Lecture 05: Mean-Variance Analysis & Capital Asset Pricing Model (CAPM)

Size: px
Start display at page:

Download "Lecture 05: Mean-Variance Analysis & Capital Asset Pricing Model (CAPM)"

Transcription

1 Lecture 05: Mean-Variance Analysis & Capital Asset Pricing Model (CAPM) Prof. Markus K. Brunnermeier Slide 05-1

2 Overview Simple CAPM with quadratic utility functions (derived from state-price beta model) Mean-variance preferences Portfolio Theory CAPM (intuition) CAPM Projections Pricing Kernel and Expectation Kernel Slide 05-2

3 Recall State-price Beta model Recall: E[R h ] - R f = β h E[R * - R f ] where β h := Cov[R *,R h ] / Var[R * ] very general but what is R * in reality? Slide 05-3

4 Simple CAPM with Quadratic Expected Utility 1. All agents are identical Expected utility U(x 0, x 1 ) = s π s u(x 0, x s ) m= 1 u / E[ 0 u] Quadratic u(x 0,x 1 )=v 0 (x 0 ) - (x 1 - α) 2 1 u = [-2(x 1,1 - α),, -2(x S,1 - α)] E[R h ] R f = - Cov[m,R h ] / E[m] = -R f Cov[ 1 u, R h ] / E[ 0 u] = -R f Cov[-2(x 1 - α), R h ] / E[ 0 u] = R f 2Cov[x 1,R h ] / E[ 0 u] Also holds for market portfolio E[R m ] R f = R f 2Cov[x 1,R m ]/E[ 0 u] Slide 05-4

5 Simple CAPM with Quadratic Expected Utility 2. Homogenous agents + Exchange economy x 1 = agg. endowment and is perfectly correlated with R m E[R h ]=R f + β h {E[R m ]-R f } Market Security Line N.B.: R * =R f (a+b 1 R M )/(a+b 1 R f ) in this case (where b 1 <0)! Slide 05-5

6 Overview Simple CAPM with quadratic utility functions (derived from state-price beta model) Mean-variance analysis Portfolio Theory (Portfolio frontier, efficient frontier, ) CAPM (Intuition) CAPM Projections Pricing Kernel and Expectation Kernel Slide 05-6

7 Definition: Mean-Variance Dominance & Efficient Frontier Asset (portfolio) A mean-variance dominates asset (portfolio) B if μ A μ B and σ A < σ Β or if μ A >μ B while σ A σ B. Efficient frontier: loci of all non-dominated portfolios in the mean-standard deviation space. By definition, no ( rational ) mean-variance investor would choose to hold a portfolio not located on the efficient frontier. Slide 05-7

8 Expected Portfolio Returns & Variance Expected returns (linear) μ p := E[r p ]=w j μ j,whereeachμ j = Variance P hj j hj µ σp 2 := Var[r p] = w 0 σ 2 Vw=(w 1 w 2 ) 1 σ 12 σ 21 σ2 2 = (w 1 σ w 2 σ 21 w 1 σ 12 + w 2 σ 2 2) µ w1 w 2 µ w1 w 2 = w1 2 σ2 1 + w2 2 σ2 2 +2w 1w 2 σ 12 0 since σ 12 σ 1 σ 2. recall that correlation coefficient [-1,1] Slide 05-8

9 Illustration of 2 Asset Case For certain weights: w 1 and (1-w 1 ) μ p = w 1 E[r 1 ]+ (1-w 1 ) E[r 2 ] σ 2 p = w 12 σ 12 + (1-w 1 ) 2 σ w 1 (1-w 1 )σ 1 σ 2 ρ 1,2 (Specify σ 2 p and one gets weights and μ p s) Special cases [w 1 to obtain certain σ R ] ρ 1,2 = 1 w 1 = (+/-σ p σ 2 ) / (σ 1 σ 2 ) ρ 1,2 = -1 w 1 = (+/- σ p + σ 2 ) / (σ 1 + σ 2 ) Slide 05-9

10 For ρ 1,2 = 1: σ p = w 1 σ 1 +(1 w 1 )σ 2 Hence, w 1 = ±σp σ2 σ 1 σ 2 μ p = w 1 μ 1 +(1 w 1 )μ 2 E[r 2 ] μ p E[r 1 ] σ 1 σ p σ 2 Lower part with is irrelevant The Efficient Frontier: Two Perfectly Correlated Risky Assets Slide 05-10

11 For ρ 1,2 = -1: σ p = w 1 σ 1 (1 w 1 )σ 2 μ p = w 1 μ 1 +(1 w 1 )μ 2 Hence, w 1 = ±σ p+σ 2 σ 1 +σ 2 E[r 2 ] σ 2 σ 1 +σ 2 μ 1 + σ 1 σ 1 +σ 2 μ 2 E[r 1 ] slope: μ 2 μ 1 σ 1 +σ 2 σ p slope: μ 2 μ 1 σ 1 +σ 2 σ p σ 1 σ 2 Efficient Frontier: Two Perfectly Negative Correlated Risky Assets Slide 05-11

12 For -1 < ρ 1,2 < 1: E[r 2 ] E[r 1 ] σ 1 σ 2 Efficient Frontier: Two Imperfectly Correlated Risky Assets Slide 05-12

13 For σ 1 = 0 E[r 2 ] μ p E[r 1 ] σ 1 σ p σ 2 The Efficient Frontier: One Risky and One Risk Free Asset Slide 05-13

14 Efficient Frontier with Eco 525: Financial Economics I n risky assets and one risk-free asset The Efficient Frontier: One Risk Free and n Risky Assets Slide 05-14

15 Mean-Variance Preferences U(μ p, σ p ) with U U μ p > 0, σ < 0 p 2 quadratic utility function (with portfolio return R) U(R) = a + b R + c R 2 vnm: E[U(R)] = a + b E[R] + c E[R 2 ] = a + b μ p + c μ p2 + c σ p 2 = g(μ p, σ p ) asset returns normally distributed R= j w j r j normal if U(.) is CARA certainty equivalent = μ p - ρ A /2σ 2 p (Use moment generating function) Slide 05-15

16 Optimal Portfolio: Two Fund Separation Price of Risk = = highest Sharpe ratio Optimal Portfolios of Two Investors with Different Risk Aversion Slide 05-16

17 Equilibrium leads to CAPM Portfolio theory: only analysis of demand price/returns are taken as given composition of risky portfolio is same for all investors Equilibrium Demand = Supply (market portfolio) CAPM allows to derive equilibrium prices/ returns. risk-premium Slide 05-17

18 The CAPM with a risk-free bond Eco 525: Financial Economics I The market portfolio is efficient since it is on the efficient frontier. All individual optimal portfolios are located on the half-line originating at point (0,r f ). The slope of Capital Market Line (CML):. E[ R p ] = R f + E[ R M σ ] M R f σ p E[ R M ] R f σ M Slide 05-18

19 The Capital Market Line Eco 525: Financial Economics I CML r M M r f j σ M σ p Slide 05-19

20 Proof of the CAPM relationship [old traditional derivation] Refer to previous figure. Consider a portfolio with a fraction 1 - α of wealth invested in an arbitrary security j and a fraction α in the market portfolio μ σ p 2 p = αμ M 2 = α σ + (1 α) μ As α varies we trace a locus which - passes through M (- and through j) - cannot cross the CML (why?) 2 M + (1 α) - hence must be tangent to the CML at M dμ p Tangency = = slope of the locus at M = dσ p α=1 = slope of CML = j 2 σ 2 j + 2α (1 α) σ jm μ M r f σ M Slide 05-20

21 slope of locus dμ p = = σ M dσ p α=1 = (μ M μ j )σ M σ 2 M σ jm = μ M r f at α =1 σ p = σ M slope of tangent! E[r j ]=μ j = r f + σ jm σ 2 M (μ M r f ) Do you see the connection to earlier state-price beta model? R * = R M Slide 05-21

22 The Security Market Line Eco 525: Financial Economics I E(r) E(r i ) SML E(r M ) r f slope SML = (E(r i )-r f ) /β i β M =1 β i β Slide 05-22

23 Overview Simple CAPM with quadratic utility functions (derived from state-price beta model) Mean-variance preferences Portfolio Theory CAPM (Intuition) CAPM (modern derivation) Projections Pricing Kernel and Expectation Kernel Slide 05-23

24 Projections States s=1,,s with π s >0 Probability inner product π-norm (measure of length) Slide 05-24

25 y shrink axes y x x x and y are π-orthogonal iff [x,y] π = 0, I.e. E[xy]=0 Slide 05-25

26 Projections Z space of all linear combinations of vectors z 1,,z n Given a vector y R S solve [smallest distance between vector y and Z space] Slide 05-26

27 Projections y ε y Z E[ε z j ]=0 for each j=1,,n (from FOC) ε z y Z is the (orthogonal) projection on Z y = y Z + ε, y Z Z, ε z Slide 05-27

28 Expected Value and Co-Variance Variance squeeze axis by (1,1) x [x,y]=e[xy]=cov[x,y] + E[x]E[y] [x,x]=e[x 2 ]=Var[x]+E[x] 2 x = E[x 2 ] ½ Slide 05-28

29 Expected Value and Co-Variance E[x] = [x, 1]= Slide 05-29

30 Overview Simple CAPM with quadratic utility functions (derived from state-price beta model) Mean-variance preferences Portfolio Theory CAPM (Intuition) CAPM (modern derivation) Projections Pricing Kernel and Expectation Kernel Slide 05-30

31 New (LeRoy( & Werner) Notation Main changes (new versus old) gross return: r = R SDF: μ = m pricing kernel: k q = m * Asset span: M = <X> income/endowment: w t = e t Slide 05-31

32 Pricing Kernel k q M space of feasible payoffs. If no arbitrage and π >>0 there exists SDF μ R S, μ >>0, such that q(z)=e(μ z). μ M SDF need not be in asset span. A pricing kernel is a k q M such that for each z M, q(z)=e(k q z). (k q = m * in our old notation.) Slide 05-32

33 Pricing Kernel - Examples Example 1: S=3,π s =1/3 for s=1,2,3, x 1 =(1,0,0), x 2 =(0,1,1), p=(1/3,2/3). Then k=(1,1,1) is the unique pricing kernel. Example 2: S=3,π s =1/3 for s=1,2,3, x 1 =(1,0,0), x 2 =(0,1,0), p=(1/3,2/3). Then k=(1,2,0) is the unique pricing kernel. Slide 05-33

34 Pricing Kernel Uniqueness If a state price density exists, there exists a unique pricing kernel. If dim(m) = m (markets are complete), there are exactly m equations and m unknowns If dim(m) m, (markets may be incomplete) For any state price density (=SDF) μ and any z M E[(μ-k q )z]=0 μ=(μ-k q )+k q k q is the projection'' of μ on M. Complete markets, k q =μ (SDF=state price density) Slide 05-34

35 Expectations Kernel k e An expectations kernel is a vector k e M Such that E(z)=E(k e z) for each z M. Example S=3, π s =1/3, for s=1,2,3, x 1 =(1,0,0), x 2 =(0,1,0). Then the unique k e =(1,1,0). If π >>0, there exists a unique expectations kernel. Let e=(1,, 1) then for any z M E[(e-k e )z]=0 k e is the projection of e on M k e = e if bond can be replicated (e.g. if markets are complete) Slide 05-35

36 Mean Variance Frontier Definition 1: z M is in the mean variance frontier if there exists no z M such that E[z ]= E[z], q(z')= q(z) and var[z ] < var[z]. Definition 2: Let E the space generated by k q and k e. Decompose z=z E +ε, with z E E and ε E. Hence, E[ε]= E[ε k e ]=0, q(ε)= E[ε k q ]=0 Cov[ε,z E ]=E[ε z E ]=0, since ε E. var[z] = var[z E ]+var[ε] (price of ε is zero, but positive variance) If z in mean variance frontier z E. Every z E is in mean variance frontier. Slide 05-36

37 Frontier Returns Frontier returns are the returns of frontier payoffs with non-zero prices. x graphically: payoffs with price of p=1. Slide 05-37

38 M = R S = R 3 Mean-Variance Payoff Frontier ε k q Mean-Variance Return Frontier p=1-line = return-line (orthogonal to k q ) Slide 05-38

39 Mean-Variance (Payoff) Frontier 0 (1,1,1) k q standard deviation expected return NB: graphical illustrated of expected returns and standard deviation changes if bond is not in payoff span. Slide 05-39

40 Mean-Variance (Payoff) Frontier efficient (return) frontier 0 (1,1,1) k q standard deviation expected return inefficient (return) frontier Slide 05-40

41 Frontier Returns Eco 525: Financial Economics I (if agent is risk-neutral) Slide 05-41

42 Minimum Variance Portfolio Take FOC w.r.t. λ of Hence, MVP has return of Slide 05-42

43 Mean-Variance Efficient Returns Definition: A return is mean-variance efficient if there is no other return with same variance but greater expectation. Mean variance efficient returns are frontier returns with E[r λ ] E[r λ0 ]. If risk-free asset can be replicated Mean variance efficient returns correspond to λ 0. Pricing kernel (portfolio) is not mean-variance efficient, since Slide 05-43

44 Zero-Covariance Frontier Returns Take two frontier portfolios with returns and C The portfolios have zero co-variance if For all λ λ 0 μ exists μ=0 if risk-free bond can be replicated Slide 05-44

45 Illustration of MVP Eco 525: Financial Economics I Expected return of MVP M = R 2 and S=3 (1,1,1) Minimum standard deviation Slide 05-45

46 Illustration of ZC Portfolio M = R 2 and S=3 (1,1,1) arbitrary portfolio p Recall: Slide 05-46

47 Illustration of ZC Portfolio (1,1,1) arbitrary portfolio p ZC of p Slide 05-47

48 Beta Pricing Frontier Returns (are on linear subspace). Hence Consider any asset with payoff x j It can be decomposed in x j = x je + ε j q(x j )=q(x je ) and E[x j ]=E[x je ], since ε E. Let r je be the return of x E j x Using above and assuming λ λ 0 and μ is ZC-portfolio of λ, Slide 05-48

49 Beta Pricing Taking expectations and deriving covariance _ If risk-free asset can be replicated, beta-pricing equation simplifies to Problem: How to identify frontier returns Slide 05-49

50 Capital Asset Pricing Model CAPM = market return is frontier return Derive conditions under which market return is frontier return Two periods: 0,1, Endowment: individual w i 1 at time 1, aggregate where the orthogonal projection of on M is. The market payoff: Assume q(m) 0, let r m =m / q(m), and assume that r m is not the minimum variance return. Slide

51 Capital Asset Pricing Model If r m0 is the frontier return that has zero covariance with r m then, for every security j, E[r j ]=E[r m0 ] + β j (E[r m ]-E[r m0 ]), with β j =cov[r j,r m ] / var[r m ]. If a risk free asset exists, equation becomes, E[r j ]= r f + β j (E[r m ]- r f ) N.B. first equation always hold if there are only two assets. Slide

52 Outdated material follows Traditional derivation of CAPM is less elegant Not relevant for exams Slide

53 Deriving the Frontier Eco 525: Financial Economics I Definition 6.1: A frontier portfolio is one which displays minimum variance among all feasible portfolios with the same E( ). r~p min w 1 2 w T n risky assets Vw ( λ) s.t. w T e = E N w E( ~ r ) i= 1 i i = E ( γ) w T 1 = 1 N w i= 1 i = 1 Slide

54 The first FOC can be written as: Slide

55 Noting that e T w p = w T pe, using the first foc, the second foc can be written as pre-multiplying first foc with 1 (instead of e T ) yields Solving both equations for λ and γ Slide

56 Hence, w p = λ V -1 e + γ V -1 1 becomes Eco 525: Financial Economics I w p CE A B AE = V e + V D D 1 1 (vector) λ (scalar) γ (scalar) 1 (vector) = D [ 1 1 ( ) ( )] 1 1 B V 1 A V e + C( V e) A( V 1) 1 1 [ ]E D w p = g + h E (vector) (vector) (scalar) (6.15) linear in expected return E! If E = 0, If E = 1, wp = g wp = g + h Hence, g and g+h are portfolios on the frontier. Slide

57 Characterization of Frontier Portfolios Proposition 6.1: The entire set of frontier portfolios can be generated by ("are convex combinations" of) g and g+h. Proposition 6.2. The portfolio frontier can be described as convex combinations of any two frontier portfolios, not just the frontier portfolios g and g+h. Proposition 6.3 : Any convex combination of frontier portfolios is also a frontier portfolio. Slide

58 Characterization of Frontier Portfolios For any portfolio on the frontier, with g and h as defined earlier. 2 σ T ( E [ ~ r ]) = [ g + he( ~ r )] V [ g + he( ~ r )] p p p Multiplying all this out yields: Slide

59 Characterization of Frontier Portfolios (i) the expected return of the minimum variance portfolio is A/C; (ii) the variance of the minimum variance portfolio is given by 1/C; (iii) equation (6.17) is the equation of a parabola with vertex (1/C, A/C) in the expected return/variance space and of a hyperbola in the expected return/standard deviation space. See Figures 6.3 and 6.4. Slide

60 Figure 6-3 The Set of Frontier Portfolios: Mean/Variance Space Slide 05-60

61 Figure 6-4 The Set of Frontier Portfolios: Mean/SD Space Slide 05-61

62 Figure 6-5 The Set of Frontier Portfolios: Short Selling Allowed Slide 05-62

63 Characterization of Efficient Portfolios (No Risk-Free Assets) Definition 6.2: Efficient portfolios are those frontier portfolios which are not mean-variance dominated. Lemma: Efficient portfolios are those frontier portfolios for which the expected return exceeds A/C, the expected return of the minimum variance portfolio. Slide 05-63

64 Zero Covariance Portfolio Zero-Cov Portfolio is useful for Zero-Beta CAPM Proposition 6.5: For any frontier portfolio p, except the minimum variance portfolio, there exists a unique frontier portfolio with which p has zero covariance. We will call this portfolio the "zero covariance portfolio relative to p", and denote its vector of portfolio weights by ZC p. ( ) Proof: by construction. Slide 05-64

65 collect all expected returns terms, add and subtract A 2 C/DC 2 and note that the remaining term (1/C)[(BC/D)-(A 2 /D)]=1/C, since D=BC-A 2 Slide 05-65

66 For zero co-variance portfolio ZC(p) For graphical illustration, let s draw this line: Slide 05-66

67 Graphical Representation: line through p (Var[r p ], E[r p ]) AND 2 2 C A 1 MVP (1/C, A/C) (use σ ( r~ p ) = E( r~ p ) + ) for σ 2 (r) = 0 you get E[r ZC(p) ] D C C Slide 05-67

68 E ( r ) p A/C MVP E[r ( ZC(p)] ZC(p) ZC (p) on frontier (1/C) Var ( r ) Figure 6-6 The Set of Frontier Portfolios: Location of the Zero-Covariance Portfolio Slide 05-68

69 Zero-Beta CAPM (no risk-free asset) (i) agents maximize expected utility with increasing and strictly concave utility of money functions and asset returns are multivariate normally distributed, or (ii) each agent chooses a portfolio with the objective of maximizing a derived utility function of the form 2 U( e, σ ), U1 > 0, U2 < 0, U concave. (iii) common time horizon, (iv) homogeneous beliefs about e and σ 2 Slide 05-69

70 All investors hold mean-variance efficient portfolios the market portfolio is convex combination of efficient portfolios is efficient. Cov[r p,r q ] = λ E[r q ]+ γ (q need not be on the frontier) (6.22) Cov[r p,r ZC(p) ] = λ E[r ZC(p) ] + γ=0 Cov[r p,r q ] = λ {E[r q ]-E[r ZC(p) ]} Var[r p ] = λ {E[r p ]-E[r ZC(p) ]}. E E Divide third by fourth equation: ( r~ q ) = E( r~ ZC( M )) + βmq[ E( r~ M ) E( ~ r ZC( M ))] ( r~ ) ( ( )) [ ( ) ( ( ))] j = E r~ ZC M + β ~ Mj E r~ M E r ZC M (6.28) (6.29) Slide 05-70

71 Zero-Beta CAPM mean variance framework (quadratic utility or normal returns) In equilibrium, market portfolio, which is a convex combination of individual portfolios E[r q ] = E[r ZC(M) ]+ β Mq [E[r M ]-E[r ZC(M) ]] E[r j ] = E[r ZC(M) ]+ β Mj [E[r M ]-E[r ZC(M) ]] Slide 05-71

72 The Standard CAPM (with risk-free asset) FOC: Multiplying by (e r f 1) T and solving for λ yields w p ( e r ) 1 = V 1 n x n n x 1 n x 1 f E( ~ r ) p H a number r f where H = B - 2Ar f + Cr f 2 (6.30) Slide 05-72

73 NB:Derivation in DD is not correct. Rewrite first equation and replace G using second equation. Holds for any frontier portfolio, in particular the market portfolio. Slide 05-73

Problem Set 6 - Solutions

Problem Set 6 - Solutions ECO573 Financial Economics Problem Set 6 - Solutions 1. Debt Restructuring CAPM. a Before refinancing the stoc the asset have the same beta: β a = β e = 1.2. After restructuring the company has the same

More information

CAPM, Arbitrage, and Linear Factor Models

CAPM, Arbitrage, and Linear Factor Models CAPM, Arbitrage, and Linear Factor Models CAPM, Arbitrage, Linear Factor Models 1/ 41 Introduction We now assume all investors actually choose mean-variance e cient portfolios. By equating these investors

More information

Review for Exam 2. Instructions: Please read carefully

Review for Exam 2. Instructions: Please read carefully Review for Exam 2 Instructions: Please read carefully The exam will have 25 multiple choice questions and 5 work problems You are not responsible for any topics that are not covered in the lecture note

More information

1 Capital Allocation Between a Risky Portfolio and a Risk-Free Asset

1 Capital Allocation Between a Risky Portfolio and a Risk-Free Asset Department of Economics Financial Economics University of California, Berkeley Economics 136 November 9, 2003 Fall 2006 Economics 136: Financial Economics Section Notes for Week 11 1 Capital Allocation

More information

CML is the tangent line drawn from the risk free point to the feasible region for risky assets. This line shows the relation between r P and

CML is the tangent line drawn from the risk free point to the feasible region for risky assets. This line shows the relation between r P and 5. Capital Asset Pricing Model and Factor Models Capital market line (CML) CML is the tangent line drawn from the risk free point to the feasible region for risky assets. This line shows the relation between

More information

2. Mean-variance portfolio theory

2. Mean-variance portfolio theory 2. Mean-variance portfolio theory (2.1) Markowitz s mean-variance formulation (2.2) Two-fund theorem (2.3) Inclusion of the riskfree asset 1 2.1 Markowitz mean-variance formulation Suppose there are N

More information

15 CAPM and portfolio management

15 CAPM and portfolio management ECG590I Asset Pricing. Lecture 15: CAPM and portfolio management 1 15 CAPM and portfolio management 15.1 Theoretical foundation for mean-variance analysis We assume that investors try to maximize the expected

More information

1 Capital Asset Pricing Model (CAPM)

1 Capital Asset Pricing Model (CAPM) Copyright c 2005 by Karl Sigman 1 Capital Asset Pricing Model (CAPM) We now assume an idealized framework for an open market place, where all the risky assets refer to (say) all the tradeable stocks available

More information

FE670 Algorithmic Trading Strategies. Stevens Institute of Technology

FE670 Algorithmic Trading Strategies. Stevens Institute of Technology FE670 Algorithmic Trading Strategies Lecture 6. Portfolio Optimization: Basic Theory and Practice Steve Yang Stevens Institute of Technology 10/03/2013 Outline 1 Mean-Variance Analysis: Overview 2 Classical

More information

Lecture 1: Asset Allocation

Lecture 1: Asset Allocation Lecture 1: Asset Allocation Investments FIN460-Papanikolaou Asset Allocation I 1/ 62 Overview 1. Introduction 2. Investor s Risk Tolerance 3. Allocating Capital Between a Risky and riskless asset 4. Allocating

More information

AFM 472. Midterm Examination. Monday Oct. 24, 2011. A. Huang

AFM 472. Midterm Examination. Monday Oct. 24, 2011. A. Huang AFM 472 Midterm Examination Monday Oct. 24, 2011 A. Huang Name: Answer Key Student Number: Section (circle one): 10:00am 1:00pm 2:30pm Instructions: 1. Answer all questions in the space provided. If space

More information

1 Portfolio mean and variance

1 Portfolio mean and variance Copyright c 2005 by Karl Sigman Portfolio mean and variance Here we study the performance of a one-period investment X 0 > 0 (dollars) shared among several different assets. Our criterion for measuring

More information

Lesson 5. Risky assets

Lesson 5. Risky assets Lesson 5. Risky assets Prof. Beatriz de Blas May 2006 5. Risky assets 2 Introduction How stock markets serve to allocate risk. Plan of the lesson: 8 >< >: 1. Risk and risk aversion 2. Portfolio risk 3.

More information

Mean-Variance Portfolio Analysis and the Capital Asset Pricing Model

Mean-Variance Portfolio Analysis and the Capital Asset Pricing Model Mean-Variance Portfolio Analysis and the Capital Asset Pricing Model 1 Introduction In this handout we develop a model that can be used to determine how a risk-averse investor can choose an optimal asset

More information

A Mean-Variance Framework for Tests of Asset Pricing Models

A Mean-Variance Framework for Tests of Asset Pricing Models A Mean-Variance Framework for Tests of Asset Pricing Models Shmuel Kandel University of Chicago Tel-Aviv, University Robert F. Stambaugh University of Pennsylvania This article presents a mean-variance

More information

CHAPTER 10 RISK AND RETURN: THE CAPITAL ASSET PRICING MODEL (CAPM)

CHAPTER 10 RISK AND RETURN: THE CAPITAL ASSET PRICING MODEL (CAPM) CHAPTER 10 RISK AND RETURN: THE CAPITAL ASSET PRICING MODEL (CAPM) Answers to Concepts Review and Critical Thinking Questions 1. Some of the risk in holding any asset is unique to the asset in question.

More information

Capital Allocation Between The Risky And The Risk- Free Asset. Chapter 7

Capital Allocation Between The Risky And The Risk- Free Asset. Chapter 7 Capital Allocation Between The Risky And The Risk- Free Asset Chapter 7 Investment Decisions capital allocation decision = choice of proportion to be invested in risk-free versus risky assets asset allocation

More information

CHAPTER 7: OPTIMAL RISKY PORTFOLIOS

CHAPTER 7: OPTIMAL RISKY PORTFOLIOS CHAPTER 7: OPTIMAL RIKY PORTFOLIO PROLEM ET 1. (a) and (e).. (a) and (c). After real estate is added to the portfolio, there are four asset classes in the portfolio: stocks, bonds, cash and real estate.

More information

Practice Set #4 and Solutions.

Practice Set #4 and Solutions. FIN-469 Investments Analysis Professor Michel A. Robe Practice Set #4 and Solutions. What to do with this practice set? To help students prepare for the assignment and the exams, practice sets with solutions

More information

Solution: The optimal position for an investor with a coefficient of risk aversion A = 5 in the risky asset is y*:

Solution: The optimal position for an investor with a coefficient of risk aversion A = 5 in the risky asset is y*: Problem 1. Consider a risky asset. Suppose the expected rate of return on the risky asset is 15%, the standard deviation of the asset return is 22%, and the risk-free rate is 6%. What is your optimal position

More information

Note: There are fewer problems in the actual Final Exam!

Note: There are fewer problems in the actual Final Exam! HEC Paris Practice Final Exam Questions Version with Solutions Financial Markets Fall 2013 Note: There are fewer problems in the actual Final Exam! Problem 1. Are the following statements True, False or

More information

Chapter 2 Portfolio Management and the Capital Asset Pricing Model

Chapter 2 Portfolio Management and the Capital Asset Pricing Model Chapter 2 Portfolio Management and the Capital Asset Pricing Model In this chapter, we explore the issue of risk management in a portfolio of assets. The main issue is how to balance a portfolio, that

More information

The Tangent or Efficient Portfolio

The Tangent or Efficient Portfolio The Tangent or Efficient Portfolio 1 2 Identifying the Tangent Portfolio Sharpe Ratio: Measures the ratio of reward-to-volatility provided by a portfolio Sharpe Ratio Portfolio Excess Return E[ RP ] r

More information

M.I.T. Spring 1999 Sloan School of Management 15.415. First Half Summary

M.I.T. Spring 1999 Sloan School of Management 15.415. First Half Summary M.I.T. Spring 1999 Sloan School of Management 15.415 First Half Summary Present Values Basic Idea: We should discount future cash flows. The appropriate discount rate is the opportunity cost of capital.

More information

SAMPLE MID-TERM QUESTIONS

SAMPLE MID-TERM QUESTIONS SAMPLE MID-TERM QUESTIONS William L. Silber HOW TO PREPARE FOR THE MID- TERM: 1. Study in a group 2. Review the concept questions in the Before and After book 3. When you review the questions listed below,

More information

Mean Variance Analysis

Mean Variance Analysis Mean Variance Analysis Karl B. Diether Fisher College of Business Karl B. Diether (Fisher College of Business) Mean Variance Analysis 1 / 36 A Portfolio of Three Risky Assets Not a two risky asset world

More information

FIN 3710. Final (Practice) Exam 05/23/06

FIN 3710. Final (Practice) Exam 05/23/06 FIN 3710 Investment Analysis Spring 2006 Zicklin School of Business Baruch College Professor Rui Yao FIN 3710 Final (Practice) Exam 05/23/06 NAME: (Please print your name here) PLEDGE: (Sign your name

More information

4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS 4: SINGLE-PERIOD MARKET MODELS Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2015 B. Goldys and M. Rutkowski (USydney) Slides 4: Single-Period Market

More information

Midterm Exam:Answer Sheet

Midterm Exam:Answer Sheet Econ 497 Barry W. Ickes Spring 2007 Midterm Exam:Answer Sheet 1. (25%) Consider a portfolio, c, comprised of a risk-free and risky asset, with returns given by r f and E(r p ), respectively. Let y be the

More information

Chapter 5 Risk and Return ANSWERS TO SELECTED END-OF-CHAPTER QUESTIONS

Chapter 5 Risk and Return ANSWERS TO SELECTED END-OF-CHAPTER QUESTIONS Chapter 5 Risk and Return ANSWERS TO SELECTED END-OF-CHAPTER QUESTIONS 5-1 a. Stand-alone risk is only a part of total risk and pertains to the risk an investor takes by holding only one asset. Risk is

More information

On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information

On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information Finance 400 A. Penati - G. Pennacchi Notes on On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information by Sanford Grossman This model shows how the heterogeneous information

More information

Chapter 1. Introduction to Portfolio Theory. 1.1 Portfolios of Two Risky Assets

Chapter 1. Introduction to Portfolio Theory. 1.1 Portfolios of Two Risky Assets Chapter 1 Introduction to Portfolio Theory Updated: August 9, 2013. This chapter introduces modern portfolio theory in a simplified setting where there are only two risky assets and a single risk-free

More information

α = u v. In other words, Orthogonal Projection

α = u v. In other words, Orthogonal Projection Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

More information

Portfolio Performance Measures

Portfolio Performance Measures Portfolio Performance Measures Objective: Evaluation of active portfolio management. A performance measure is useful, for example, in ranking the performance of mutual funds. Active portfolio managers

More information

CHAPTER 11: ARBITRAGE PRICING THEORY

CHAPTER 11: ARBITRAGE PRICING THEORY CHAPTER 11: ARBITRAGE PRICING THEORY 1. The revised estimate of the expected rate of return on the stock would be the old estimate plus the sum of the products of the unexpected change in each factor times

More information

t = 1 2 3 1. Calculate the implied interest rates and graph the term structure of interest rates. t = 1 2 3 X t = 100 100 100 t = 1 2 3

t = 1 2 3 1. Calculate the implied interest rates and graph the term structure of interest rates. t = 1 2 3 X t = 100 100 100 t = 1 2 3 MØA 155 PROBLEM SET: Summarizing Exercise 1. Present Value [3] You are given the following prices P t today for receiving risk free payments t periods from now. t = 1 2 3 P t = 0.95 0.9 0.85 1. Calculate

More information

The CAPM (Capital Asset Pricing Model) NPV Dependent on Discount Rate Schedule

The CAPM (Capital Asset Pricing Model) NPV Dependent on Discount Rate Schedule The CAPM (Capital Asset Pricing Model) Massachusetts Institute of Technology CAPM Slide 1 of NPV Dependent on Discount Rate Schedule Discussed NPV and time value of money Choice of discount rate influences

More information

CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS

CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS PROBLEM SETS 1. (e). (b) A higher borrowing is a consequence of the risk of the borrowers default. In perfect markets with no additional

More information

Lecture 6: Arbitrage Pricing Theory

Lecture 6: Arbitrage Pricing Theory Lecture 6: Arbitrage Pricing Theory Investments FIN460-Papanikolaou APT 1/ 48 Overview 1. Introduction 2. Multi-Factor Models 3. The Arbitrage Pricing Theory FIN460-Papanikolaou APT 2/ 48 Introduction

More information

15.401 Finance Theory

15.401 Finance Theory Finance Theory MIT Sloan MBA Program Andrew W. Lo Harris & Harris Group Professor, MIT Sloan School Lecture 13 14 14: : Risk Analytics and Critical Concepts Motivation Measuring Risk and Reward Mean-Variance

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

Choice under Uncertainty

Choice under Uncertainty Choice under Uncertainty Part 1: Expected Utility Function, Attitudes towards Risk, Demand for Insurance Slide 1 Choice under Uncertainty We ll analyze the underlying assumptions of expected utility theory

More information

MODERN PORTFOLIO THEORY AND INVESTMENT ANALYSIS

MODERN PORTFOLIO THEORY AND INVESTMENT ANALYSIS MODERN PORTFOLIO THEORY AND INVESTMENT ANALYSIS EIGHTH EDITION INTERNATIONAL STUDENT VERSION EDWIN J. ELTON Leonard N. Stern School of Business New York University MARTIN J. GRUBER Leonard N. Stern School

More information

The Capital Asset Pricing Model (CAPM)

The Capital Asset Pricing Model (CAPM) Prof. Alex Shapiro Lecture Notes 9 The Capital Asset Pricing Model (CAPM) I. Readings and Suggested Practice Problems II. III. IV. Introduction: from Assumptions to Implications The Market Portfolio Assumptions

More information

Answers to Concepts in Review

Answers to Concepts in Review Answers to Concepts in Review 1. A portfolio is simply a collection of investments assembled to meet a common investment goal. An efficient portfolio is a portfolio offering the highest expected return

More information

CFA Examination PORTFOLIO MANAGEMENT Page 1 of 6

CFA Examination PORTFOLIO MANAGEMENT Page 1 of 6 PORTFOLIO MANAGEMENT A. INTRODUCTION RETURN AS A RANDOM VARIABLE E(R) = the return around which the probability distribution is centered: the expected value or mean of the probability distribution of possible

More information

Review for Exam 2. Instructions: Please read carefully

Review for Exam 2. Instructions: Please read carefully Review for Exam Instructions: Please read carefully The exam will have 1 multiple choice questions and 5 work problems. Questions in the multiple choice section will be either concept or calculation questions.

More information

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they

More information

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING 1. Introduction The Black-Scholes theory, which is the main subject of this course and its sequel, is based on the Efficient Market Hypothesis, that arbitrages

More information

Portfolio Allocation and Asset Demand with Mean-Variance Preferences

Portfolio Allocation and Asset Demand with Mean-Variance Preferences Portfolio Allocation and Asset Demand with Mean-Variance Preferences Thomas Eichner a and Andreas Wagener b a) Department of Economics, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany.

More information

Forwards, Swaps and Futures

Forwards, Swaps and Futures IEOR E4706: Financial Engineering: Discrete-Time Models c 2010 by Martin Haugh Forwards, Swaps and Futures These notes 1 introduce forwards, swaps and futures, and the basic mechanics of their associated

More information

Lecture 11 Uncertainty

Lecture 11 Uncertainty Lecture 11 Uncertainty 1. Contingent Claims and the State-Preference Model 1) Contingent Commodities and Contingent Claims Using the simple two-good model we have developed throughout this course, think

More information

Chapter 11. Topics Covered. Chapter 11 Objectives. Risk, Return, and Capital Budgeting

Chapter 11. Topics Covered. Chapter 11 Objectives. Risk, Return, and Capital Budgeting Chapter 11 Risk, Return, and Capital Budgeting Topics Covered Measuring Market Risk Portfolio Betas Risk and Return CAPM and Expected Return Security Market Line CAPM and Stock Valuation Chapter 11 Objectives

More information

Advanced Fixed Income Analytics Lecture 1

Advanced Fixed Income Analytics Lecture 1 Advanced Fixed Income Analytics Lecture 1 Backus & Zin/April 1, 1999 Vasicek: The Fixed Income Benchmark 1. Prospectus 2. Models and their uses 3. Spot rates and their properties 4. Fundamental theorem

More information

CHAPTER 6 RISK AND RISK AVERSION

CHAPTER 6 RISK AND RISK AVERSION CHAPTER 6 RISK AND RISK AVERSION RISK AND RISK AVERSION Risk with Simple Prospects Risk, Speculation, and Gambling Risk Aversion and Utility Values Risk with Simple Prospects The presence of risk means

More information

A Review of Cross Sectional Regression for Financial Data You should already know this material from previous study

A Review of Cross Sectional Regression for Financial Data You should already know this material from previous study A Review of Cross Sectional Regression for Financial Data You should already know this material from previous study But I will offer a review, with a focus on issues which arise in finance 1 TYPES OF FINANCIAL

More information

Sensitivity analysis of utility based prices and risk-tolerance wealth processes

Sensitivity analysis of utility based prices and risk-tolerance wealth processes Sensitivity analysis of utility based prices and risk-tolerance wealth processes Dmitry Kramkov, Carnegie Mellon University Based on a paper with Mihai Sirbu from Columbia University Math Finance Seminar,

More information

TPPE17 Corporate Finance 1(5) SOLUTIONS RE-EXAMS 2014 II + III

TPPE17 Corporate Finance 1(5) SOLUTIONS RE-EXAMS 2014 II + III TPPE17 Corporate Finance 1(5) SOLUTIONS RE-EXAMS 2014 II III Instructions 1. Only one problem should be treated on each sheet of paper and only one side of the sheet should be used. 2. The solutions folder

More information

Chap 3 CAPM, Arbitrage, and Linear Factor Models

Chap 3 CAPM, Arbitrage, and Linear Factor Models Chap 3 CAPM, Arbitrage, and Linear Factor Models 1 Asset Pricing Model a logical extension of portfolio selection theory is to consider the equilibrium asset pricing consequences of investors individually

More information

Moral Hazard. Itay Goldstein. Wharton School, University of Pennsylvania

Moral Hazard. Itay Goldstein. Wharton School, University of Pennsylvania Moral Hazard Itay Goldstein Wharton School, University of Pennsylvania 1 Principal-Agent Problem Basic problem in corporate finance: separation of ownership and control: o The owners of the firm are typically

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

Market Efficiency: Definitions and Tests. Aswath Damodaran

Market Efficiency: Definitions and Tests. Aswath Damodaran Market Efficiency: Definitions and Tests 1 Why market efficiency matters.. Question of whether markets are efficient, and if not, where the inefficiencies lie, is central to investment valuation. If markets

More information

We have discussed the notion of probabilistic dependence above and indicated that dependence is

We have discussed the notion of probabilistic dependence above and indicated that dependence is 1 CHAPTER 7 Online Supplement Covariance and Correlation for Measuring Dependence We have discussed the notion of probabilistic dependence above and indicated that dependence is defined in terms of conditional

More information

Models of Risk and Return

Models of Risk and Return Models of Risk and Return Aswath Damodaran Aswath Damodaran 1 First Principles Invest in projects that yield a return greater than the minimum acceptable hurdle rate. The hurdle rate should be higher for

More information

Covariance and Correlation. Consider the joint probability distribution f XY (x, y).

Covariance and Correlation. Consider the joint probability distribution f XY (x, y). Chapter 5: JOINT PROBABILITY DISTRIBUTIONS Part 2: Section 5-2 Covariance and Correlation Consider the joint probability distribution f XY (x, y). Is there a relationship between X and Y? If so, what kind?

More information

Executive Summary of Finance 430 Professor Vissing-Jørgensen Finance 430-62/63/64, Winter 2011

Executive Summary of Finance 430 Professor Vissing-Jørgensen Finance 430-62/63/64, Winter 2011 Executive Summary of Finance 430 Professor Vissing-Jørgensen Finance 430-62/63/64, Winter 2011 Weekly Topics: 1. Present and Future Values, Annuities and Perpetuities 2. More on NPV 3. Capital Budgeting

More information

Current Accounts in Open Economies Obstfeld and Rogoff, Chapter 2

Current Accounts in Open Economies Obstfeld and Rogoff, Chapter 2 Current Accounts in Open Economies Obstfeld and Rogoff, Chapter 2 1 Consumption with many periods 1.1 Finite horizon of T Optimization problem maximize U t = u (c t ) + β (c t+1 ) + β 2 u (c t+2 ) +...

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

2013 MBA Jump Start Program

2013 MBA Jump Start Program 2013 MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Algebra Review Calculus Permutations and Combinations [Online Appendix: Basic Mathematical Concepts] 2 1 Equation of

More information

Delegated Portfolio Management: Theory and Experiment

Delegated Portfolio Management: Theory and Experiment Delegated Portfolio Management: Theory and Experiment Peter Bossaerts, Caltech Joint with: Elena Asparouhova, Jernej Copic, Brad Cornell, Jaksa Cvitanic, Debrah Meloso Goals To develop a theory of competition

More information

Econ 422 Summer 2006 Final Exam Solutions

Econ 422 Summer 2006 Final Exam Solutions Econ 422 Summer 2006 Final Exam Solutions This is a closed book exam. However, you are allowed one page of notes (double-sided). Answer all questions. For the numerical problems, if you make a computational

More information

Economics 1011a: Intermediate Microeconomics

Economics 1011a: Intermediate Microeconomics Lecture 12: More Uncertainty Economics 1011a: Intermediate Microeconomics Lecture 12: More on Uncertainty Thursday, October 23, 2008 Last class we introduced choice under uncertainty. Today we will explore

More information

ECO 317 Economics of Uncertainty Fall Term 2009 Week 5 Precepts October 21 Insurance, Portfolio Choice - Questions

ECO 317 Economics of Uncertainty Fall Term 2009 Week 5 Precepts October 21 Insurance, Portfolio Choice - Questions ECO 37 Economics of Uncertainty Fall Term 2009 Week 5 Precepts October 2 Insurance, Portfolio Choice - Questions Important Note: To get the best value out of this precept, come with your calculator or

More information

Chapter 5. Risk and Return. Copyright 2009 Pearson Prentice Hall. All rights reserved.

Chapter 5. Risk and Return. Copyright 2009 Pearson Prentice Hall. All rights reserved. Chapter 5 Risk and Return Learning Goals 1. Understand the meaning and fundamentals of risk, return, and risk aversion. 2. Describe procedures for assessing and measuring the risk of a single asset. 3.

More information

Holding Period Return. Return, Risk, and Risk Aversion. Percentage Return or Dollar Return? An Example. Percentage Return or Dollar Return? 10% or 10?

Holding Period Return. Return, Risk, and Risk Aversion. Percentage Return or Dollar Return? An Example. Percentage Return or Dollar Return? 10% or 10? Return, Risk, and Risk Aversion Holding Period Return Ending Price - Beginning Price + Intermediate Income Return = Beginning Price R P t+ t+ = Pt + Dt P t An Example You bought IBM stock at $40 last month.

More information

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

More information

3 Introduction to Assessing Risk

3 Introduction to Assessing Risk 3 Introduction to Assessing Risk Important Question. How do we assess the risk an investor faces when choosing among assets? In this discussion we examine how an investor would assess the risk associated

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Market Access ** Helmut Laux/Robert M. Gillenkirch/Matthias M. Schabel*

Market Access ** Helmut Laux/Robert M. Gillenkirch/Matthias M. Schabel* Incentive Bidding Compensation Strategies Helmut Laux/Robert M. Gillenkirch/Matthias M. Schabel* Incentive Compensation, Valuation, and Capital Market Access ** Abstract In this paper we consider linear

More information

Optimization under uncertainty: modeling and solution methods

Optimization under uncertainty: modeling and solution methods Optimization under uncertainty: modeling and solution methods Paolo Brandimarte Dipartimento di Scienze Matematiche Politecnico di Torino e-mail: paolo.brandimarte@polito.it URL: http://staff.polito.it/paolo.brandimarte

More information

Financial Options: Pricing and Hedging

Financial Options: Pricing and Hedging Financial Options: Pricing and Hedging Diagrams Debt Equity Value of Firm s Assets T Value of Firm s Assets T Valuation of distressed debt and equity-linked securities requires an understanding of financial

More information

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

CAPM Option Pricing. Sven Husmann a, Neda Todorova b

CAPM Option Pricing. Sven Husmann a, Neda Todorova b CAPM Option Pricing Sven Husmann a, Neda Todorova b a Department of Business Administration, European University Viadrina, Große Scharrnstraße 59, D-15230 Frankfurt (Oder, Germany, Email: husmann@europa-uni.de,

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

More information

Lecture 13: Risk Aversion and Expected Utility

Lecture 13: Risk Aversion and Expected Utility Lecture 13: Risk Aversion and Expected Utility Uncertainty over monetary outcomes Let x denote a monetary outcome. C is a subset of the real line, i.e. [a, b]. A lottery L is a cumulative distribution

More information

Optimal Risky Portfolios Chapter 7 Investments Bodie, Kane and Marcus

Optimal Risky Portfolios Chapter 7 Investments Bodie, Kane and Marcus Optimal Risky ortfolios Section escription 7.0 Introduction 7.1 iversification and ortfolio Risk 7. ortfolios of Two Risky Assets 7.3 Asset Allocation with Stocks, Bonds and Bills 7.4 The Markowitz ortfolio

More information

Rate of Return. Reading: Veronesi, Chapter 7. Investment over a Holding Period

Rate of Return. Reading: Veronesi, Chapter 7. Investment over a Holding Period Rate of Return Reading: Veronesi, Chapter 7 Investment over a Holding Period Consider an investment in any asset over a holding period from time 0 to time T. Suppose the amount invested at time 0 is P

More information

Chapter 5. Risk and Return. Learning Goals. Learning Goals (cont.)

Chapter 5. Risk and Return. Learning Goals. Learning Goals (cont.) Chapter 5 Risk and Return Learning Goals 1. Understand the meaning and fundamentals of risk, return, and risk aversion. 2. Describe procedures for assessing and measuring the risk of a single asset. 3.

More information

Lecture 2 of 4-part series. Spring School on Risk Management, Insurance and Finance European University at St. Petersburg, Russia.

Lecture 2 of 4-part series. Spring School on Risk Management, Insurance and Finance European University at St. Petersburg, Russia. Principles and Lecture 2 of 4-part series Capital Spring School on Risk, Insurance and Finance European University at St. Petersburg, Russia 2-4 April 2012 Fair Wang s University of Connecticut, USA page

More information

What are the place values to the left of the decimal point and their associated powers of ten?

What are the place values to the left of the decimal point and their associated powers of ten? The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

More information

Algebra and Geometry Review (61 topics, no due date)

Algebra and Geometry Review (61 topics, no due date) Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

More information

The Bivariate Normal Distribution

The Bivariate Normal Distribution The Bivariate Normal Distribution This is Section 4.7 of the st edition (2002) of the book Introduction to Probability, by D. P. Bertsekas and J. N. Tsitsiklis. The material in this section was not included

More information

2: ASSET CLASSES AND FINANCIAL INSTRUMENTS MONEY MARKET SECURITIES

2: ASSET CLASSES AND FINANCIAL INSTRUMENTS MONEY MARKET SECURITIES 2: ASSET CLASSES AND FINANCIAL INSTRUMENTS MONEY MARKET SECURITIES Characteristics. Short-term IOUs. Highly Liquid (Like Cash). Nearly free of default-risk. Denomination. Issuers Types Treasury Bills Negotiable

More information

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS Masters in Business Administration (MBA) Offered by the Departments of: Business Administration & Marketing and Communication PORTFOLIO ANALYSIS AND MANAGEMENT

More information

The Dirichlet Unit Theorem

The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

1 Interest rates, and risk-free investments

1 Interest rates, and risk-free investments Interest rates, and risk-free investments Copyright c 2005 by Karl Sigman. Interest and compounded interest Suppose that you place x 0 ($) in an account that offers a fixed (never to change over time)

More information

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued

More information

October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix

October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix Linear Algebra & Properties of the Covariance Matrix October 3rd, 2012 Estimation of r and C Let rn 1, rn, t..., rn T be the historical return rates on the n th asset. rn 1 rṇ 2 r n =. r T n n = 1, 2,...,

More information