Lecture 05: Mean-Variance Analysis & Capital Asset Pricing Model (CAPM)

Size: px
Start display at page:

Download "Lecture 05: Mean-Variance Analysis & Capital Asset Pricing Model (CAPM)"

Transcription

1 Lecture 05: Mean-Variance Analysis & Capital Asset Pricing Model (CAPM) Prof. Markus K. Brunnermeier Slide 05-1

2 Overview Simple CAPM with quadratic utility functions (derived from state-price beta model) Mean-variance preferences Portfolio Theory CAPM (intuition) CAPM Projections Pricing Kernel and Expectation Kernel Slide 05-2

3 Recall State-price Beta model Recall: E[R h ] - R f = β h E[R * - R f ] where β h := Cov[R *,R h ] / Var[R * ] very general but what is R * in reality? Slide 05-3

4 Simple CAPM with Quadratic Expected Utility 1. All agents are identical Expected utility U(x 0, x 1 ) = s π s u(x 0, x s ) m= 1 u / E[ 0 u] Quadratic u(x 0,x 1 )=v 0 (x 0 ) - (x 1 - α) 2 1 u = [-2(x 1,1 - α),, -2(x S,1 - α)] E[R h ] R f = - Cov[m,R h ] / E[m] = -R f Cov[ 1 u, R h ] / E[ 0 u] = -R f Cov[-2(x 1 - α), R h ] / E[ 0 u] = R f 2Cov[x 1,R h ] / E[ 0 u] Also holds for market portfolio E[R m ] R f = R f 2Cov[x 1,R m ]/E[ 0 u] Slide 05-4

5 Simple CAPM with Quadratic Expected Utility 2. Homogenous agents + Exchange economy x 1 = agg. endowment and is perfectly correlated with R m E[R h ]=R f + β h {E[R m ]-R f } Market Security Line N.B.: R * =R f (a+b 1 R M )/(a+b 1 R f ) in this case (where b 1 <0)! Slide 05-5

6 Overview Simple CAPM with quadratic utility functions (derived from state-price beta model) Mean-variance analysis Portfolio Theory (Portfolio frontier, efficient frontier, ) CAPM (Intuition) CAPM Projections Pricing Kernel and Expectation Kernel Slide 05-6

7 Definition: Mean-Variance Dominance & Efficient Frontier Asset (portfolio) A mean-variance dominates asset (portfolio) B if μ A μ B and σ A < σ Β or if μ A >μ B while σ A σ B. Efficient frontier: loci of all non-dominated portfolios in the mean-standard deviation space. By definition, no ( rational ) mean-variance investor would choose to hold a portfolio not located on the efficient frontier. Slide 05-7

8 Expected Portfolio Returns & Variance Expected returns (linear) μ p := E[r p ]=w j μ j,whereeachμ j = Variance P hj j hj µ σp 2 := Var[r p] = w 0 σ 2 Vw=(w 1 w 2 ) 1 σ 12 σ 21 σ2 2 = (w 1 σ w 2 σ 21 w 1 σ 12 + w 2 σ 2 2) µ w1 w 2 µ w1 w 2 = w1 2 σ2 1 + w2 2 σ2 2 +2w 1w 2 σ 12 0 since σ 12 σ 1 σ 2. recall that correlation coefficient [-1,1] Slide 05-8

9 Illustration of 2 Asset Case For certain weights: w 1 and (1-w 1 ) μ p = w 1 E[r 1 ]+ (1-w 1 ) E[r 2 ] σ 2 p = w 12 σ 12 + (1-w 1 ) 2 σ w 1 (1-w 1 )σ 1 σ 2 ρ 1,2 (Specify σ 2 p and one gets weights and μ p s) Special cases [w 1 to obtain certain σ R ] ρ 1,2 = 1 w 1 = (+/-σ p σ 2 ) / (σ 1 σ 2 ) ρ 1,2 = -1 w 1 = (+/- σ p + σ 2 ) / (σ 1 + σ 2 ) Slide 05-9

10 For ρ 1,2 = 1: σ p = w 1 σ 1 +(1 w 1 )σ 2 Hence, w 1 = ±σp σ2 σ 1 σ 2 μ p = w 1 μ 1 +(1 w 1 )μ 2 E[r 2 ] μ p E[r 1 ] σ 1 σ p σ 2 Lower part with is irrelevant The Efficient Frontier: Two Perfectly Correlated Risky Assets Slide 05-10

11 For ρ 1,2 = -1: σ p = w 1 σ 1 (1 w 1 )σ 2 μ p = w 1 μ 1 +(1 w 1 )μ 2 Hence, w 1 = ±σ p+σ 2 σ 1 +σ 2 E[r 2 ] σ 2 σ 1 +σ 2 μ 1 + σ 1 σ 1 +σ 2 μ 2 E[r 1 ] slope: μ 2 μ 1 σ 1 +σ 2 σ p slope: μ 2 μ 1 σ 1 +σ 2 σ p σ 1 σ 2 Efficient Frontier: Two Perfectly Negative Correlated Risky Assets Slide 05-11

12 For -1 < ρ 1,2 < 1: E[r 2 ] E[r 1 ] σ 1 σ 2 Efficient Frontier: Two Imperfectly Correlated Risky Assets Slide 05-12

13 For σ 1 = 0 E[r 2 ] μ p E[r 1 ] σ 1 σ p σ 2 The Efficient Frontier: One Risky and One Risk Free Asset Slide 05-13

14 Efficient Frontier with Eco 525: Financial Economics I n risky assets and one risk-free asset The Efficient Frontier: One Risk Free and n Risky Assets Slide 05-14

15 Mean-Variance Preferences U(μ p, σ p ) with U U μ p > 0, σ < 0 p 2 quadratic utility function (with portfolio return R) U(R) = a + b R + c R 2 vnm: E[U(R)] = a + b E[R] + c E[R 2 ] = a + b μ p + c μ p2 + c σ p 2 = g(μ p, σ p ) asset returns normally distributed R= j w j r j normal if U(.) is CARA certainty equivalent = μ p - ρ A /2σ 2 p (Use moment generating function) Slide 05-15

16 Optimal Portfolio: Two Fund Separation Price of Risk = = highest Sharpe ratio Optimal Portfolios of Two Investors with Different Risk Aversion Slide 05-16

17 Equilibrium leads to CAPM Portfolio theory: only analysis of demand price/returns are taken as given composition of risky portfolio is same for all investors Equilibrium Demand = Supply (market portfolio) CAPM allows to derive equilibrium prices/ returns. risk-premium Slide 05-17

18 The CAPM with a risk-free bond Eco 525: Financial Economics I The market portfolio is efficient since it is on the efficient frontier. All individual optimal portfolios are located on the half-line originating at point (0,r f ). The slope of Capital Market Line (CML):. E[ R p ] = R f + E[ R M σ ] M R f σ p E[ R M ] R f σ M Slide 05-18

19 The Capital Market Line Eco 525: Financial Economics I CML r M M r f j σ M σ p Slide 05-19

20 Proof of the CAPM relationship [old traditional derivation] Refer to previous figure. Consider a portfolio with a fraction 1 - α of wealth invested in an arbitrary security j and a fraction α in the market portfolio μ σ p 2 p = αμ M 2 = α σ + (1 α) μ As α varies we trace a locus which - passes through M (- and through j) - cannot cross the CML (why?) 2 M + (1 α) - hence must be tangent to the CML at M dμ p Tangency = = slope of the locus at M = dσ p α=1 = slope of CML = j 2 σ 2 j + 2α (1 α) σ jm μ M r f σ M Slide 05-20

21 slope of locus dμ p = = σ M dσ p α=1 = (μ M μ j )σ M σ 2 M σ jm = μ M r f at α =1 σ p = σ M slope of tangent! E[r j ]=μ j = r f + σ jm σ 2 M (μ M r f ) Do you see the connection to earlier state-price beta model? R * = R M Slide 05-21

22 The Security Market Line Eco 525: Financial Economics I E(r) E(r i ) SML E(r M ) r f slope SML = (E(r i )-r f ) /β i β M =1 β i β Slide 05-22

23 Overview Simple CAPM with quadratic utility functions (derived from state-price beta model) Mean-variance preferences Portfolio Theory CAPM (Intuition) CAPM (modern derivation) Projections Pricing Kernel and Expectation Kernel Slide 05-23

24 Projections States s=1,,s with π s >0 Probability inner product π-norm (measure of length) Slide 05-24

25 y shrink axes y x x x and y are π-orthogonal iff [x,y] π = 0, I.e. E[xy]=0 Slide 05-25

26 Projections Z space of all linear combinations of vectors z 1,,z n Given a vector y R S solve [smallest distance between vector y and Z space] Slide 05-26

27 Projections y ε y Z E[ε z j ]=0 for each j=1,,n (from FOC) ε z y Z is the (orthogonal) projection on Z y = y Z + ε, y Z Z, ε z Slide 05-27

28 Expected Value and Co-Variance Variance squeeze axis by (1,1) x [x,y]=e[xy]=cov[x,y] + E[x]E[y] [x,x]=e[x 2 ]=Var[x]+E[x] 2 x = E[x 2 ] ½ Slide 05-28

29 Expected Value and Co-Variance E[x] = [x, 1]= Slide 05-29

30 Overview Simple CAPM with quadratic utility functions (derived from state-price beta model) Mean-variance preferences Portfolio Theory CAPM (Intuition) CAPM (modern derivation) Projections Pricing Kernel and Expectation Kernel Slide 05-30

31 New (LeRoy( & Werner) Notation Main changes (new versus old) gross return: r = R SDF: μ = m pricing kernel: k q = m * Asset span: M = <X> income/endowment: w t = e t Slide 05-31

32 Pricing Kernel k q M space of feasible payoffs. If no arbitrage and π >>0 there exists SDF μ R S, μ >>0, such that q(z)=e(μ z). μ M SDF need not be in asset span. A pricing kernel is a k q M such that for each z M, q(z)=e(k q z). (k q = m * in our old notation.) Slide 05-32

33 Pricing Kernel - Examples Example 1: S=3,π s =1/3 for s=1,2,3, x 1 =(1,0,0), x 2 =(0,1,1), p=(1/3,2/3). Then k=(1,1,1) is the unique pricing kernel. Example 2: S=3,π s =1/3 for s=1,2,3, x 1 =(1,0,0), x 2 =(0,1,0), p=(1/3,2/3). Then k=(1,2,0) is the unique pricing kernel. Slide 05-33

34 Pricing Kernel Uniqueness If a state price density exists, there exists a unique pricing kernel. If dim(m) = m (markets are complete), there are exactly m equations and m unknowns If dim(m) m, (markets may be incomplete) For any state price density (=SDF) μ and any z M E[(μ-k q )z]=0 μ=(μ-k q )+k q k q is the projection'' of μ on M. Complete markets, k q =μ (SDF=state price density) Slide 05-34

35 Expectations Kernel k e An expectations kernel is a vector k e M Such that E(z)=E(k e z) for each z M. Example S=3, π s =1/3, for s=1,2,3, x 1 =(1,0,0), x 2 =(0,1,0). Then the unique k e =(1,1,0). If π >>0, there exists a unique expectations kernel. Let e=(1,, 1) then for any z M E[(e-k e )z]=0 k e is the projection of e on M k e = e if bond can be replicated (e.g. if markets are complete) Slide 05-35

36 Mean Variance Frontier Definition 1: z M is in the mean variance frontier if there exists no z M such that E[z ]= E[z], q(z')= q(z) and var[z ] < var[z]. Definition 2: Let E the space generated by k q and k e. Decompose z=z E +ε, with z E E and ε E. Hence, E[ε]= E[ε k e ]=0, q(ε)= E[ε k q ]=0 Cov[ε,z E ]=E[ε z E ]=0, since ε E. var[z] = var[z E ]+var[ε] (price of ε is zero, but positive variance) If z in mean variance frontier z E. Every z E is in mean variance frontier. Slide 05-36

37 Frontier Returns Frontier returns are the returns of frontier payoffs with non-zero prices. x graphically: payoffs with price of p=1. Slide 05-37

38 M = R S = R 3 Mean-Variance Payoff Frontier ε k q Mean-Variance Return Frontier p=1-line = return-line (orthogonal to k q ) Slide 05-38

39 Mean-Variance (Payoff) Frontier 0 (1,1,1) k q standard deviation expected return NB: graphical illustrated of expected returns and standard deviation changes if bond is not in payoff span. Slide 05-39

40 Mean-Variance (Payoff) Frontier efficient (return) frontier 0 (1,1,1) k q standard deviation expected return inefficient (return) frontier Slide 05-40

41 Frontier Returns Eco 525: Financial Economics I (if agent is risk-neutral) Slide 05-41

42 Minimum Variance Portfolio Take FOC w.r.t. λ of Hence, MVP has return of Slide 05-42

43 Mean-Variance Efficient Returns Definition: A return is mean-variance efficient if there is no other return with same variance but greater expectation. Mean variance efficient returns are frontier returns with E[r λ ] E[r λ0 ]. If risk-free asset can be replicated Mean variance efficient returns correspond to λ 0. Pricing kernel (portfolio) is not mean-variance efficient, since Slide 05-43

44 Zero-Covariance Frontier Returns Take two frontier portfolios with returns and C The portfolios have zero co-variance if For all λ λ 0 μ exists μ=0 if risk-free bond can be replicated Slide 05-44

45 Illustration of MVP Eco 525: Financial Economics I Expected return of MVP M = R 2 and S=3 (1,1,1) Minimum standard deviation Slide 05-45

46 Illustration of ZC Portfolio M = R 2 and S=3 (1,1,1) arbitrary portfolio p Recall: Slide 05-46

47 Illustration of ZC Portfolio (1,1,1) arbitrary portfolio p ZC of p Slide 05-47

48 Beta Pricing Frontier Returns (are on linear subspace). Hence Consider any asset with payoff x j It can be decomposed in x j = x je + ε j q(x j )=q(x je ) and E[x j ]=E[x je ], since ε E. Let r je be the return of x E j x Using above and assuming λ λ 0 and μ is ZC-portfolio of λ, Slide 05-48

49 Beta Pricing Taking expectations and deriving covariance _ If risk-free asset can be replicated, beta-pricing equation simplifies to Problem: How to identify frontier returns Slide 05-49

50 Capital Asset Pricing Model CAPM = market return is frontier return Derive conditions under which market return is frontier return Two periods: 0,1, Endowment: individual w i 1 at time 1, aggregate where the orthogonal projection of on M is. The market payoff: Assume q(m) 0, let r m =m / q(m), and assume that r m is not the minimum variance return. Slide

51 Capital Asset Pricing Model If r m0 is the frontier return that has zero covariance with r m then, for every security j, E[r j ]=E[r m0 ] + β j (E[r m ]-E[r m0 ]), with β j =cov[r j,r m ] / var[r m ]. If a risk free asset exists, equation becomes, E[r j ]= r f + β j (E[r m ]- r f ) N.B. first equation always hold if there are only two assets. Slide

52 Outdated material follows Traditional derivation of CAPM is less elegant Not relevant for exams Slide

53 Deriving the Frontier Eco 525: Financial Economics I Definition 6.1: A frontier portfolio is one which displays minimum variance among all feasible portfolios with the same E( ). r~p min w 1 2 w T n risky assets Vw ( λ) s.t. w T e = E N w E( ~ r ) i= 1 i i = E ( γ) w T 1 = 1 N w i= 1 i = 1 Slide

54 The first FOC can be written as: Slide

55 Noting that e T w p = w T pe, using the first foc, the second foc can be written as pre-multiplying first foc with 1 (instead of e T ) yields Solving both equations for λ and γ Slide

56 Hence, w p = λ V -1 e + γ V -1 1 becomes Eco 525: Financial Economics I w p CE A B AE = V e + V D D 1 1 (vector) λ (scalar) γ (scalar) 1 (vector) = D [ 1 1 ( ) ( )] 1 1 B V 1 A V e + C( V e) A( V 1) 1 1 [ ]E D w p = g + h E (vector) (vector) (scalar) (6.15) linear in expected return E! If E = 0, If E = 1, wp = g wp = g + h Hence, g and g+h are portfolios on the frontier. Slide

57 Characterization of Frontier Portfolios Proposition 6.1: The entire set of frontier portfolios can be generated by ("are convex combinations" of) g and g+h. Proposition 6.2. The portfolio frontier can be described as convex combinations of any two frontier portfolios, not just the frontier portfolios g and g+h. Proposition 6.3 : Any convex combination of frontier portfolios is also a frontier portfolio. Slide

58 Characterization of Frontier Portfolios For any portfolio on the frontier, with g and h as defined earlier. 2 σ T ( E [ ~ r ]) = [ g + he( ~ r )] V [ g + he( ~ r )] p p p Multiplying all this out yields: Slide

59 Characterization of Frontier Portfolios (i) the expected return of the minimum variance portfolio is A/C; (ii) the variance of the minimum variance portfolio is given by 1/C; (iii) equation (6.17) is the equation of a parabola with vertex (1/C, A/C) in the expected return/variance space and of a hyperbola in the expected return/standard deviation space. See Figures 6.3 and 6.4. Slide

60 Figure 6-3 The Set of Frontier Portfolios: Mean/Variance Space Slide 05-60

61 Figure 6-4 The Set of Frontier Portfolios: Mean/SD Space Slide 05-61

62 Figure 6-5 The Set of Frontier Portfolios: Short Selling Allowed Slide 05-62

63 Characterization of Efficient Portfolios (No Risk-Free Assets) Definition 6.2: Efficient portfolios are those frontier portfolios which are not mean-variance dominated. Lemma: Efficient portfolios are those frontier portfolios for which the expected return exceeds A/C, the expected return of the minimum variance portfolio. Slide 05-63

64 Zero Covariance Portfolio Zero-Cov Portfolio is useful for Zero-Beta CAPM Proposition 6.5: For any frontier portfolio p, except the minimum variance portfolio, there exists a unique frontier portfolio with which p has zero covariance. We will call this portfolio the "zero covariance portfolio relative to p", and denote its vector of portfolio weights by ZC p. ( ) Proof: by construction. Slide 05-64

65 collect all expected returns terms, add and subtract A 2 C/DC 2 and note that the remaining term (1/C)[(BC/D)-(A 2 /D)]=1/C, since D=BC-A 2 Slide 05-65

66 For zero co-variance portfolio ZC(p) For graphical illustration, let s draw this line: Slide 05-66

67 Graphical Representation: line through p (Var[r p ], E[r p ]) AND 2 2 C A 1 MVP (1/C, A/C) (use σ ( r~ p ) = E( r~ p ) + ) for σ 2 (r) = 0 you get E[r ZC(p) ] D C C Slide 05-67

68 E ( r ) p A/C MVP E[r ( ZC(p)] ZC(p) ZC (p) on frontier (1/C) Var ( r ) Figure 6-6 The Set of Frontier Portfolios: Location of the Zero-Covariance Portfolio Slide 05-68

69 Zero-Beta CAPM (no risk-free asset) (i) agents maximize expected utility with increasing and strictly concave utility of money functions and asset returns are multivariate normally distributed, or (ii) each agent chooses a portfolio with the objective of maximizing a derived utility function of the form 2 U( e, σ ), U1 > 0, U2 < 0, U concave. (iii) common time horizon, (iv) homogeneous beliefs about e and σ 2 Slide 05-69

70 All investors hold mean-variance efficient portfolios the market portfolio is convex combination of efficient portfolios is efficient. Cov[r p,r q ] = λ E[r q ]+ γ (q need not be on the frontier) (6.22) Cov[r p,r ZC(p) ] = λ E[r ZC(p) ] + γ=0 Cov[r p,r q ] = λ {E[r q ]-E[r ZC(p) ]} Var[r p ] = λ {E[r p ]-E[r ZC(p) ]}. E E Divide third by fourth equation: ( r~ q ) = E( r~ ZC( M )) + βmq[ E( r~ M ) E( ~ r ZC( M ))] ( r~ ) ( ( )) [ ( ) ( ( ))] j = E r~ ZC M + β ~ Mj E r~ M E r ZC M (6.28) (6.29) Slide 05-70

71 Zero-Beta CAPM mean variance framework (quadratic utility or normal returns) In equilibrium, market portfolio, which is a convex combination of individual portfolios E[r q ] = E[r ZC(M) ]+ β Mq [E[r M ]-E[r ZC(M) ]] E[r j ] = E[r ZC(M) ]+ β Mj [E[r M ]-E[r ZC(M) ]] Slide 05-71

72 The Standard CAPM (with risk-free asset) FOC: Multiplying by (e r f 1) T and solving for λ yields w p ( e r ) 1 = V 1 n x n n x 1 n x 1 f E( ~ r ) p H a number r f where H = B - 2Ar f + Cr f 2 (6.30) Slide 05-72

73 NB:Derivation in DD is not correct. Rewrite first equation and replace G using second equation. Holds for any frontier portfolio, in particular the market portfolio. Slide 05-73

Prof. Markus K. Brunnermeier

Prof. Markus K. Brunnermeier Lecture 07: Mean-Variance Analysis & Capital Asset Pricing Model (CAPM CAPM) Prof. Markus K. Brunnermeier Slide 07-1 Overview 1. Simple CAPM with quadratic utility functions (derived from state-price beta

More information

LECTURE 06: MEAN-VARIANCE ANALYSIS & CAPM

LECTURE 06: MEAN-VARIANCE ANALYSIS & CAPM Lecture 06 Mean-Variance & CAPM (1) Markus K. Brunnermeier LECTURE 06: MEAN-VARIANCE ANALYSIS & CAPM Lecture 06 Mean-Variance & CAPM (2) Overview 1. Introduction: Simple CAPM with quadratic utility functions

More information

Lecture 2: Equilibrium

Lecture 2: Equilibrium Lecture 2: Equilibrium Investments FIN460-Papanikolaou Equilibrium 1/ 33 Overview 1. Introduction 2. Assumptions 3. The Market Portfolio 4. The Capital Market Line 5. The Security Market Line 6. Conclusions

More information

Problem Set 6 - Solutions

Problem Set 6 - Solutions ECO573 Financial Economics Problem Set 6 - Solutions 1. Debt Restructuring CAPM. a Before refinancing the stoc the asset have the same beta: β a = β e = 1.2. After restructuring the company has the same

More information

D&D, sect : CAPM without risk free asset Main points:

D&D, sect : CAPM without risk free asset Main points: D&D, sect 74 77: CAPM without risk free asset Main points: Consider N risky assets, N > 2, no risk free asset Then the frontier portfolio set is an hyperbola (Mentioned without proof on p 11 of 1 September)

More information

Lecture 02: One Period Model

Lecture 02: One Period Model Lecture 02: Prof. Markus K. Brunnermeier Slide 2-1 Overview 1. Securities Structure Arrow-Debreu securities structure Redundant securities Market completeness Completing markets with options 2. Pricing

More information

Mean Variance Efficient Frontier

Mean Variance Efficient Frontier Mean Variance Efficient Frontier 1 Introduction We consider a market with n risky assets. An investor wishes to invest B dollars in this market. Let B i, i 1, 2,..., n, denote the allocation of the budget

More information

THE CAPITAL ASSET PRICING MODEL

THE CAPITAL ASSET PRICING MODEL THE CAPITAL ASSET PRICING MODEL Szabolcs Sebestyén szabolcs.sebestyen@iscte.pt Master in Finance INVESTMENTS Sebestyén (ISCTE-IUL) CAPM Investments 1 / 30 Outline 1 Introduction 2 The Traditional Approach

More information

The Capital Asset Pricing Model (CAPM)

The Capital Asset Pricing Model (CAPM) The Capital Asset Pricing Model (CAPM) Still pursuing the question what is the contribution of a stock added to a portfolio to the risk of the portfolio? Can we do better by adding the risk free asset?

More information

CAPM, Arbitrage, and Linear Factor Models

CAPM, Arbitrage, and Linear Factor Models CAPM, Arbitrage, and Linear Factor Models CAPM, Arbitrage, Linear Factor Models 1/ 41 Introduction We now assume all investors actually choose mean-variance e cient portfolios. By equating these investors

More information

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Mean-variance analysis 1/ 51 Introduction How does one optimally choose among multiple risky assets? Due to diversi cation, which depends on assets return covariances, the attractiveness

More information

The Capital Asset Pricing Model

The Capital Asset Pricing Model Finance 400 A. Penati - G. Pennacchi The Capital Asset Pricing Model Let us revisit the problem of an investor who maximizes expected utility that depends only on the expected return and variance (or standard

More information

Corporate Finance. Lecture 3: Mean Variance Analysis. Albert Banal-Estanol

Corporate Finance. Lecture 3: Mean Variance Analysis. Albert Banal-Estanol Corporate Finance Lecture 3: Mean Variance Analysis Portfolio Problem How best to combine many assets in order to maximize expected return for a given variance (i.e. risk) minimize variance (i.e. risk)

More information

Review for Exam 2. Instructions: Please read carefully

Review for Exam 2. Instructions: Please read carefully Review for Exam 2 Instructions: Please read carefully The exam will have 25 multiple choice questions and 5 work problems You are not responsible for any topics that are not covered in the lecture note

More information

Part III. Equilibrium Pricing

Part III. Equilibrium Pricing Part III Equilibrium Pricing Chapter 7: The Capital Asset Pricing Model: Another View About Risk 7. Introduction The CAPM is an equilibrium theory built on the premises of Modern Portfolio Theory. It is,

More information

15 CAPM and portfolio management

15 CAPM and portfolio management ECG590I Asset Pricing. Lecture 15: CAPM and portfolio management 1 15 CAPM and portfolio management 15.1 Theoretical foundation for mean-variance analysis We assume that investors try to maximize the expected

More information

This is the trade-off between the incremental change in the risk premium and the incremental change in risk.

This is the trade-off between the incremental change in the risk premium and the incremental change in risk. I. The Capital Asset Pricing Model A. Assumptions and implications 1. Security markets are perfectly competitive. a) Many small investors b) Investors are price takers. Markets are frictionless a) There

More information

Problem Set 3. Probability Rate of return

Problem Set 3. Probability Rate of return Financial Economics, Exercise 1 Problem Set 3 HEC, Paris A fund manager can invest in 3 securities. Securities A and B are risky with the following characteristics : E(r A )=0.2 ; E(r B )=0.12 ; σ(r A

More information

MEAN-VARIANCE PORTFOLIO THEORY AND THE CAPM

MEAN-VARIANCE PORTFOLIO THEORY AND THE CAPM MEAN-VARIANCE PORTFOLIO THEORY AND THE CAPM Minimum Variance Efficient Portfolios Suppose that the investor chooses the proportion of his total wealth to invest in each asset in order to minimise portfolio

More information

Lecture 1: Asset Allocation

Lecture 1: Asset Allocation Lecture 1: Asset Allocation Investments FIN460-Papanikolaou Asset Allocation I 1/ 62 Overview 1. Introduction 2. Investor s Risk Tolerance 3. Allocating Capital Between a Risky and riskless asset 4. Allocating

More information

Mean Variance Analysis

Mean Variance Analysis Finance 400 A. Penati - G. Pennacchi Mean Variance Analysis Consider the utility of an individual who invests her beginning-of-period wealth, W 0,ina particular portfolio of assets. Let r p betherandomrateofreturnonthisportfolio,sothatthe

More information

1 Capital Asset Pricing Model (CAPM)

1 Capital Asset Pricing Model (CAPM) Copyright c 2005 by Karl Sigman 1 Capital Asset Pricing Model (CAPM) We now assume an idealized framework for an open market place, where all the risky assets refer to (say) all the tradeable stocks available

More information

1 Capital Allocation Between a Risky Portfolio and a Risk-Free Asset

1 Capital Allocation Between a Risky Portfolio and a Risk-Free Asset Department of Economics Financial Economics University of California, Berkeley Economics 136 November 9, 2003 Fall 2006 Economics 136: Financial Economics Section Notes for Week 11 1 Capital Allocation

More information

Solution Guide to Exercises for Chapter 6 The capital asset pricing model

Solution Guide to Exercises for Chapter 6 The capital asset pricing model THE ECONOMICS OF FINANCIAL MARKETS R. E. BAILEY Solution Guide to Exercises for Chapter 6 The capital asset pricing model 1. The following information is provided for a stock market: µ j β j Asset 1 6.6%

More information

2. Mean-variance portfolio theory

2. Mean-variance portfolio theory 2. Mean-variance portfolio theory (2.1) Markowitz s mean-variance formulation (2.2) Two-fund theorem (2.3) Inclusion of the riskfree asset 1 2.1 Markowitz mean-variance formulation Suppose there are N

More information

FE670 Algorithmic Trading Strategies. Stevens Institute of Technology

FE670 Algorithmic Trading Strategies. Stevens Institute of Technology FE670 Algorithmic Trading Strategies Lecture 6. Portfolio Optimization: Basic Theory and Practice Steve Yang Stevens Institute of Technology 10/03/2013 Outline 1 Mean-Variance Analysis: Overview 2 Classical

More information

1 Portfolio mean and variance

1 Portfolio mean and variance Copyright c 2005 by Karl Sigman Portfolio mean and variance Here we study the performance of a one-period investment X 0 > 0 (dollars) shared among several different assets. Our criterion for measuring

More information

University of Pennsylvania The Wharton School

University of Pennsylvania The Wharton School University of Pennsylvania The Wharton School FNCE 100 PROBLEM SET #3 Fall Term 2005 A. Craig MacKinlay Diversification, Risk and Return 1. We have three securities with the following possible payoffs.

More information

Derivation of zero-beta CAPM: Efficient portfolios

Derivation of zero-beta CAPM: Efficient portfolios Derivation of zero-beta CAPM: Efficient portfolios Assumptions as CAPM, except r f does not exist. Argument which leads to Capital Market Line is invalid. (No straight line through r f, tilted up as far

More information

2. Capital Asset pricing Model

2. Capital Asset pricing Model 2. Capital Asset pricing Model Dr. Youchang Wu WS 2007 Asset Management Youchang Wu 1 Efficient frontier in the presence of a risk-free asset Asset Management Youchang Wu 2 Capital market line When a risk-free

More information

CML is the tangent line drawn from the risk free point to the feasible region for risky assets. This line shows the relation between r P and

CML is the tangent line drawn from the risk free point to the feasible region for risky assets. This line shows the relation between r P and 5. Capital Asset Pricing Model and Factor Models Capital market line (CML) CML is the tangent line drawn from the risk free point to the feasible region for risky assets. This line shows the relation between

More information

Lecture 2: Delineating efficient portfolios, the shape of the meanvariance frontier, techniques for calculating the efficient frontier

Lecture 2: Delineating efficient portfolios, the shape of the meanvariance frontier, techniques for calculating the efficient frontier Lecture 2: Delineating efficient portfolios, the shape of the meanvariance frontier, techniques for calculating the efficient frontier Prof. Massimo Guidolin Portfolio Management Spring 2016 Overview The

More information

Mean-Variance Portfolio Analysis and the Capital Asset Pricing Model

Mean-Variance Portfolio Analysis and the Capital Asset Pricing Model Mean-Variance Portfolio Analysis and the Capital Asset Pricing Model 1 Introduction In this handout we develop a model that can be used to determine how a risk-averse investor can choose an optimal asset

More information

Portfolio Theory. Econ 422: Investment, Capital & Finance University of Washington Spring 2010 May 17, E. Zivot R.W.Parks/L.F.

Portfolio Theory. Econ 422: Investment, Capital & Finance University of Washington Spring 2010 May 17, E. Zivot R.W.Parks/L.F. Portfolio Theory Econ 4: Investment, Capital & Finance University of Washington Spring 010 May 17, 010 1 Forming Combinations of Assets or Portfolios Portfolio Theory dates back to the late 1950s and the

More information

AFM 472. Midterm Examination. Monday Oct. 24, 2011. A. Huang

AFM 472. Midterm Examination. Monday Oct. 24, 2011. A. Huang AFM 472 Midterm Examination Monday Oct. 24, 2011 A. Huang Name: Answer Key Student Number: Section (circle one): 10:00am 1:00pm 2:30pm Instructions: 1. Answer all questions in the space provided. If space

More information

Lecture 03: Sharpe Ratio, Bounds and the Equity Premium Puzzle

Lecture 03: Sharpe Ratio, Bounds and the Equity Premium Puzzle Lecture 03: Sharpe Ratio, Bounds and the Equity Premium Puzzle Prof. Markus K. Brunnermeier Slide 03-1 $1 invested in 1972 - show graph! Slide 03-2 Sharpe Ratios and Bounds Consider a one period security

More information

The CAPM & Multifactor Models

The CAPM & Multifactor Models The CAPM & Multifactor Models Business Finance 722 Investment Management Professor Karl B. Diether The Ohio State University Fisher College of Business Review and Clarification In the last few lectures

More information

Capital Allocation Between The Risky And The Risk- Free Asset. Chapter 7

Capital Allocation Between The Risky And The Risk- Free Asset. Chapter 7 Capital Allocation Between The Risky And The Risk- Free Asset Chapter 7 Investment Decisions capital allocation decision = choice of proportion to be invested in risk-free versus risky assets asset allocation

More information

CHAPTER 10 RISK AND RETURN: THE CAPITAL ASSET PRICING MODEL (CAPM)

CHAPTER 10 RISK AND RETURN: THE CAPITAL ASSET PRICING MODEL (CAPM) CHAPTER 10 RISK AND RETURN: THE CAPITAL ASSET PRICING MODEL (CAPM) Answers to Concepts Review and Critical Thinking Questions 1. Some of the risk in holding any asset is unique to the asset in question.

More information

Practice Set #4 and Solutions.

Practice Set #4 and Solutions. FIN-469 Investments Analysis Professor Michel A. Robe Practice Set #4 and Solutions. What to do with this practice set? To help students prepare for the assignment and the exams, practice sets with solutions

More information

Solution: The optimal position for an investor with a coefficient of risk aversion A = 5 in the risky asset is y*:

Solution: The optimal position for an investor with a coefficient of risk aversion A = 5 in the risky asset is y*: Problem 1. Consider a risky asset. Suppose the expected rate of return on the risky asset is 15%, the standard deviation of the asset return is 22%, and the risk-free rate is 6%. What is your optimal position

More information

A Mean-Variance Framework for Tests of Asset Pricing Models

A Mean-Variance Framework for Tests of Asset Pricing Models A Mean-Variance Framework for Tests of Asset Pricing Models Shmuel Kandel University of Chicago Tel-Aviv, University Robert F. Stambaugh University of Pennsylvania This article presents a mean-variance

More information

Note: There are fewer problems in the actual Final Exam!

Note: There are fewer problems in the actual Final Exam! HEC Paris Practice Final Exam Questions Version with Solutions Financial Markets Fall 2013 Note: There are fewer problems in the actual Final Exam! Problem 1. Are the following statements True, False or

More information

On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information

On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information Finance 400 A. Penati - G. Pennacchi Notes on On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information by Sanford Grossman This model shows how the heterogeneous information

More information

CHAPTER 7: OPTIMAL RISKY PORTFOLIOS

CHAPTER 7: OPTIMAL RISKY PORTFOLIOS CHAPTER 7: OPTIMAL RIKY PORTFOLIO PROLEM ET 1. (a) and (e).. (a) and (c). After real estate is added to the portfolio, there are four asset classes in the portfolio: stocks, bonds, cash and real estate.

More information

Capital Asset Pricing Model. Joel Barber. Department of Finance. Florida International University. Miami, FL 33199

Capital Asset Pricing Model. Joel Barber. Department of Finance. Florida International University. Miami, FL 33199 Capital Asset Pricing Model Joel Barber Department of Finance Florida International University Miami, FL 33199 Capital Asset Pricing Model Mean-variance efficient risky portfolio For each asset j =1, 2,...,

More information

Lesson 5. Risky assets

Lesson 5. Risky assets Lesson 5. Risky assets Prof. Beatriz de Blas May 2006 5. Risky assets 2 Introduction How stock markets serve to allocate risk. Plan of the lesson: 8 >< >: 1. Risk and risk aversion 2. Portfolio risk 3.

More information

Diversification and the Risk-Return Trade-Off

Diversification and the Risk-Return Trade-Off Diversification and the Risk-Return Trade-Off Dr. Patrick Toche References : Zvi Bodie, Alex Kane, Alan Marcus, Investments, McGraw-Hill/Irwin. The relevant chapters of this textbook will be followed closely

More information

Capital Asset Pricing Model

Capital Asset Pricing Model Capital Asset Pricing Model 1 Introduction In this handout we develop a model that can be used to determine how an investor can choose an optimal asset portfolio in this sense: the investor will earn the

More information

Lecture 06: Factor Pricing

Lecture 06: Factor Pricing Lecture 06: Factor Pricing Prof. Markus K. Brunnermeier Slide 06-1 Overview Theory of Factor Pricing (APT) Merits of Factor Pricing Exact Factor Pricing and Factor Pricing Errors Factor Structure and Pricing

More information

Portfolio Choice with Many Risky Assets

Portfolio Choice with Many Risky Assets Portfolio Choice with Many Risky Assets Consider portfolio choice with many risky assets and a risk-free asset. It turns out that the single risky asset model still applies! 1 Efficient Frontier for Risky

More information

4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS 4: SINGLE-PERIOD MARKET MODELS Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2015 B. Goldys and M. Rutkowski (USydney) Slides 4: Single-Period Market

More information

Graduate Program Finance and Monetary Economics Summer 2005 Asset Pricing Problem Set 1. Solutions.

Graduate Program Finance and Monetary Economics Summer 2005 Asset Pricing Problem Set 1. Solutions. Graduate Program Finance and Monetary Economics Summer 2005 Asset Pricing Problem Set 1. Solutions. Problem 1. Consider a two-period economy with a representative agent that has the following utility functions:

More information

Chapter 2 Portfolio Management and the Capital Asset Pricing Model

Chapter 2 Portfolio Management and the Capital Asset Pricing Model Chapter 2 Portfolio Management and the Capital Asset Pricing Model In this chapter, we explore the issue of risk management in a portfolio of assets. The main issue is how to balance a portfolio, that

More information

1 The Single Index Model (Review)

1 The Single Index Model (Review) IEOR4706: Financial Engineering I Lecture 5 Professor Guillermo Gallego 7 October 1999 Single Index Model (Review) Multi Index Models Capital Asset Pricing Model 1 The Single Index Model (Review) One possible

More information

SAMPLE MID-TERM QUESTIONS

SAMPLE MID-TERM QUESTIONS SAMPLE MID-TERM QUESTIONS William L. Silber HOW TO PREPARE FOR THE MID- TERM: 1. Study in a group 2. Review the concept questions in the Before and After book 3. When you review the questions listed below,

More information

END OF CHAPTER EXERCISES - ANSWERS. Chapter 10 : Portfolio Theory

END OF CHAPTER EXERCISES - ANSWERS. Chapter 10 : Portfolio Theory 1 END OF CHAPTER EXERCISES - ANSWERS Chapter 10 : Portfolio Theory Q1. If you have one risky asset and one riskless (safe) asset, what is the Capital Allocation Line (CAL)? A1 The safe asset and risky

More information

Chapter 5 Risk and Return ANSWERS TO SELECTED END-OF-CHAPTER QUESTIONS

Chapter 5 Risk and Return ANSWERS TO SELECTED END-OF-CHAPTER QUESTIONS Chapter 5 Risk and Return ANSWERS TO SELECTED END-OF-CHAPTER QUESTIONS 5-1 a. Stand-alone risk is only a part of total risk and pertains to the risk an investor takes by holding only one asset. Risk is

More information

FIN 3710. Final (Practice) Exam 05/23/06

FIN 3710. Final (Practice) Exam 05/23/06 FIN 3710 Investment Analysis Spring 2006 Zicklin School of Business Baruch College Professor Rui Yao FIN 3710 Final (Practice) Exam 05/23/06 NAME: (Please print your name here) PLEDGE: (Sign your name

More information

CHAPTER 9: THE CAPITAL ASSET PRICING MODEL

CHAPTER 9: THE CAPITAL ASSET PRICING MODEL CHAPTER 9: THE CAPITAL ASSET PRICING MODEL 1. E(r P ) = + β P [E(r M ) ] 18 = 6 + β(14 6) β P = 12/8 = 1.5 2. If the correlation of the security with the market portfolio doubles with all other variables

More information

Chapter 7 Portfolio Theory and Other Asset Pricing Models

Chapter 7 Portfolio Theory and Other Asset Pricing Models Chapter 7 Portfolio Theory and Other sset Pricing Models NSWERS TO END-OF-CHPTER QUESTIONS 7-1 a. portfolio is made up of a group of individual assets held in combination. n asset that would be relatively

More information

Mean Variance Analysis

Mean Variance Analysis Mean Variance Analysis Karl B. Diether Fisher College of Business Karl B. Diether (Fisher College of Business) Mean Variance Analysis 1 / 36 A Portfolio of Three Risky Assets Not a two risky asset world

More information

The basic CAPM model assumes the existence of a risk free asset and we assume this in the current

The basic CAPM model assumes the existence of a risk free asset and we assume this in the current Chapter III Basics of the Capital Asset Pricing Model The Capital Asset Pricing Model (CAPM) is the most popular model of the determination of expected returns on securities and other financial assets

More information

The Tangent or Efficient Portfolio

The Tangent or Efficient Portfolio The Tangent or Efficient Portfolio 1 2 Identifying the Tangent Portfolio Sharpe Ratio: Measures the ratio of reward-to-volatility provided by a portfolio Sharpe Ratio Portfolio Excess Return E[ RP ] r

More information

Midterm Exam:Answer Sheet

Midterm Exam:Answer Sheet Econ 497 Barry W. Ickes Spring 2007 Midterm Exam:Answer Sheet 1. (25%) Consider a portfolio, c, comprised of a risk-free and risky asset, with returns given by r f and E(r p ), respectively. Let y be the

More information

CHAPTER 11: ARBITRAGE PRICING THEORY

CHAPTER 11: ARBITRAGE PRICING THEORY CHAPTER 11: ARBITRAGE PRICING THEORY 1. The revised estimate of the expected rate of return on the stock would be the old estimate plus the sum of the products of the unexpected change in each factor times

More information

Capital Asset Pricing Model Homework Problems

Capital Asset Pricing Model Homework Problems Capital Asset Pricing Model Homework Problems Portfolio weights and expected return 1. Consider a portfolio of 300 shares of firm A worth $10/share and 50 shares of firm B worth $40/share. You expect a

More information

The Classical Linear Regression Model

The Classical Linear Regression Model The Classical Linear Regression Model 1 September 2004 A. A brief review of some basic concepts associated with vector random variables Let y denote an n x l vector of random variables, i.e., y = (y 1,

More information

M.I.T. Spring 1999 Sloan School of Management 15.415. First Half Summary

M.I.T. Spring 1999 Sloan School of Management 15.415. First Half Summary M.I.T. Spring 1999 Sloan School of Management 15.415 First Half Summary Present Values Basic Idea: We should discount future cash flows. The appropriate discount rate is the opportunity cost of capital.

More information

Choice under Uncertainty

Choice under Uncertainty Choice under Uncertainty Part 1: Expected Utility Function, Attitudes towards Risk, Demand for Insurance Slide 1 Choice under Uncertainty We ll analyze the underlying assumptions of expected utility theory

More information

Portfolio Theory. Portfolio Theory MIT 18.S096. Dr. Kempthorne. Fall 2013

Portfolio Theory. Portfolio Theory MIT 18.S096. Dr. Kempthorne. Fall 2013 Lecture 14: Portfolio Theory MIT 18.S096 Dr. Kempthorne Fall 2013 MIT 18.S096 Portfolio Theory 1 Outline Portfolio Theory 1 Portfolio Theory MIT 18.S096 Portfolio Theory 2 Markowitz Mean-Variance Analysis

More information

Lecture 6: Arbitrage Pricing Theory

Lecture 6: Arbitrage Pricing Theory Lecture 6: Arbitrage Pricing Theory Investments FIN460-Papanikolaou APT 1/ 48 Overview 1. Introduction 2. Multi-Factor Models 3. The Arbitrage Pricing Theory FIN460-Papanikolaou APT 2/ 48 Introduction

More information

Investments - Midterm

Investments - Midterm Investments - Midterm Daniel Andrei Friday, April 3 2009, 8h00 Duration: 2 hours. Documentation and calculators authorized Problem 1 (Multiple Choice, 30 points) One correct answer per question. You do

More information

Lecture Notes 8. Index Models. I. Readings and Suggested Practice Problems. III. Why the Single Index Model is Useful?

Lecture Notes 8. Index Models. I. Readings and Suggested Practice Problems. III. Why the Single Index Model is Useful? Prof. Alex Shapiro Lecture Notes 8 Index Models I. Readings and Suggested Practice Problems II. A Single Index Model III. Why the Single Index Model is Useful? IV. A Detailed Example V. Two Approaches

More information

1 Fund theorems. 1.1 Two-fund theorem. 1.2 Allowing for a risk-free asset. Copyright c 2005 by Karl Sigman

1 Fund theorems. 1.1 Two-fund theorem. 1.2 Allowing for a risk-free asset. Copyright c 2005 by Karl Sigman Copyright c 005 by Karl Sigman 1 Fund theorems In the Markowitz problem, we assumed that all n assets are risky; σi > 0, i {1,,..., n}. This lead to the efficient frontier as a curve starting from the

More information

The Capital Asset Pricing Model Theory, Econometrics, and Evidence

The Capital Asset Pricing Model Theory, Econometrics, and Evidence HA Almen 6. Semester Bachelor thesis Author: Magnus David Sander Jensen Supervisor: David Sloth Pedersen The Capital Asset Pricing Model Theory, Econometrics, and Evidence S. 2011 Department of Business

More information

Statistical Analysis of the CAPM II. Black CAPM

Statistical Analysis of the CAPM II. Black CAPM Statistical Analysis of the CAPM II. Black CAPM Brief Review of the Black CAPM The Black CAPM assumes that (i) all investors act according to the µ σ rule, (ii) face no short selling constraints, and (iii)

More information

Portfolio selection: the mean-variance model

Portfolio selection: the mean-variance model 5 Portfolio selection: the mean-variance model Overview This chapter explores in greater depth than chapter 4 the study of portfolio decisions when investors act to optimize a mean-variance objective function.

More information

Diversification. Class 10 Financial Management,

Diversification. Class 10 Financial Management, Diversification Class 10 Financial Management, 15.414 Today Diversification Portfolio risk and diversification Optimal portfolios Reading Brealey and Myers, Chapters 7 and 8.1 Example Fidelity Magellan,

More information

MS-E2114 Investment Science Exercise 6/2016, Solutions

MS-E2114 Investment Science Exercise 6/2016, Solutions The market portfolio is the summation of all assets. An asset's weight in the market portfolio, termed capitalization weights, is equal to the proportion of that asset's total capital value to the total

More information

CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION

CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION Szabolcs Sebestyén szabolcs.sebestyen@iscte.pt Master in Finance INVESTMENTS Sebestyén (ISCTE-IUL) Choice Theory Investments 1 / 66 Outline 1 An Introduction

More information

Portfolio Performance Measures

Portfolio Performance Measures Portfolio Performance Measures Objective: Evaluation of active portfolio management. A performance measure is useful, for example, in ranking the performance of mutual funds. Active portfolio managers

More information

4. Empirical Analysis of Equilibrium Models (CLM ch 5.)

4. Empirical Analysis of Equilibrium Models (CLM ch 5.) 4. Empirical Analysis of Equilibrium Models (CLM ch 5.) The major issue is the modeling quanti cation of the tradeo between return risk (what risk components are priced by the markets how). 4.1 The Capital

More information

CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS

CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS PROBLEM SETS 1. (e). (b) A higher borrowing is a consequence of the risk of the borrowers default. In perfect markets with no additional

More information

Portfolio Theory: Two Risky Assets

Portfolio Theory: Two Risky Assets Portfolio Theory: Two Risky Assets Karl B. Diether Fisher College of Business Karl B. Diether (Fisher College of Business) Portfolio Theory: Two Risky Assets 1 / 33 Portfolios A portfolio is a collection

More information

Solution Guide to Exercises for Chapter 5 Portfolio selection: the mean-variance model

Solution Guide to Exercises for Chapter 5 Portfolio selection: the mean-variance model THE ECONOMICS O INANCIAL MARKETS R. E. BAILEY Solution Guide to Exercises for Chapter 5 Portfolio selection: the mean-variance model 1. An investor uses the mean-variance criterion for selecting a portfolio

More information

5.1. The Capital market line, security market line and security characteristic

5.1. The Capital market line, security market line and security characteristic 40 Chapter 5. Captial Asset Pricing Model This chapter of introduces the capital asset pricing model (Sharpe, 964). Despite conflicting evidence reported in the Fama and French (004), among others, its

More information

t = 1 2 3 1. Calculate the implied interest rates and graph the term structure of interest rates. t = 1 2 3 X t = 100 100 100 t = 1 2 3

t = 1 2 3 1. Calculate the implied interest rates and graph the term structure of interest rates. t = 1 2 3 X t = 100 100 100 t = 1 2 3 MØA 155 PROBLEM SET: Summarizing Exercise 1. Present Value [3] You are given the following prices P t today for receiving risk free payments t periods from now. t = 1 2 3 P t = 0.95 0.9 0.85 1. Calculate

More information

Portfolio Analysis. M. Kateregga

Portfolio Analysis. M. Kateregga Portfolio Analysis M. Kateregga November 21, 2014 @ AIMS South Africa Outline Introduction The Optimization Problem Return of a Portfolio Variance of a Portfolio Portfolio Optimization in n-stocks case

More information

Chapter 1. Introduction to Portfolio Theory. 1.1 Portfolios of Two Risky Assets

Chapter 1. Introduction to Portfolio Theory. 1.1 Portfolios of Two Risky Assets Chapter 1 Introduction to Portfolio Theory Updated: August 9, 2013. This chapter introduces modern portfolio theory in a simplified setting where there are only two risky assets and a single risk-free

More information

The CAPM (Capital Asset Pricing Model) NPV Dependent on Discount Rate Schedule

The CAPM (Capital Asset Pricing Model) NPV Dependent on Discount Rate Schedule The CAPM (Capital Asset Pricing Model) Massachusetts Institute of Technology CAPM Slide 1 of NPV Dependent on Discount Rate Schedule Discussed NPV and time value of money Choice of discount rate influences

More information

Mean-Variance Portfolio Theory

Mean-Variance Portfolio Theory Mean-Variance Portfolio Theory Lakehead University Winter 2005 Outline Measures of Location Risk of a Single Asset Risk and Return of Financial Securities Risk of a Portfolio The Capital Asset Pricing

More information

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING 1. Introduction The Black-Scholes theory, which is the main subject of this course and its sequel, is based on the Efficient Market Hypothesis, that arbitrages

More information

MODERN PORTFOLIO THEORY AND INVESTMENT ANALYSIS

MODERN PORTFOLIO THEORY AND INVESTMENT ANALYSIS MODERN PORTFOLIO THEORY AND INVESTMENT ANALYSIS EIGHTH EDITION INTERNATIONAL STUDENT VERSION EDWIN J. ELTON Leonard N. Stern School of Business New York University MARTIN J. GRUBER Leonard N. Stern School

More information

Matrix Algebra of Sample Statistics

Matrix Algebra of Sample Statistics Department of Psychology and Human Development Vanderbilt University P313, 2010 1 Matrix Algebra of Some Sample Statistics 2 3 4 Introduction In this section, we show how matrix algebra can be used to

More information

Abstract. as compared to that yielded by the maximum likelihood approach.

Abstract. as compared to that yielded by the maximum likelihood approach. Mean Variance Otimization and Beyond: Imrove Otimal Portfolio Construction with Bayesian Regularization Abstract Mean variance otimization algorithm seeks to form ortfolios with the maximum trade off between

More information

15.401 Finance Theory

15.401 Finance Theory Finance Theory MIT Sloan MBA Program Andrew W. Lo Harris & Harris Group Professor, MIT Sloan School Lecture 13 14 14: : Risk Analytics and Critical Concepts Motivation Measuring Risk and Reward Mean-Variance

More information

Economics 471 Lecture 2 Elementary Probability, Portfolio Theory and Regression

Economics 471 Lecture 2 Elementary Probability, Portfolio Theory and Regression University of Illinois Spring 2006 Department of Economics Roger Koenker Economics 471 Lecture 2 Elementary Probability, Portfolio Theory and Regression In this lecture we review some basic concepts of

More information

Market Equilibrium in a NonCAPM World. Harry Markowitz. The Q-Group October 16, 2006

Market Equilibrium in a NonCAPM World. Harry Markowitz. The Q-Group October 16, 2006 Market Equilibrium in a NonCAPM World Harry Markowitz The Q-Group October 16, 2006 1 See Market Efficiency: A Theoretical Distinction and So What? Financial Analyst Journal 2005 Vol. 61, No. 5 pp. 17-30

More information

: Corporate Finance. Risk and Return

: Corporate Finance. Risk and Return 380.760: Corporate Finance Lecture 4: Risk and Return and Asset Pricing Models Professor Gordon M. Bodnar 2008 Gordon Bodnar, 2008 Risk and Return We have not said much about risk so far in this lecture

More information