# 1 Portfolio mean and variance

Size: px
Start display at page:

## Transcription

1 Copyright c 2005 by Karl Sigman Portfolio mean and variance Here we study the performance of a one-period investment X 0 > 0 (dollars) shared among several different assets. Our criterion for measuring performance will be the mean and variance of its rate of return; the variance being viewed as measuring the risk involved. Among other things we will see that the variance of an investment can be reduced simply by diversifying, that is, by sharing the X 0 among more than one asset, and this is so even if the assets are uncorrelated. At one extreme, we shall find that it is even possible, under strong enough correlation between assets, to reduce the variance to 0, thus obtaining a risk-free investment from risky assets. We will also study the Markowitz optimization problem and its solution, a problem of minimizing the variance of a portfolio for a given fixed desired expected rate of return.. Basic model You plan to invest a (deterministic) total of X 0 > 0 at time t = 0 in a portfolio of n 2 distinct assets, and the payoff X comes one period of time later (at time t = for simplicity). Apriori you do not know how to distribute the amount X 0 among the n assets, your objective being to distribute X 0 in such a way as to give you the best performance. If X 0i is the amount to be invested in asset i, i {, 2,..., n}, then X 0 = X 0 + X X 0n. The portfolio chosen is described by the vector (X 0, X 02,..., X 0n ) and its payoff is given by X = X +X 2 + +X n, where X i is the (random) payoff from investing X 0i in asset i, that is, the cash flow you receive at time t =. R i, called the total return, is the payoff per dollar invested in asset i, R i = X i X 0i. We define the rate of return as the corresponding rate and it holds then that r i def = R i = X i X 0i X 0i ; X i = ( + r i )X 0i. But note that unlike fixed-income securities, here the rate r i is a random variable since X 0i is assumed so. The expected rate of return (also called the mean or average rate of return) is given by r i = E(r i ), and since X 0i is assumed deterministic (non-random) it also holds that E(X i ) = ( + r i )X 0i. Shorting is allowed, so some of the X 0i can be negative (as well as positive or zero), as long as X 0 + X X 0n = X 0 > 0. It is convenient to define weights (also called proportions), α i = X 0i X 0 = proportion of resources invested in asset i, The point here is that the assets are bought/sold in shares and any proportion thereof. So if one dollar buys 0.4 shares of an asset, and yields payoff 6 dollars, then 0 dollars buys 4 shares and yields payoff 60 dollars.

2 and it follows that α i =, and the portfolio can equivalently be described by (α, α 2,..., α n ) with rate of return, and expected rate of return given by r = r = E(r) = α i r i () α i r i. (2) Letting σ 2 i = V ar(r i) = E(r 2 i ) r2 i, and σ ij = Cov(r i, r j ) = E(r i r j ) r i r j, the variance of rate of return of the portfolio is given by σ 2 = V ar(r) = αi 2 σ 2 i + 2 α i α j σ ij. (3) i<j n σ 2 is a measure of the risk involved for this portfolio; it is a measure of how far from the mean r our true rate of return r could be. After all, r is an average, and the rate of return r is a random variable that may (with positive probability) take on values considerably smaller than r. Note that the value of X 0 is not needed in determining performance, only the proportions (α, α 2,..., α n ) are needed: Wether you invest a total of one dollar, or a million dollars, the values of r, r and σ 2 are the same when the proportions are the same. In effect, any portfolio can simply be described by a vector (α, α 2,..., α n ), where n α i =. Clearly we could obtain σ 2 = min{σ 2, σ2 2,..., σ2 n} by investing all of X 0 in the asset with the smallest variance; thus it is of interest to explore how, by investing in more than one asset, we can reduce the variance even further. We do so in the next sections..2 Reducing risk by diversification One of the main advantages of investing in more than one asset is the possible reduction of risk. Intuitively, by sharing your resources among several different assets, even if one of them has a disasterous (very low) payoff due to its variability, chances are the others will not. To illustrate this phenomina, let us consider n uncorrelated assets (e.g., Cov(r i, r j ) = 0 for i j) each having the same expected value and variance for rate of return; r i = 0.20, σi 2 =. If you invest all your resources in just one of them, then the performance of your investment is (r, σ 2 ) = (0.20, ). Now suppose instead that you invest in all n assets in equal proportions, α i = /n. Then from () and (3) and the fact that σ ij = 0, i j, by the uncorrelated assumption, we conclude that the mean rate of return remains at r = 0.20, 0.20 = 0.20 n, but the variance for the portfolio drops to σ 2 = /n, n n = n 2 = n n 2. 2

3 Thus the risk tends to 0 as the number of assets n increases while the rate of return remains the same. In essence, as n increases, our portfolio becomes risk-free. Our example is important since it involves uncorrelated assets. But in fact by using correlated assets it is possible (theoretically) to reduce the variance to zero thus obtaining a risk-free investment! To see this, consider two assets (i =, 2). Suppose further that the total return R for asset is governed by some random event A ( weather is great for example) with P (A) = 0.5: If A occurs, then R = 2.5; if A does not occur then R = 0. Suppose that the total return for asset 2 is also governed by A but in the opposite way: If A occurs, then R 2 = 0; if A does not occur then R 2 = 2.5. In essence, asset 2 serves as insurance against the event A does not occur. Letting I{A} denote the indicator function for the event A (= if A occurs; 0 if not), we see that R = 2.5I{A} and R 2 = 2.5( I{A}). The rates of return can thus be expressed as r = 2.5I{A}, r 2 = 2.5( I{A}), and it is easily seen that σ 2 = σ2 2 = (.25)2. Choosing equal weights α = α 2 = 0.5, the rate of return becomes deterministic: ( ) r = 0.5r + 0.5r 2 = I{A} + 2.5( I{A}) = 0.5(2.5 2) = 0.5(0.5) = 0.25, w.p.. Thus σ 2 = V ar(r) = 0 for this portfolio, and we see that this investment is equivalent to placing your funds in a risk-free account at interest rate r = The key here is the negative correlation between r and r 2 : σ 2 = Cov(r, r 2 ) = (2.5) 2 Cov(I{A}, I{A}) = (2.5) 2 Cov(I{A}, I{A}) = (2.5) 2 V ar(i{a}) = (2.5) 2 P (A)( P (A)) = (.25) 2, yielding a correlation coefficient ρ = σ 2 /σ σ 2 = ; perfect negative correlation. This method of making the investment risk-free is an example of perfect hedging; asset 2 was used to perfectly hedge against the risk in asset. The above examples were meant for illustration only; assets are typically correlated in more complicated ways, as we know by watching stock prices fall all together at times. It thus is important to solve, for any given set of n assets (with given rates of return, variances and covariances), the weights corresponding to the minimum-variance portfolio. We start on this problem next..3 Minimal variance when n = 2 When n = 2 the weights can be described by one number α where α = α and α 2 = α. Because shorting is allowed, one of these weights might be negative. For example α =, α = 2 is possible if X 0 =, and X 02 = 2: short one dollar of asset and buy two dollars of asset 2. The performance of our portfolio can then be described by r = αr + ( α)r 2 (4) r = E(r) = αr + ( α)r 2 (5) f(α) = V ar(r) = α 2 σ 2 + ( α) 2 σ α( α)σ 2. (6) 3

4 denoting the (random) rate of return, expected rate of return, and variance of return respectively, when using weights α and α. Defining the correlation coefficient ρ between r and r 2 via we can rewrite ρ = σ 2 σ σ 2, σ 2 = ρσ σ 2, and ρ. The variance of the portfolio can thus be re-written as f(α) = α 2 σ 2 + ( α) 2 σ α( α)ρσ σ 2. (7) Our objective now is to find the value of α (denote this by α ) yielding the minimum variance. This would tell us what proportions of the two assets to use (for any amount X 0 > 0 invested) to ensure the smallest risk. The portfolio (α, α ) is called the minimum-variance portfolio. Our method is to solve f (α) = 0. Details are left to the reader who will carry out most of the analysis in a Homework Set 3. We assume here that both assets are risky, by which we mean that σ 2 > 0 and σ2 2 > 0. Theorem. If both assets are risky (and the case σ 2 = σ2 2 with ρ = is not included)2 then f (α) = 0 has a unique solution α and since f (α) > 0 for all α, f(α) is a strictly convex function and hence the solution α is the unique global minimum. This minimum and the corresponding mimimum value f(α ) are given by the formulas α = σ 2 = f(α ) = σ 2 2 ρσ σ 2 σ 2 + σ2 2 2ρσ σ 2, (8) σ 2 σ2 2 ( ρ2 ) σ 2 + σ2 2 2ρσ σ 2. (9) It follows that shorting is required for asset if and only if ρ > σ 2 /σ, whereas shorting is required for asset 2 if and only if ρ > σ /σ 2. (Both of these cases require positive correlation.) Corollary. If both assets are risky, then the variance for the minimal-variance portfolio is strictly smaller than either of the individual asset variances, σ 2 < min{σ 2, σ2 2 }, unless ρ = min{σ, σ 2 } max{σ, σ 2 }, in which case σ 2 = min{σ 2, σ2 2 }. (This includes the case σ2 = σ2 2 and ρ =.) In particular, σ 2 < min{σ 2, σ2 2 } whenever ρ < 0. Corollary.2 If both assets are risky, then. if ρ = 0 (uncorrelated case), then α = σ 2 = f(α ) = σ 2 2 σ 2 +, (0) σ2 2 σ 2 σ2 2 σ 2 +. () σ2 2 2 If σ 2 = σ 2 2 and ρ =, then f(α) = σ 2 = σ 2 2, for all α, and thus all portfolios have the same variance; there is no unique mimimum-variance portfolio. 4

5 2. if ρ = (perfect negative correlation), then the minimum variance portfolio is risk-free, σ 2 = f(α ) = 0, with deterministic rate of return given by (w.p..) r = r = σ2 2 + σ σ 2 σ 2 σ 2 + σ σ r + + σ σ 2 σ 2 σ 2 + σ σ r 2. σ 2 In this case no shorting is required: both α > 0 and α > if ρ = (perfect positive correlation) (and σ 2 σ2 2 ), then the minimum variance portfolio is risk-free, σ 2 = f(α ) = 0, with deterministic rate of return given by (w.p..) r = r = σ2 2 σ σ 2 (σ σ 2 ) 2 r + σ2 σ σ 2 (σ σ 2 ) 2 r 2. In this case shorting is required: α < 0 if σ > σ 2 ; α < 0 if σ < σ 2..4 Investing in two portfolios: treating a portfolio as an asset itself Suppose you can invest in two different portfolios, where each portfolio has its own rate of return (that you have no control over). The idea here is that each portfolio is itself an asset with its own shares that you can buy/sell and short. We have in mind here for example large mutual fund portfolios such as the ones offered by TIAA-CREFF, or Vangard. Your objective is to choose the weights invested in each so as to minimize the variance of the rate of return. By treating each portfolio as an asset, our problem falls exactly in the n = 2 framework of the previous section; we can apply Theorem.. As a specific example, let us consider the case when the first asset is a pure stock portfolio and the second a less risky portfolio containing some bonds. The stock portfolio will have a higher variance and a higher rate of return than the bond portfolio and the two will be somewhat positively correlated. If you are very risk averse, then you might consider investing all in the bond portfolio; but, you can do a bit better by diversifying among the two portfolios. Data could be found to estimate r, r 2, σ 2, σ2 2, ρ. Let us assume, for example, that r = 0.25 r 2 = 0.05 σ = 0.5 σ 2 = 0.05 ρ = 0.25 Plugging into formulas (8) and (9), we obtain α = , α = , σ = , and r = So the variance went down very slightly and (of course) at the expense of yielding an average rate of return to about that of the bond portfolio. Thus far in our study of portfolios, we have ignored our preference for a high average rate of return over a low one; we address this next..5 The Markowitz Problem Clearly, just as a rational investor wishes for a low variance on return, a high expected rate of return is also desired. For example, you can always keep variance down by investing in bonds over stocks, but you do so at the expense of a decent rate of return. Thus an investor s optimal 5

6 portfolio could be best described by performing as (r, σ), where r is a desired (and feasible) average rate of return, and σ 2 the minimal variance possible for this given r. (Put differently, an investor might wish to find the highest rate of return possible for a given acceptable level of risk.) Thus it is of interest to compute the weights corresponding to such an optimal portfolio. This problem and its solution is originally due to Harry Markowitz in the 950 s. 3 Using the notation from Section. for portfolios of n risky assets (and allowing for shorting) we want to find the solution to: minimize subject to αi 2 σ 2 i + 2 α i α j σ ij i<j n α i r i = r α i =. Here, r is a fixed pre-desired level for expected rate of return, and a solution is any portfolio (α, α 2,..., α n ) that minimizes the objective function (variance) and offers expected rate r. This is an example of what is called a quadratic program, an optimization problem with a quadratic objective function, and linear constraints. Fortunately, our particular quadratic program can be reduced to a problem of merely solving linear equations, as we will see next. Since the objective function is non-negative, it can be multiplied by any non-negative constant without changing the solution. Moreover, we can simplify notation by using the fact that σ ii = σi 2. The following equivalent formulation is the most common in the literature: minimize subject to 2 α i α j σ ij (2) α i r i = r (3) α i =. (4) The solution is obtained by using the standard technique from calculus of introducing two more variables called Lagrange multipliers, λ and µ (one for each subject to constraint), and forming the Lagrangian Setting L α i L = 2 ( n ) α i α j σ ij λ α i r i r µ ( n = 0 for each of the n weight variables α i yields n equations; α j σ ij λr i µ = 0, i {, 2,..., n}. j= ) α i. (5) 3 Markowitz is one of three economists who won the Nobel Prize in Economics in 990.The others are Merton Miller and William Sharpe. 6

7 Each such equation is linear in the n + 2 variables (α, α 2,..., α n, λ, µ) and together with the remaining two subject to linear constraints, yields a set of n + 2 linear equations with n + 2 unknowns. Thus a solution to the Markowitz problem is found by finding a solution (α, α 2,..., α n, λ, µ) to the set of n + 2 linear equations, α j σ ij λr i µ = 0, i {, 2,..., n} (6) j= α i r i = r α i =, and using the weights (α, α 2,..., α n ) as the solution. In the end, the problem falls into the standard framework of linear algebra, and amounts to computing the inverse of a matrix: solve Ax = b; solution x = A b. The student will have had much practice of such methods in Linear Programming (LP) from Operations Research. There are various software packages for dealing with such computations. We point out in passing that the Markowitz problem will of course only have a solution for values of r that are feasible, that is, can be achieved via α i r i = r, from some portfolio (α, α 2,..., α n ). Over all, we are considering the set of all feasible pairs (r, σ); those pairs for which there exists a portfolio (α, α 2,..., α n ) such that and α i r i = r, α i α j σ ij = σ 2. The set of all feasible pairs is a subset of the two-dimensional σ r plane, and is called the feasible set. For each fixed feasible r the Markowitz problem yields that feasible pair (r, σ) with the smallest σ. As we vary r to obtain all such pairs, we obtain what is called the minimumvariance set, a subset of the feasible set. In general σ will increase as you increase your desired level of expected return r..6 Finding the minimum-variance portfolio If we look at the set of all pairs (r, σ) in the minimum-variance set, we could find one with the smallest σ, that is, corresponding to the so-called minimum-variance portfolio that we considered in earlier sections. This pair denoted by (r, σ ) is called the minimum-variance point. 7

8 We can modify the Markowitz problem to find the minimum-variance portfolio as follows: If we leave out our requirement that the expected rate of return be equal to a given level r, then the Markowitz problem becomes minimize subject to 2 α i α j σ ij (7) α i =, (8) and its solution yields the minimum-variance portfolio for n risky assets. Lagrangian methods once again can be employed where now we need only introduce one new variable µ, L = ( n ) α i α j σ ij µ α i, (9) 2 and the solution reduces to solving n + equations with n + unknowns:.7 Efficient Frontier α j σ ij µ = 0, i {, 2,..., n} (20) j= α i =. (2) Suppose (r, σ ) is the minimum variance point. Then we can go ahead and graph all pairs (r, σ) in the minimum-variance set satisfying r r. This set of pairs is called the efficient frontier and corresponds to what are called efficient portfolios. As r increases, σ increases also: A higher rate of return involves higher risk. The efficient frontier traces out a nice increasing curve in the σ r plane; see Figure 6. of the Text, Page 57. We view the efficient frontier as corresponding to those portfolios considered by a rational investor. When shorting is allowed, and there are at least two distinct values for r i (e.g., not all are the same), then the efficient frontier is unbounded from above: You can obtain as high a expected return as is desirable. (The problem, however, is that you do so with increasing risk that tends to.) To see that it is unbounded: Select any two of the assets (say, 2) with different rates of return. Assume that r > r 2. Invest only in these two yielding r = αr + ( α)r 2 = α(r r 2 ) + r 2. As α so does r; any high rate is achievable no matter how large. Notice that to do this though, ( α) becomes negative and large; we must short increasing amounts of asset 2..8 Generating the efficient frontier from only two portfolios Let w = (α, α 2,..., α n, λ, µ ) be a solution to the Markowitz problem for a given expected rate of return r, and w 2 = (α 2, α2 2,..., α2 n, λ 2, µ 2 ) be a solution to the Markowitz problem for a different given expected rate of return r 2. From the linearity of the solution, it is immediate 8

9 (reader should verify) that for any number α, the new point αw + ( α)w 2 is itself a solution to the Markowitz problem for expected rate of return αr + ( α)r 2. Here, αw = (αα, αα 2,..., αα n, αλ, αµ ) ( α)w 2 = (( α)α 2, ( α)α 2 2,..., ( α)α 2 n, ( α)λ 2, ( α)µ 2 ), and thus αw + ( α)w 2 is of the form (α, α 2,..., α n, λ, µ) with α i = αα i + ( α)α2 i, λ = αλ + ( α)λ 2, and µ = αµ + ( α)µ 2. This new point (α, α 2,..., α n, λ, µ) is a solution to the n+2 linear equations following (6) for r = αr + ( α)r 2. We conclude that knowing two distinct solutions allows us to generate a whole collection of new solutions, and hence a whole bunch of points on the efficient frontier. It turns out that the entire minimum-variance set can be generated from two such distinct solutions. In particular, one can generate the entire efficient frontier from any two distinct solutions. Treating each of the two fixed distinct solutions as portfolios and hence as assets in their own right, we conclude that we can obtain any desired investment performance by investing in these two assets only. The idea is to think of each of these two assets as mutual funds as in Section.4, and create your investment by investing in these two funds only; we are back to the n = 2 case. If we imagine the entire asset marketplace as our potential investment opportunity, then we conclude that it suffices to only invest in two distinct (and excellent) mutual funds, in the sense that we can obtain any point on the efficient frontier by doing so..9 Ruling out shorting The Markowitz problem assumed shorting was allowed, but if shorting is not allowed, then the additional n constraints, α i 0, i {, 2,..., n}, must be included as part of the subject to. This complicates matters because now, instead of only equalities, there are inequalities in the constraints; the solution to this quadratic program is no longer obtained by simply inverting a matrix. But the problem can be handled by using the methods of LP, where n additional Lagrange multipliers must be utilized, and the problem becomes one of finding a feasible region for a LP. This problem will be discussed later. 9

### 1 Capital Asset Pricing Model (CAPM)

Copyright c 2005 by Karl Sigman 1 Capital Asset Pricing Model (CAPM) We now assume an idealized framework for an open market place, where all the risky assets refer to (say) all the tradeable stocks available

### Chapter 2 Portfolio Management and the Capital Asset Pricing Model

Chapter 2 Portfolio Management and the Capital Asset Pricing Model In this chapter, we explore the issue of risk management in a portfolio of assets. The main issue is how to balance a portfolio, that

### Lecture 1: Asset Allocation

Lecture 1: Asset Allocation Investments FIN460-Papanikolaou Asset Allocation I 1/ 62 Overview 1. Introduction 2. Investor s Risk Tolerance 3. Allocating Capital Between a Risky and riskless asset 4. Allocating

### Portfolio Optimization Part 1 Unconstrained Portfolios

Portfolio Optimization Part 1 Unconstrained Portfolios John Norstad j-norstad@northwestern.edu http://www.norstad.org September 11, 2002 Updated: November 3, 2011 Abstract We recapitulate the single-period

### 15.401 Finance Theory

Finance Theory MIT Sloan MBA Program Andrew W. Lo Harris & Harris Group Professor, MIT Sloan School Lecture 13 14 14: : Risk Analytics and Critical Concepts Motivation Measuring Risk and Reward Mean-Variance

### CHAPTER 7: OPTIMAL RISKY PORTFOLIOS

CHAPTER 7: OPTIMAL RIKY PORTFOLIO PROLEM ET 1. (a) and (e).. (a) and (c). After real estate is added to the portfolio, there are four asset classes in the portfolio: stocks, bonds, cash and real estate.

Review for Exam 2 Instructions: Please read carefully The exam will have 25 multiple choice questions and 5 work problems You are not responsible for any topics that are not covered in the lecture note

### 1 Capital Allocation Between a Risky Portfolio and a Risk-Free Asset

Department of Economics Financial Economics University of California, Berkeley Economics 136 November 9, 2003 Fall 2006 Economics 136: Financial Economics Section Notes for Week 11 1 Capital Allocation

### Binomial lattice model for stock prices

Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }

### 1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let

Copyright c 2009 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochastic process X = {X n : n 0}, a random time τ is a discrete random variable on the same probability space as

### CHAPTER 6 RISK AND RISK AVERSION

CHAPTER 6 RISK AND RISK AVERSION RISK AND RISK AVERSION Risk with Simple Prospects Risk, Speculation, and Gambling Risk Aversion and Utility Values Risk with Simple Prospects The presence of risk means

### Enhancing the Teaching of Statistics: Portfolio Theory, an Application of Statistics in Finance

Page 1 of 11 Enhancing the Teaching of Statistics: Portfolio Theory, an Application of Statistics in Finance Nicolas Christou University of California, Los Angeles Journal of Statistics Education Volume

### Understanding the Impact of Weights Constraints in Portfolio Theory

Understanding the Impact of Weights Constraints in Portfolio Theory Thierry Roncalli Research & Development Lyxor Asset Management, Paris thierry.roncalli@lyxor.com January 2010 Abstract In this article,

### The Term Structure of Interest Rates, Spot Rates, and Yield to Maturity

Chapter 5 How to Value Bonds and Stocks 5A-1 Appendix 5A The Term Structure of Interest Rates, Spot Rates, and Yield to Maturity In the main body of this chapter, we have assumed that the interest rate

### A Review of Cross Sectional Regression for Financial Data You should already know this material from previous study

A Review of Cross Sectional Regression for Financial Data You should already know this material from previous study But I will offer a review, with a focus on issues which arise in finance 1 TYPES OF FINANCIAL

### SAMPLE MID-TERM QUESTIONS

SAMPLE MID-TERM QUESTIONS William L. Silber HOW TO PREPARE FOR THE MID- TERM: 1. Study in a group 2. Review the concept questions in the Before and After book 3. When you review the questions listed below,

### THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING 1. Introduction The Black-Scholes theory, which is the main subject of this course and its sequel, is based on the Efficient Market Hypothesis, that arbitrages

### CAPM, Arbitrage, and Linear Factor Models

CAPM, Arbitrage, and Linear Factor Models CAPM, Arbitrage, Linear Factor Models 1/ 41 Introduction We now assume all investors actually choose mean-variance e cient portfolios. By equating these investors

### On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information

Finance 400 A. Penati - G. Pennacchi Notes on On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information by Sanford Grossman This model shows how the heterogeneous information

### 1 Interest rates, and risk-free investments

Interest rates, and risk-free investments Copyright c 2005 by Karl Sigman. Interest and compounded interest Suppose that you place x 0 (\$) in an account that offers a fixed (never to change over time)

### 1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

### Solution: The optimal position for an investor with a coefficient of risk aversion A = 5 in the risky asset is y*:

Problem 1. Consider a risky asset. Suppose the expected rate of return on the risky asset is 15%, the standard deviation of the asset return is 22%, and the risk-free rate is 6%. What is your optimal position

### A Log-Robust Optimization Approach to Portfolio Management

A Log-Robust Optimization Approach to Portfolio Management Dr. Aurélie Thiele Lehigh University Joint work with Ban Kawas Research partially supported by the National Science Foundation Grant CMMI-0757983

### 3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

### Chap 3 CAPM, Arbitrage, and Linear Factor Models

Chap 3 CAPM, Arbitrage, and Linear Factor Models 1 Asset Pricing Model a logical extension of portfolio selection theory is to consider the equilibrium asset pricing consequences of investors individually

### FTS Real Time System Project: Portfolio Diversification Note: this project requires use of Excel s Solver

FTS Real Time System Project: Portfolio Diversification Note: this project requires use of Excel s Solver Question: How do you create a diversified stock portfolio? Advice given by most financial advisors

### CML is the tangent line drawn from the risk free point to the feasible region for risky assets. This line shows the relation between r P and

5. Capital Asset Pricing Model and Factor Models Capital market line (CML) CML is the tangent line drawn from the risk free point to the feasible region for risky assets. This line shows the relation between

### A Log-Robust Optimization Approach to Portfolio Management

A Log-Robust Optimization Approach to Portfolio Management Ban Kawas Aurélie Thiele December 2007, revised August 2008, December 2008 Abstract We present a robust optimization approach to portfolio management

### 4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2015 B. Goldys and M. Rutkowski (USydney) Slides 4: Single-Period Market

### Lecture 6: Arbitrage Pricing Theory

Lecture 6: Arbitrage Pricing Theory Investments FIN460-Papanikolaou APT 1/ 48 Overview 1. Introduction 2. Multi-Factor Models 3. The Arbitrage Pricing Theory FIN460-Papanikolaou APT 2/ 48 Introduction

### Portfolio Allocation and Asset Demand with Mean-Variance Preferences

Portfolio Allocation and Asset Demand with Mean-Variance Preferences Thomas Eichner a and Andreas Wagener b a) Department of Economics, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany.

Econ 497 Barry W. Ickes Spring 2007 Midterm Exam:Answer Sheet 1. (25%) Consider a portfolio, c, comprised of a risk-free and risky asset, with returns given by r f and E(r p ), respectively. Let y be the

### Lesson 5. Risky assets

Lesson 5. Risky assets Prof. Beatriz de Blas May 2006 5. Risky assets 2 Introduction How stock markets serve to allocate risk. Plan of the lesson: 8 >< >: 1. Risk and risk aversion 2. Portfolio risk 3.

### Answers to Concepts in Review

Answers to Concepts in Review 1. A portfolio is simply a collection of investments assembled to meet a common investment goal. An efficient portfolio is a portfolio offering the highest expected return

### Economics 2020a / HBS 4010 / HKS API-111 FALL 2010 Solutions to Practice Problems for Lectures 1 to 4

Economics 00a / HBS 4010 / HKS API-111 FALL 010 Solutions to Practice Problems for Lectures 1 to 4 1.1. Quantity Discounts and the Budget Constraint (a) The only distinction between the budget line with

### Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.

LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing

### Lecture 05: Mean-Variance Analysis & Capital Asset Pricing Model (CAPM)

Lecture 05: Mean-Variance Analysis & Capital Asset Pricing Model (CAPM) Prof. Markus K. Brunnermeier Slide 05-1 Overview Simple CAPM with quadratic utility functions (derived from state-price beta model)

### Holding Period Return. Return, Risk, and Risk Aversion. Percentage Return or Dollar Return? An Example. Percentage Return or Dollar Return? 10% or 10?

Return, Risk, and Risk Aversion Holding Period Return Ending Price - Beginning Price + Intermediate Income Return = Beginning Price R P t+ t+ = Pt + Dt P t An Example You bought IBM stock at \$40 last month.

### In this section, we will consider techniques for solving problems of this type.

Constrained optimisation roblems in economics typically involve maximising some quantity, such as utility or profit, subject to a constraint for example income. We shall therefore need techniques for solving

### Linear Programming Problems

Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number

### University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725

Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T

### minimal polyonomial Example

Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

### Problem Set 6 - Solutions

ECO573 Financial Economics Problem Set 6 - Solutions 1. Debt Restructuring CAPM. a Before refinancing the stoc the asset have the same beta: β a = β e = 1.2. After restructuring the company has the same

### CFA Examination PORTFOLIO MANAGEMENT Page 1 of 6

PORTFOLIO MANAGEMENT A. INTRODUCTION RETURN AS A RANDOM VARIABLE E(R) = the return around which the probability distribution is centered: the expected value or mean of the probability distribution of possible

### CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS

CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS PROBLEM SETS 1. (e). (b) A higher borrowing is a consequence of the risk of the borrowers default. In perfect markets with no additional

### 2.3 Convex Constrained Optimization Problems

42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

### How to assess the risk of a large portfolio? How to estimate a large covariance matrix?

Chapter 3 Sparse Portfolio Allocation This chapter touches some practical aspects of portfolio allocation and risk assessment from a large pool of financial assets (e.g. stocks) How to assess the risk

### A New Interpretation of Information Rate

A New Interpretation of Information Rate reproduced with permission of AT&T By J. L. Kelly, jr. (Manuscript received March 2, 956) If the input symbols to a communication channel represent the outcomes

### Using Microsoft Excel to build Efficient Frontiers via the Mean Variance Optimization Method

Using Microsoft Excel to build Efficient Frontiers via the Mean Variance Optimization Method Submitted by John Alexander McNair ID #: 0061216 Date: April 14, 2003 The Optimal Portfolio Problem Consider

### 15.062 Data Mining: Algorithms and Applications Matrix Math Review

.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

### AFM 472. Midterm Examination. Monday Oct. 24, 2011. A. Huang

AFM 472 Midterm Examination Monday Oct. 24, 2011 A. Huang Name: Answer Key Student Number: Section (circle one): 10:00am 1:00pm 2:30pm Instructions: 1. Answer all questions in the space provided. If space

### Advanced Lecture on Mathematical Science and Information Science I. Optimization in Finance

Advanced Lecture on Mathematical Science and Information Science I Optimization in Finance Reha H. Tütüncü Visiting Associate Professor Dept. of Mathematical and Computing Sciences Tokyo Institute of Technology

### Life Cycle Asset Allocation A Suitable Approach for Defined Contribution Pension Plans

Life Cycle Asset Allocation A Suitable Approach for Defined Contribution Pension Plans Challenges for defined contribution plans While Eastern Europe is a prominent example of the importance of defined

### October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix

Linear Algebra & Properties of the Covariance Matrix October 3rd, 2012 Estimation of r and C Let rn 1, rn, t..., rn T be the historical return rates on the n th asset. rn 1 rṇ 2 r n =. r T n n = 1, 2,...,

### IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2

IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3

### Black-Litterman Return Forecasts in. Tom Idzorek and Jill Adrogue Zephyr Associates, Inc. September 9, 2003

Black-Litterman Return Forecasts in Tom Idzorek and Jill Adrogue Zephyr Associates, Inc. September 9, 2003 Using Black-Litterman Return Forecasts for Asset Allocation Results in Diversified Portfolios

### Choice under Uncertainty

Choice under Uncertainty Part 1: Expected Utility Function, Attitudes towards Risk, Demand for Insurance Slide 1 Choice under Uncertainty We ll analyze the underlying assumptions of expected utility theory

### FINANCIAL ECONOMICS OPTION PRICING

OPTION PRICING Options are contingency contracts that specify payoffs if stock prices reach specified levels. A call option is the right to buy a stock at a specified price, X, called the strike price.

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### Mathematics 205 HWK 6 Solutions Section 13.3 p627. Note: Remember that boldface is being used here, rather than overhead arrows, to indicate vectors.

Mathematics 205 HWK 6 Solutions Section 13.3 p627 Note: Remember that boldface is being used here, rather than overhead arrows, to indicate vectors. Problem 5, 13.3, p627. Given a = 2j + k or a = (0,2,

### Chapter 5 Risk and Return ANSWERS TO SELECTED END-OF-CHAPTER QUESTIONS

Chapter 5 Risk and Return ANSWERS TO SELECTED END-OF-CHAPTER QUESTIONS 5-1 a. Stand-alone risk is only a part of total risk and pertains to the risk an investor takes by holding only one asset. Risk is

### Instructor s Manual Chapter 12 Page 144

Chapter 12 1. Suppose that your 58-year-old father works for the Ruffy Stuffed Toy Company and has contributed regularly to his company-matched savings plan for the past 15 years. Ruffy contributes \$0.50

### Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

### A short note on American option prices

A short note on American option Filip Lindskog April 27, 2012 1 The set-up An American call option with strike price K written on some stock gives the holder the right to buy a share of the stock (exercise

### Chapter 1. Introduction to Portfolio Theory. 1.1 Portfolios of Two Risky Assets

Chapter 1 Introduction to Portfolio Theory Updated: August 9, 2013. This chapter introduces modern portfolio theory in a simplified setting where there are only two risky assets and a single risk-free

### Linear Programming. March 14, 2014

Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

### 1 Short Introduction to Time Series

ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The

### Inflation. Chapter 8. 8.1 Money Supply and Demand

Chapter 8 Inflation This chapter examines the causes and consequences of inflation. Sections 8.1 and 8.2 relate inflation to money supply and demand. Although the presentation differs somewhat from that

### CAPITAL ASSET PRICES WITH AND WITHOUT NEGATIVE HOLDINGS

CAPITAL ASSET PRICES WITH AND WITHOUT NEGATIVE HOLDINGS Nobel Lecture, December 7, 1990 by WILLIAM F. SHARPE Stanford University Graduate School of Business, Stanford, California, USA INTRODUCTION* Following

### Optimal Risky Portfolios Chapter 7 Investments Bodie, Kane and Marcus

Optimal Risky ortfolios Section escription 7.0 Introduction 7.1 iversification and ortfolio Risk 7. ortfolios of Two Risky Assets 7.3 Asset Allocation with Stocks, Bonds and Bills 7.4 The Markowitz ortfolio

### CHAPTER 11: ARBITRAGE PRICING THEORY

CHAPTER 11: ARBITRAGE PRICING THEORY 1. The revised estimate of the expected rate of return on the stock would be the old estimate plus the sum of the products of the unexpected change in each factor times

### K 1 < K 2 = P (K 1 ) P (K 2 ) (6) This holds for both American and European Options.

Slope and Convexity Restrictions and How to implement Arbitrage Opportunities 1 These notes will show how to implement arbitrage opportunities when either the slope or the convexity restriction is violated.

### Financial Markets. Itay Goldstein. Wharton School, University of Pennsylvania

Financial Markets Itay Goldstein Wharton School, University of Pennsylvania 1 Trading and Price Formation This line of the literature analyzes the formation of prices in financial markets in a setting

### constraint. Let us penalize ourselves for making the constraint too big. We end up with a

Chapter 4 Constrained Optimization 4.1 Equality Constraints (Lagrangians) Suppose we have a problem: Maximize 5, (x 1, 2) 2, 2(x 2, 1) 2 subject to x 1 +4x 2 =3 If we ignore the constraint, we get the

### CHAPTER 15. Option Valuation

CHAPTER 15 Option Valuation Just what is an option worth? Actually, this is one of the more difficult questions in finance. Option valuation is an esoteric area of finance since it often involves complex

### Note: There are fewer problems in the actual Final Exam!

HEC Paris Practice Final Exam Questions Version with Solutions Financial Markets Fall 2013 Note: There are fewer problems in the actual Final Exam! Problem 1. Are the following statements True, False or

### Exam Introduction Mathematical Finance and Insurance

Exam Introduction Mathematical Finance and Insurance Date: January 8, 2013. Duration: 3 hours. This is a closed-book exam. The exam does not use scrap cards. Simple calculators are allowed. The questions

### M.I.T. Spring 1999 Sloan School of Management 15.415. First Half Summary

M.I.T. Spring 1999 Sloan School of Management 15.415 First Half Summary Present Values Basic Idea: We should discount future cash flows. The appropriate discount rate is the opportunity cost of capital.

### Linear Programming: Chapter 11 Game Theory

Linear Programming: Chapter 11 Game Theory Robert J. Vanderbei October 17, 2007 Operations Research and Financial Engineering Princeton University Princeton, NJ 08544 http://www.princeton.edu/ rvdb Rock-Paper-Scissors

### Introduction to Matrix Algebra

Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

### An Introduction to Utility Theory

An Introduction to Utility Theory John Norstad j-norstad@northwestern.edu http://www.norstad.org March 29, 1999 Updated: November 3, 2011 Abstract A gentle but reasonably rigorous introduction to utility

### Algebra Practice Problems for Precalculus and Calculus

Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials

### Epipolar Geometry. Readings: See Sections 10.1 and 15.6 of Forsyth and Ponce. Right Image. Left Image. e(p ) Epipolar Lines. e(q ) q R.

Epipolar Geometry We consider two perspective images of a scene as taken from a stereo pair of cameras (or equivalently, assume the scene is rigid and imaged with a single camera from two different locations).

### The Rational Gambler

The Rational Gambler Sahand Rabbani Introduction In the United States alone, the gaming industry generates some tens of billions of dollars of gross gambling revenue per year. 1 This money is at the expense

### Linear Programming I

Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

### Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

### This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

### 4.6 Linear Programming duality

4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

### The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models

780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond market-maker would delta-hedge, we first need to specify how bonds behave. Suppose we try to model a zero-coupon

### 1 Solving LPs: The Simplex Algorithm of George Dantzig

Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

### Practice Set #4 and Solutions.

FIN-469 Investments Analysis Professor Michel A. Robe Practice Set #4 and Solutions. What to do with this practice set? To help students prepare for the assignment and the exams, practice sets with solutions

### Graph 1 - Correlation Stats. Correlation (%)

Investing Without Market Risk Prof. Luis Seco Department of Mathematics, University of Toronto Sigma Analysis and Management Inc. In 1983, John Lintner presented his famous results on the role of managed

### The Multiplicative Weights Update method

Chapter 2 The Multiplicative Weights Update method The Multiplicative Weights method is a simple idea which has been repeatedly discovered in fields as diverse as Machine Learning, Optimization, and Game

### On the Optimal Allocation of Security Listings to Specialists

On the Optimal Allocation of Security Listings to Specialists Günter Strobl Kenan-Flagler Business School University of North Carolina at Chapel Hill June 2011 Abstract This paper addresses the question

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept