surface as an embedding x : R 3. Recall that u is the height function u = x,e 3.As is a cmc surface and the boundary is an embedded analytic curve, then extends analytically across [ul2]. Suppose H. We give the proof for the case H> (the proof is similar if H<). By (2.22), x,e 3 > and by the maximum principle, x,e 3 max x,e 3. This proves the right inequality of item (1). Combining (2.22) and (2.24), jointly σ 2 2H 2, we obtain ( H x,e 3 + N,e 3 ) = ( 2H 2 σ 2) N,e 3. We apply the maximum principle: since N,e 3, we have ( H x,e 3 + N,e 3 min H x,e3 + N,e 3 ) H min x,e 3. As H>, x,e 3 N,e 3 H + min x,e 3 1 H + min x,e 3, (2.29) proving the left inequality of item (1). If at a point p, x(p),e 3 = 1/H + min x,e 3, then we conclude by (2.29) that N(p) = a and p int(). Then the function f = H x,e 3 + N,e 3 attains a minimum at an interior point and this implies that f is a constant function. Lemma proves that is umbilical and as H, is part of a sphere. Assume H = and u = on. Then (2.22) yields x,e 3 = and the estimates follow from the maximum principle. If H, u = on and at a point, u =1/ H, then is part of a sphere with planar boundary. But the estimate is sharp if is a hemisphere. Observe that for small values of H, the above estimates are not good in the following sense. Assume that u = on Ω. Then the graph of u = onω is a minimal surface and for values near to H =, there exist H graphs on Ω spanning
19 2.3 Elliptic Equations for cmc Surfaces 31 Ω. By continuity, these H graphs are close to the plane z = ofr 3 and thus their heights are small. However, the number 1/ H is very large. When the domain is not bounded, a generalization of the estimates for H graphs will be given in Theorem and Corollary Remark Similar arguments to those used in Theorem will be used later in different contexts to obtain height estimates provided we have elliptic equations such as (2.22) and (2.24) in order to use the maximum principle. Here we recall two settings. First, consider a hypersurface n in a space form n+1 (c). Denote by κ 1,...,κ n the principal curvatures of and let S r = i 1 < <i r κ i1 κ ir.the rmean curvature H r of is defined by ( ) m H r r = S r. We remark that H 1 coincides with the mean curvature H of, n(n 1)H 2 is the scalar curvature and H n is the GaussKronecker curvature of. H. Rosenberg obtained height estimates for a compact graph n on a geodesic hyperplane of R n+1 or H n+1 provided for some r, H r+1 is a positive constant [Rsb93]. The second setting is the class of compact surfaces in Euclidean space with positive constant Gauss curvature K. If is a such surface, the second fundamental form σ defines a Riemannian metric on. With respect to this metric, we compute the Laplacian of the height function and the Gauss map, obtaining elliptic equations by the positivity of K [Ga]. Then one can obtain height estimates for a graph with constant Gauss curvature K> on a domain of a plane or a radial graph on a domain of a sphere [Gb, Lop3b]. The second result that we derive is the Jellet theorem [Jel53], which refers to starshaped surfaces. A starshaped surface in R 3 is a compact embedded surface such that 3domain W R 3 that it bounds is starshaped in the affine sense, that is, there exists a point p W such that the segment joining p with any point of W is included in W. Theorem (Jellet) The only starshaped surface in R 3 with constant mean curvature is the round sphere. Proof Let be a starshaped cmc surface and suppose after a rigid motion that p is the origin of coordinates O = (,, ). The property of being starshaped is equivalent to the property that we cannot draw a straight line from O which is tangent to. This means that the support function based on the point O has constant sign on. Consider the orientation N that points towards W and denote by x the position vector of. Then the support function is N,x and because N is the inward orientation, we see that N,x < on. We apply the divergence theorem in (2.23). As H is constant, we find that A + H N,x d =, (2.3)
20 32 2 Surfaces with Constant ean Curvature where A is the area of. On the other hand, the divergence theorem in (2.25) yields = 2AH + ( = 2H A + H σ 2 N,x d 2AH + 2H 2 ) N,x d =, N,x d wherewehaveusedin( ) that σ 2 2H 2 and (2.3)in( ). Equality implies that σ 2 = 2H 2 on. Then is umbilical and this proves the theorem. Jellet s theorem, formulated in 1853, may be viewed as a precursor of the Hopf theorem established in 1951 [Hop83] because the genus of a starshaped surface is zero. Following this theme, another generalization of Theorem is Alexandrov s theorem, proven a century later, which asserts that a closed embedded cmc surface is a round sphere [Ale56, Ale62]. In this case, a starshaped surface is embedded. A third application of the computations of the above Laplacians is the following result. Theorem Planar disks and small spherical caps are the only cmc graphs spanning a circle. As we shall see in the next chapter, this result is trivial by the tangency principle (see Theorem 3.2.6). However, the purpose here is to give a proof that does not involve the tangency principle but uses Eqs. (2.22) and (2.24) [Lop9]. In a similar context and for a closed cmc surface, R. Reilly obtained another proof of Alexandrov s theorem without the use of the maximum principle thanks to a combination of the inkowski formulae [Rei82]. Proof Let Γ R 2 {} be a circle of radius r> about the origin and denote by Ω the domain bounded by Γ. Consider a compact H surface which is a graph of u defined on Ω and with u = on Ω. Then u satisfies (1.5) where H is computed by the unit normal vector given in (2.2). Then N,e 3 > on, where e 3 = (,, 1). Let α be the parametrization of Γ such that α ν = N, where ν is the inner unit conormal vector of along Γ. We know that α = α/r 2. Since N,e 3 > on, we see that α α = re 3 and ν,e 3 = N α,e 3 = N,α 1 e 3 = N,α. (2.31) r Using (1.5), we obtain 2πr 2 u H =, n = Ω 1 + u 2 ν,e 3 ds, (2.32)
Inner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 34 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
More informationReference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3.
5 Potential Theory Reference: Introduction to Partial Differential Equations by G. Folland, 995, Chap. 3. 5. Problems of Interest. In what follows, we consider Ω an open, bounded subset of R n with C 2
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationThe Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
More informationA HOPF DIFFERENTIAL FOR CONSTANT MEAN CURVATURE SURFACES IN S 2 R AND H 2 R
A HOPF DIFFERENTIAL FOR CONSTANT MEAN CURVATURE SURFACES IN S 2 R AND H 2 R UWE ABRESCH AND HAROLD ROSENBERG Dedicated to Hermann Karcher on the Occasion of his 65 th Birthday Abstract. A basic tool in
More informationFigure 2.1: Center of mass of four points.
Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would
More informationMean Value Coordinates
Mean Value Coordinates Michael S. Floater Abstract: We derive a generalization of barycentric coordinates which allows a vertex in a planar triangulation to be expressed as a convex combination of its
More informationA PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of RouHuai Wang
A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of RouHuai Wang 1. Introduction In this note we consider semistable
More informationProperties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a nonnegative BMOfunction w, whose reciprocal is also in BMO, belongs to p> A p,and
More informationClassification of Cartan matrices
Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms
More informationIf Σ is an oriented surface bounded by a curve C, then the orientation of Σ induces an orientation for C, based on the RightHandRule.
Oriented Surfaces and Flux Integrals Let be a surface that has a tangent plane at each of its nonboundary points. At such a point on the surface two unit normal vectors exist, and they have opposite directions.
More informationChapter 5. Banach Spaces
9 Chapter 5 Banach Spaces Many linear equations may be formulated in terms of a suitable linear operator acting on a Banach space. In this chapter, we study Banach spaces and linear operators acting on
More informationSOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve
SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives
More informationPractice Final Math 122 Spring 12 Instructor: Jeff Lang
Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6
More informationExample 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x
Lecture 4. LaSalle s Invariance Principle We begin with a motivating eample. Eample 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum Dynamics of a pendulum with friction can be written
More informationIn memory of Lars Hörmander
ON HÖRMANDER S SOLUTION OF THE EQUATION. I HAAKAN HEDENMALM ABSTRAT. We explain how Hörmander s classical solution of the equation in the plane with a weight which permits growth near infinity carries
More informationMetrics on SO(3) and Inverse Kinematics
Mathematical Foundations of Computer Graphics and Vision Metrics on SO(3) and Inverse Kinematics Luca Ballan Institute of Visual Computing Optimization on Manifolds Descent approach d is a ascent direction
More informationBasic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
More information1 3 4 = 8i + 20j 13k. x + w. y + w
) Find the point of intersection of the lines x = t +, y = 3t + 4, z = 4t + 5, and x = 6s + 3, y = 5s +, z = 4s + 9, and then find the plane containing these two lines. Solution. Solve the system of equations
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More informationLinear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University
Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone
More informationThe Stekloff Problem for Rotationally Invariant Metrics on the Ball
Revista Colombiana de Matemáticas Volumen 47(2032, páginas 890 The Steklo Problem or Rotationally Invariant Metrics on the Ball El problema de Steklo para métricas rotacionalmente invariantes en la bola
More informationSection 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
More informationAn Introduction to the NavierStokes InitialBoundary Value Problem
An Introduction to the NavierStokes InitialBoundary Value Problem Giovanni P. Galdi Department of Mechanical Engineering University of Pittsburgh, USA Rechts auf zwei hohen Felsen befinden sich Schlösser,
More informationEXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL
EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL Exit Time problems and Escape from a Potential Well Escape From a Potential Well There are many systems in physics, chemistry and biology that exist
More informationF = 0. x ψ = y + z (1) y ψ = x + z (2) z ψ = x + y (3)
MATH 255 FINAL NAME: Instructions: You must include all the steps in your derivations/answers. Reduce answers as much as possible, but use exact arithmetic. Write neatly, please, and show all steps. Scientists
More informationCritical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.
Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =
More informationLEARNING OBJECTIVES FOR THIS CHAPTER
CHAPTER 6 Woman teaching geometry, from a fourteenthcentury edition of Euclid s geometry book. Inner Product Spaces In making the definition of a vector space, we generalized the linear structure (addition
More informationSystems with Persistent Memory: the Observation Inequality Problems and Solutions
Chapter 6 Systems with Persistent Memory: the Observation Inequality Problems and Solutions Facts that are recalled in the problems wt) = ut) + 1 c A 1 s ] R c t s)) hws) + Ks r)wr)dr ds. 6.1) w = w +
More information(2) the identity map id : S 1 S 1 to the symmetry S 1 S 1 : x x (here x is considered a complex number because the circle S 1 is {x C : x = 1}),
Chapter VI Fundamental Group 29. Homotopy 29 1. Continuous Deformations of Maps 29.A. Is it possible to deform continuously: (1) the identity map id : R 2 R 2 to the constant map R 2 R 2 : x 0, (2) the
More informationChapter 4. Electrostatic Fields in Matter
Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the
More informationClassification and Structure of Periodic Fatou Components
Classification and Structure of Periodic Fatou Components Senior Honors Thesis in Mathematics, Harvard College By Benjamin Dozier Adviser: Sarah Koch 3/19/2012 Abstract For a given rational map f : Ĉ Ĉ,
More informationMA651 Topology. Lecture 6. Separation Axioms.
MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples
More information3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.
Exercise 1 1. Let A be an n n orthogonal matrix. Then prove that (a) the rows of A form an orthonormal basis of R n. (b) the columns of A form an orthonormal basis of R n. (c) for any two vectors x,y R
More informationThe Inversion Transformation
The Inversion Transformation A nonlinear transformation The transformations of the Euclidean plane that we have studied so far have all had the property that lines have been mapped to lines. Transformations
More informationEstimating the Average Value of a Function
Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and
More informationReading material on the limit set of a Fuchsian group
Reading material on the limit set of a Fuchsian group Recommended texts Many books on hyperbolic geometry and Kleinian and Fuchsian groups contain material about limit sets. The presentation given here
More informationGeometry of Nonholonomic Systems
Geometry of Nonholonomic Systems A. Bellaïche F. Jean J.J. Risler This is the second chapter of the book: Robot Motion Planning and Control JeanPaul Laumond (Editor) Laboratoire d Analye et d Architecture
More information( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those
1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make
More informationNotes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand
Notes V General Equilibrium: Positive Theory In this lecture we go on considering a general equilibrium model of a private ownership economy. In contrast to the Notes IV, we focus on positive issues such
More informationExam 1 Sample Question SOLUTIONS. y = 2x
Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can
More informationA number field is a field of finite degree over Q. By the Primitive Element Theorem, any number
Number Fields Introduction A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number field K = Q(α) for some α K. The minimal polynomial Let K be a number field and
More informationIRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction
IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible
More informationOn using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems
Dynamics at the Horsetooth Volume 2, 2010. On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems Eric Hanson Department of Mathematics Colorado State University
More informationLECTURE III. BiHamiltonian chains and it projections. Maciej B laszak. Poznań University, Poland
LECTURE III BiHamiltonian chains and it projections Maciej B laszak Poznań University, Poland Maciej B laszak (Poznań University, Poland) LECTURE III 1 / 18 BiHamiltonian chains Let (M, Π) be a Poisson
More informationLecture 4 DISCRETE SUBGROUPS OF THE ISOMETRY GROUP OF THE PLANE AND TILINGS
1 Lecture 4 DISCRETE SUBGROUPS OF THE ISOMETRY GROUP OF THE PLANE AND TILINGS This lecture, just as the previous one, deals with a classification of objects, the original interest in which was perhaps
More informationSome Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.
Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,
More informationYou know from calculus that functions play a fundamental role in mathematics.
CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.
More informationOn the Eigenvalues of Integral Operators
Çanaya Üniversitesi FenEdebiyat Faültesi, Journal of Arts and Sciences Say : 6 / Aral 006 On the Eigenvalues of Integral Operators Yüsel SOYKAN Abstract In this paper, we obtain asymptotic estimates of
More informationPROOFS BY DESCENT KEITH CONRAD
PROOFS BY DESCENT KEITH CONRAD As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method... that I called the
More informationDEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x
Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of
More informationA Modern Course on Curves and Surfaces. Richard S. Palais
A Modern Course on Curves and Surfaces Richard S. Palais Contents Lecture 1. Introduction 1 Lecture 2. What is Geometry 4 Lecture 3. Geometry of InnerProduct Spaces 7 Lecture 4. Linear Maps and the Euclidean
More informationTHE KADISONSINGER PROBLEM IN MATHEMATICS AND ENGINEERING: A DETAILED ACCOUNT
THE ADISONSINGER PROBLEM IN MATHEMATICS AND ENGINEERING: A DETAILED ACCOUNT PETER G. CASAZZA, MATTHEW FICUS, JANET C. TREMAIN, ERIC WEBER Abstract. We will show that the famous, intractible 1959 adisonsinger
More informationTHE ISOPERIMETRIC PROBLEM
THE ISOPERIMETRIC PROBLEM ANTONIO ROS Contents 1. Presentation 1 1.1. The isoperimetric problem for a region 2 1.2. Soap bubbles 3 1.3. Euclidean space, slabs and balls 5 1.4. The isoperimetric problem
More informationGROUPS ACTING ON A SET
GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for
More informationRolle s Theorem. q( x) = 1
Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question
More informationBX in ( u, v) basis in two ways. On the one hand, AN = u+
1. Let f(x) = 1 x +1. Find f (6) () (the value of the sixth derivative of the function f(x) at zero). Answer: 7. We expand the given function into a Taylor series at the point x = : f(x) = 1 x + x 4 x
More informationA SURGERY RESULT FOR THE SPECTRUM OF THE DIRICHLET LAPLACIAN. Keywords: shape optimization, eigenvalues, Dirichlet Laplacian
A SURGERY RESULT FOR THE SPECTRUM OF THE DIRICHLET LAPLACIA DORI BUCUR AD DARIO MAZZOLEI Abstract. In this paper we give a method to geometrically modify an open set such that the first k eigenvalues of
More informationA UNIQUENESS RESULT FOR THE CONTINUITY EQUATION IN TWO DIMENSIONS. Dedicated to Constantine Dafermos on the occasion of his 70 th birthday
A UNIQUENESS RESULT FOR THE CONTINUITY EQUATION IN TWO DIMENSIONS GIOVANNI ALBERTI, STEFANO BIANCHINI, AND GIANLUCA CRIPPA Dedicated to Constantine Dafermos on the occasion of his 7 th birthday Abstract.
More informationOrthogonal Bases and the QR Algorithm
Orthogonal Bases and the QR Algorithm Orthogonal Bases by Peter J Olver University of Minnesota Throughout, we work in the Euclidean vector space V = R n, the space of column vectors with n real entries
More informationTHE CONGRUENT NUMBER PROBLEM
THE CONGRUENT NUMBER PROBLEM KEITH CONRAD 1. Introduction A right triangle is called rational when its legs and hypotenuse are all rational numbers. Examples of rational right triangles include Pythagorean
More informationOPRE 6201 : 2. Simplex Method
OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2
More informationTHE MINIMAL GENUS PROBLEM
THE MINIMAL GENUS PROBLEM TERRY LAWSON Abstract. This paper gives a survey of recent work on the problem of finding the minimal genus of an embedded surface which represents a twodimensional homology
More information8. Linear leastsquares
8. Linear leastsquares EE13 (Fall 21112) definition examples and applications solution of a leastsquares problem, normal equations 81 Definition overdetermined linear equations if b range(a), cannot
More informationThe cover SU(2) SO(3) and related topics
The cover SU(2) SO(3) and related topics Iordan Ganev December 2011 Abstract The subgroup U of unit quaternions is isomorphic to SU(2) and is a double cover of SO(3). This allows a simple computation of
More informationChapter 9 Unitary Groups and SU(N)
Chapter 9 Unitary Groups and SU(N) The irreducible representations of SO(3) are appropriate for describing the degeneracies of states of quantum mechanical systems which have rotational symmetry in three
More informationControllability and Observability of Partial Differential Equations: Some results and open problems
Controllability and Observability of Partial Differential Equations: Some results and open problems Enrique ZUAZUA Departamento de Matemáticas Universidad Autónoma 2849 Madrid. Spain. enrique.zuazua@uam.es
More informationAn optimal transportation problem with import/export taxes on the boundary
An optimal transportation problem with import/export taxes on the boundary Julián Toledo Workshop International sur les Mathématiques et l Environnement Essaouira, November 2012..................... Joint
More information04 Mathematics COSGFLD00403. Program for Licensing Assessments for Colorado Educators
04 Mathematics COSGFLD00403 Program for Licensing Assessments for Colorado Educators Readers should be advised that this study guide, including many of the excerpts used herein, is protected by federal
More informationCalderón problem. Mikko Salo
Calderón problem Lecture notes, Spring 2008 Mikko Salo Department of Mathematics and Statistics University of Helsinki Contents Chapter 1. Introduction 1 Chapter 2. Multiple Fourier series 5 2.1. Fourier
More informationComputer Animation and the Geometry of Surfaces in 3 and 4Space
Proceedings of the International Congress of Mathematicians Helsinki, 1978 Computer Animation and the Geometry of Surfaces in 3 and 4Space Thomas F. Banchoff Geometers have always used any available
More information26. Determinants I. 1. Prehistory
26. Determinants I 26.1 Prehistory 26.2 Definitions 26.3 Uniqueness and other properties 26.4 Existence Both as a careful review of a more pedestrian viewpoint, and as a transition to a coordinateindependent
More information4.1 Learning algorithms for neural networks
4 Perceptron Learning 4.1 Learning algorithms for neural networks In the two preceding chapters we discussed two closely related models, McCulloch Pitts units and perceptrons, but the question of how to
More informationSome Research Problems in Uncertainty Theory
Journal of Uncertain Systems Vol.3, No.1, pp.310, 2009 Online at: www.jus.org.uk Some Research Problems in Uncertainty Theory aoding Liu Uncertainty Theory Laboratory, Department of Mathematical Sciences
More informationOptimal Trajectories for Nonholonomic Mobile Robots
Optimal Trajectories for Nonholonomic Mobile Robots P. Souères J.D. Boissonnat This is the third chapter of the book: Robot Motion Planning and Control JeanPaul Laumond (Editor) Laboratoire d Analye et
More informationOSTROWSKI FOR NUMBER FIELDS
OSTROWSKI FOR NUMBER FIELDS KEITH CONRAD Ostrowski classified the nontrivial absolute values on Q: up to equivalence, they are the usual (archimedean) absolute value and the padic absolute values for
More informationChapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling
Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NPhard problem. What should I do? A. Theory says you're unlikely to find a polytime algorithm. Must sacrifice one
More informationNew insights on the meanvariance portfolio selection from de Finetti s suggestions. Flavio Pressacco and Paolo Serafini, Università di Udine
New insights on the meanvariance portfolio selection from de Finetti s suggestions Flavio Pressacco and Paolo Serafini, Università di Udine Abstract: In this paper we offer an alternative approach to
More informationCARTAN S GENERALIZATION OF LIE S THIRD THEOREM
CARTAN S GENERALIZATION OF LIE S THIRD THEOREM ROBERT L. BRYANT MATHEMATICAL SCIENCES RESEARCH INSTITUTE JUNE 13, 2011 CRM, MONTREAL In many ways, this talk (and much of the work it reports on) owes its
More informationTensor product of vector spaces
Tensor product of vector spaces Construction Let V,W be vector spaces over K = R or C. Let F denote the vector space freely generated by the set V W and let N F denote the subspace spanned by the elements
More informationGroup Theory. Contents
Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation
More informationINTEGRAL OPERATORS ON THE PRODUCT OF C(K) SPACES
INTEGRAL OPERATORS ON THE PRODUCT OF C(K) SPACES FERNANDO BOMBAL AND IGNACIO VILLANUEVA Abstract. We study and characterize the integral multilinear operators on a product of C(K) spaces in terms of the
More informationFixed Point Theorems in Topology and Geometry
Fixed Point Theorems in Topology and Geometry A Senior Thesis Submitted to the Department of Mathematics In Partial Fulfillment of the Requirements for the Departmental Honors Baccalaureate By Morgan Schreffler
More informationTreerepresentation of set families and applications to combinatorial decompositions
Treerepresentation of set families and applications to combinatorial decompositions BinhMinh BuiXuan a, Michel Habib b Michaël Rao c a Department of Informatics, University of Bergen, Norway. buixuan@ii.uib.no
More informationAn example of a computable
An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept
More informationOn a comparison result for Markov processes
On a comparison result for Markov processes Ludger Rüschendorf University of Freiburg Abstract A comparison theorem is stated for Markov processes in polish state spaces. We consider a general class of
More informationA Transmission Problem for EulerBernoulli beam with KelvinVoigt. Damping
Applied Mathematics & Information Sciences 5(1) (211), 1728 An International Journal c 211 NSP A Transmission Problem for EulerBernoulli beam with KelvinVoigt Damping C. A Raposo 1, W. D. Bastos 2 and
More informationBOUNDED COHOMOLOGY CHARACTERIZES HYPERBOLIC GROUPS
BOUNDED COHOMOLOGY CHARACTERIZES HYPERBOLIC GROUPS by IGOR MINEYEV (University of South Alabama, Department of Mathematics & Statistics, ILB 35, Mobile, AL 36688, USA) [Received June 00] Abstract A finitely
More informationBoundary value problems in complex analysis I
Boletín de la Asociación Matemática Venezolana, Vol. XII, No. (2005) 65 Boundary value problems in complex analysis I Heinrich Begehr Abstract A systematic investigation of basic boundary value problems
More information17.3.1 Follow the Perturbed Leader
CS787: Advanced Algorithms Topic: Online Learning Presenters: David He, Chris Hopman 17.3.1 Follow the Perturbed Leader 17.3.1.1 Prediction Problem Recall the prediction problem that we discussed in class.
More informationSUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by
SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples
More informationFixed Point Theorems For SetValued Maps
Fixed Point Theorems For SetValued Maps Bachelor s thesis in functional analysis Institute for Analysis and Scientific Computing Vienna University of Technology Andreas Widder, July 2009. Preface In this
More information3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions
3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions logconcave and logconvex functions
More informationSecondOrder Linear Differential Equations
SecondOrder Linear Differential Equations A secondorder linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1
More informationSymmetric planar non collinear relative equilibria for the Lennard Jones potential 3 body problem with two equal masses
Monografías de la Real Academia de Ciencias de Zaragoza. 25: 93 114, (2004). Symmetric planar non collinear relative equilibria for the Lennard Jones potential 3 body problem with two equal masses M. Corbera,
More informationSystem of First Order Differential Equations
CHAPTER System of First Order Differential Equations In this chapter, we will discuss system of first order differential equations. There are many applications that involving find several unknown functions
More informationU.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
More informationChapter 3 Nonlinear Model Predictive Control
Chapter 3 Nonlinear Model Predictive Control In this chapter, we introduce the nonlinear model predictive control algorithm in a rigorous way. We start by defining a basic NMPC algorithm for constant reference
More informationThe General Cauchy Theorem
Chapter 3 The General Cauchy Theorem In this chapter, we consider two basic questions. First, for a given open set Ω, we try to determine which closed paths in Ω have the property that f(z) dz = 0for every
More informationWHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
More information