SKILLS Project. October 2013

Size: px
Start display at page:

Download "SKILLS Project. October 2013"

Transcription

1 SKILLS Project October 2013

2 PORTAL FRAMES IN SINGLE STOREY BUILDINGS

3 LEARNING OUTCOMES Structural elastic analysis including second order effects and imperfections Design procedure of portal frames Design procedure of roof bracing and vertical bracing 3

4 LIST OF CONTENTS Introduction Presentation of industrial steel buildings Examples Global Analysis General Second order effects Frame imperfection Rigidity of joints Design Procedure of portal frames Structural stability of frames Stability of columns and rafters Vertical Bracing Roof Bracing Conclusion 4

5 INTRODUCTION

6 INTRODUCTION Typical design of single storey steel buildings 6

7 INTRODUCTION Purlins 7

8 INTRODUCTION Haunched portal frames 8

9 INTRODUCTION Roof bracing Photo APK 9

10 INTRODUCTION Vertical bracing Photo APK 10

11 INTRODUCTION Photo APK JP Muzeau 11

12 INTRODUCTION 12

13 GLOBAL ANALYSIS

14 GLOBAL ANALYSIS Methods of structural analysis EN Elastic analysis Material is supposed to behave perfectly linear elastic Plastic analysis Material non linearity is taken into account Redistribution of internal forces and moments 14

15 GLOBAL ANALYSIS Effects to be taken into account when significant EN Effects of deformed geometry (2 nd order effects) Imperfections Stiffness of joints Ground-structure interaction 15

16 GLOBAL ANALYSIS First order and second order analysis First order analysis: performed on the non deformed structure Second order analysis: performed including effects of deformed geometry 16

17 GLOBAL ANALYSIS Effects of deformed geometry/second order effects V H I First order analysis of the structure gives: h M I M I I H h H h 3EI 3 17

18 GLOBAL ANALYSIS Effects of deformed geometry/second order effects H V Second order analysis of the structure gives: M II H h V II iterative calculation of II necessary II II n1 II h H h V n 3EI 2 M II 18

19 GLOBAL ANALYSIS Effects of deformed geometry/second order effects H V II M II II n1 Supposing: II II h H h V n 3EI With: n 2 h H h 3EI V II 1 II n And: I H h cr 1 I 2 Vh 1 3EI 3EI h V 1 V cr h 2 3EI 19

20 GLOBAL ANALYSIS Effects of deformed geometry/second order effects H V II I 1 V 1 V cr II M II Substituting: II M II 1 I 1 1 M I cr V cr cr cr V 20

21 GLOBAL ANALYSIS Global and local second order effects Global 2 nd order effects P-D-effects P D Concerns the deformation of the whole structure Local 2 nd order effects P--effects P Concerns the deformation between member ends Generally covered by member checks EN

22 GLOBAL ANALYSIS Summarizing the effects of deformed geometry Taking the deformation of the structure into account generally leads to higher internal forces (shear force) and moments for portal frames. The lesser the rigidity of the structure is, the higher are the deformation and therefore the 2 nd order effects. cr is representative for the influence of 2 nd order effects (high values of cr stand for little influence of 2 nd order effects ) 22

23 GLOBAL ANALYSIS Second order effects in EN First order analysis is permitted if: cr 10 cr 15 for elastic analysis for plastic analysis EN If criterion is not respected 2 nd order effects have to be accounted for 23

24 GLOBAL ANALYSIS Accounting for second order effects in EN cr 10 2 nd order analysis (buckling length = member length) or 1 st order analysis followed by amplification of sway effects (buckling length = member length) or 1 st order analysis (buckling length according to sway buckling mode) cr 3 2 nd order analysis (buckling length = member length) 24

25 GLOBAL ANALYSIS Amplification of sway effects Amplification factor: cr Sway effects: Horizontal loads (e.g. wind) Effects due to imperfection Effects due to geometry of the structure 25

26 GLOBAL ANALYSIS Calculation of cr Simplified formula: cr H V Ed Ed h H,Ed EN (4) V Ed H,Ed h H Ed if roof slop is swallow: < 26 if axial force in the rafter is small: 0,3 Af N y Ed or NEd 0, 09N cr 26

27 GLOBAL ANALYSIS Practical calulation of cr for portal frames h H unit V Ed unit cr H V unit Ed h unit V Ed V Ed 0,5 H unit 0,5 H unit 0,25 H unit 0,5 H unit 0,25 H unit unit mean.column unit mean. column 27

28 IMPERFECTIONS

29 GLOBAL ANALYSIS Structural imperfections Due to: lack of verticality lack of straightness eccentricities in joints residual stresses inhomogeneity of material Physical imperfection are replaced by equivalent geometric imperfection 29

30 GLOBAL ANALYSIS Equivalent geometric imperfection Global initial sway imperfection f f Local bow imperfection e 0 e 0 30

31 GLOBAL ANALYSIS Global sway imperfection f f 0h m EN f 0 : Basic value f 0 1/ 200 h : Reduction factor for the height of the columns 2 2 h but h 1 h 3 m : Reduction factor for the number of columns per row m 1 0,5 1 m m is the number of columns carrying at least 50% of the average vertical load of the column row considered 31

32 GLOBAL ANALYSIS Direction of sway imperfection Every possible direction has to be considered, but only one direction in a time f f f f f f f f 32

33 GLOBAL ANALYSIS System of equivalent forces replacing out-of-plumb f f f 33

34 GLOBAL ANALYSIS System of equivalent forces replacing out-of-plumb f f f f f f 34

35 GLOBAL ANALYSIS Possibility of disregarding global frame imperfection Relatively high horizontal loads H 0 V EN Ed, 15 Frame stability check with equivalent column method (buckling length of columns are based on overall sway buckling mode) Ed EN

36 GLOBAL ANALYSIS Local bow imperfection Local 2 nd order effects are generally included in the member verification formulas of EN Local bow imperfection has to be considered for slender members under high compression axial force 36

37 GLOBAL ANALYSIS If frame is sensitive to 2 nd order effects, local bow imperfection has to be applied on: compressed members that have at least one moment resistant joint and whose reduced slenderness Afy 0,5 EN N is calculated supposing a pin ended column: Ed A f y N cr And N cr L 2 EI 37

38 GLOBAL ANALYSIS Value of local bow imperfection EN e 0 Buckling curve Elastic analysis Plastic analysis e 0 /L e 0 /L a 0 1/350 1/300 a 1/300 1/250 b 1/250 1/200 c 1/200 1/150 d 1/150 1/100 38

39 GLOBAL ANALYSIS System of equivalent forces replacing local bow imperfection 4 e 0,d /L e 0 L 8 e 0,d /L 2 4 e 0,d /L 39

40 GLOBAL ANALYSIS System of equivalent forces replacing local bow imperfection e 0 e 0 4 e 0,d /L 4 e 0,d /L 8 e 0,d /L 2 8 e 0,d /L 2 L 4 e 0,d /L 4 e 0,d /L 40

41 STIFFNESS OF JOINTS

42 GLOBAL ANALYSIS Examples of Joints Rigid joint Nominally pinned joint 42

43 GLOBAL ANALYSIS Classification of joints by stiffness EN M Joint A Joint B Joint C f 43

44 GLOBAL ANALYSIS Classification boundaries EN M Joint A k b EI L beam beam Semi-rigid joints Joint B Rigid joints EI 0,5 L beam beam Joint C f 44 Nominally pinned joints

45 GLOBAL ANALYSIS Value of k b for the classification of joints k b = 8 : k b = 25 : frames where the bracing system reduces the horizontal displacement by at least 80% other frames, provided that in every storey K b /K c 0,1 K b : K c : mean value of I b /L b for all beams at the top of the storey mean value of I c /L c for all columns of the storey I c/b : second moment of area of a column/beam L c/b : height/length of a column/beam 45

46 GLOBAL ANALYSIS Practical comments The designer will probably choose the assumption of rigid rafter-to-column joints. The designer will probably choose the assumption of either pinned or rigid column bases. The assumptions will have to be checked afterwards. 46

47 DESIGN PROCEDURE OF PORTAL FRAMES

48 DESIGN PROCEDURE OF PORTAL FRAMES Structural stability of frames cr 10 : 1 st Method: 1 st order analysis without imperfections Column in-plane stability check using buckling length according to sway buckling mode 2 nd Method: 1 st order analysis with global imperfection EN Column in-plane stability check using member length 48

49 DESIGN PROCEDURE OF PORTAL FRAMES Structural stability of frames cr < 3 : EN Check if introduction of local imperfection is necessary if necessary: 2 nd order analysis with global imperfection if necessary Column in-plane stability check = check of resistance of section 49

50 DESIGN PROCEDURE OF PORTAL FRAMES Structural stability of frames cr < 3 : EN Check if introduction of local imperfection is necessary if not necessary: 2 nd order analysis with global imperfection if necessary Column in-plane stability check using member length 50

51 DESIGN PROCEDURE OF PORTAL FRAMES Structural stability of frames 3 cr < 10 : EN Check if introduction of local imperfection is necessary if necessary: 2 nd order analysis with global imperfection if necessary Column in-plane stability check = check of section resistance 51

52 DESIGN PROCEDURE OF PORTAL FRAMES Structural stability of frames 3 cr < 10 : EN Check if introduction of local imperfection is necessary if not necessary: 1 st Method: 1 st order analysis without imperfections Column in-plane stability check using buckling length according to sway buckling mode Verification of joints and rafters including second order effects (amplification of sway effects) 52

53 DESIGN PROCEDURE OF PORTAL FRAMES Structural stability of frames 3 cr < 10 : EN Check if introduction of local imperfection is necessary if not necessary: 2 nd Method: 1 st order analysis with global imperfection if necessary Amplification of sway effects Column in-plane stability check using member length 53

54 DESIGN PROCEDURE OF PORTAL FRAMES Buckling length = Member length : L cr Buckling length according to sway buckling mode : L cr 54

55 DESIGN PROCEDURE OF PORTAL FRAMES Geometry + Boundary conditions + Loads Calculation of cr cr < 3 3 cr < 10 cr 10 Slide 58 Slide 59 Slide 57 55

56 DESIGN PROCEDURE OF PORTAL FRAMES Geometry + Boundary conditions + Loads Calculation of cr cr 10 Global imperfection 1 st order analysis In plane stability check of columns using member length In plane stability check of columns using buckling length according to global buckling mode 56

57 DESIGN PROCEDURE OF PORTAL FRAMES Geometry + Boundary conditions + Loads Calculation of cr cr < 3 Global imperfection if necessary: EN (4) Local imperfection if necessary: EN (6) Necessary Not necessary 2 nd order analysis In plane stability check of columns = resistance check of section In plane stability check of columns using member length 57

58 DESIGN PROCEDURE OF PORTAL FRAMES Geometry + Boundary conditions + Loads Calculation of cr 3 cr < 10 Local imperfection if necessary: EN (6) Necessary Not necessary Global imperfection if necessary: EN (4) Necessary Not necessary 2 nd order analysis Amplification of sway effects 1 st order analysis In plane stability check of columns = resistance check of section In plane stability check of columns using member length In plane stability check of columns using buckling length according to sway buckling mode 58

59 STABILITY OF COLUMNS AND RAFTERS

60 DESIGN PROCEDURE OF PORTAL FRAMES Stability of columns and rafters Columns and rafters are subjected to axial forces and moments Use of interaction formula EN N N y Ed M1 Rk k yy M y, Ed LT DM M y, Rk M1 y, Ed k yz M z, Ed M DM z, Rk M1 z, Ed 1 N zn Ed Rk M1 k zy M y, Ed LT DM M y, Rk M1 y, Ed k zz M z, Ed M DM z, Rk M1 z, Ed 1 60

61 DESIGN PROCEDURE OF PORTAL FRAMES Simplification for common frames Columns and rafters are not subjected to out-of-plane moments Columns and rafters are usually double symmetric sections N N y Ed M1 Rk k yy M LT y, Ed M y, Rk M1 1 N zn Ed Rk M1 k zy M LT y, Ed M y, Rk M1 1 61

62 ROOF BRACING

63 ROOF BRACING Photo APK 63

64 ROOF BRACING Rafters Roof bracing Purlins transmitting horizontal loads to roof bracing 64

65 ROOF BRACING Ground view of roof bracing Roof bracing 6 Rafters Purlins transmitting horizontal loads to roof bracing 65

66 ROOF BRACING Idealisation of roof bracing F exterior m rafters whose flanges are subjected to the axial force (including rafters acting as upper and lower flange of roof bracing) Horizontal loads transmitted by purlins Roof bracing 66

67 ROOF BRACING Imperfection for roof bracing EN F exterior e 0 e 0 e 0 m rafters whose flanges are subjected to the axial force and that are subjected to imperfection e 0 e 0 Horizontal loads due to imperfection e 0 and axial forces and to F exterior Roof bracing 67

68 ROOF BRACING Imperfection for roof bracing F exterior e 0 e 0 N Ed M h Rafter,Ed Section A upflange A Section N Rafter,Ed e 0 e 0 m L 500 m 0,5 1 1 m e 0 Horizontal loads due to imperfection e 0 and axial forces and to F exterior Roof bracing 68

69 ROOF BRACING Calculation of roof bracing F exterior e 0 Use of geometric imperfection and 2 nd order analysis e 0 e 0 Use of equivalent forces and 1 st order analysis e 0 69

70 ROOF BRACING Equivalent load concept q d L/8 q d L/4 q d L/4 q d L/4 q d L/8 q d L/2 q d L/2 L F exterior q d q d NEd8 e g : deflection of the roof bracing due to exterior load F exterior and equivalent load q d iterative calculation of q d 1 or 2 iterations sufficient 0 L 2 g 70

71 VERTICAL BRACING

72 VERTICAL BRACING Photo APK 72

73 VERTICAL BRACING Design procedure Calculation of cr 1 st order or 2 nd order theory Determination of horizontal loads Wind Loads due to global imperfection if necessary Calculation of internal forces and moments Verification of stability in bracing plane Verification of out of bracing plane stability as before 73

74 VERTICAL BRACING Calculation of cr for vertical bracings V total H unit V V V V h cr H V unit total h mean 74

75 VERTICAL BRACING In-plane loads on vertical bracing N tot f + H V V N tot : Sum of axial forces of all columns stabilized by bracing H: External horizontal loads V: Vertical loads on columns N tot f f: Sway imperfection 75

76 CONCLUSION

77 CONCLUSION Generally 2 nd order effects and imperfections have to be accounted for in the design of portal frames. Depending on the value of cr different calculation methods can be adopted. For portal frames it is convenient to account for global imperfection and global 2 nd order effects in the global analysis. 77

78 CONCLUSION Local 2 nd order effects are generally included in the member verification formulas of EN Physical imperfections are replaced by either equivalent geometric imperfections or equivalent loads. Bracing systems are subjected to external horizontal loads and loads due to their function as stabilizing elements. 78

79 SKILLS training modules have been developed by a consortium of organisations whose logos appear at the bottom of this slide. The material is under a creative commons license The project was funded with support from the European Commission. This module reflects only the views of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

III. Compression Members. Design of Steel Structures. Introduction. Compression Members (cont.)

III. Compression Members. Design of Steel Structures. Introduction. Compression Members (cont.) ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University it of Maryland Compression Members Following subjects are covered:

More information

Eurocode 3: Design of steel structures

Eurocode 3: Design of steel structures Eurocode 3: Design of steel structures David Brown, Associate Director, Steel Construction Institute Introduction Structural engineers should be encouraged that at least in steel, design conforming to

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

INTRODUCTION TO BEAMS

INTRODUCTION TO BEAMS CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis

More information

MODULE E: BEAM-COLUMNS

MODULE E: BEAM-COLUMNS MODULE E: BEAM-COLUMNS This module of CIE 428 covers the following subjects P-M interaction formulas Moment amplification Web local buckling Braced and unbraced frames Members in braced frames Members

More information

New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

More information

CLASSIFICATION BOUNDARIES FOR STIFFNESS OF BEAM-TO- COLUMN JOINTS AND COLUMN BASES

CLASSIFICATION BOUNDARIES FOR STIFFNESS OF BEAM-TO- COLUMN JOINTS AND COLUMN BASES Nordic Steel Construction Conference 2012 Hotel Bristol, Oslo, Norway 5-7 September 2012 CLASSIFICATION BOUNDARIES FOR STIFFNESS OF BEAM-TO- COLUMN JOINTS AND COLUMN BASES Ina Birkeland a,*, Arne Aalberg

More information

Nonlinear analysis and form-finding in GSA Training Course

Nonlinear analysis and form-finding in GSA Training Course Nonlinear analysis and form-finding in GSA Training Course Non-linear analysis and form-finding in GSA 1 of 47 Oasys Ltd Non-linear analysis and form-finding in GSA 2 of 47 Using the GSA GsRelax Solver

More information

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend

More information

STEEL BUILDINGS IN EUROPE. Single-Storey Steel Buildings Part 5: Detailed Design of Trusses

STEEL BUILDINGS IN EUROPE. Single-Storey Steel Buildings Part 5: Detailed Design of Trusses STEEL BUILDIGS I EUROPE Single-Storey Steel Buildings Part 5: Detailed Design of Trusses Single-Storey Steel Buildings Part 5: Detailed Design of Trusses 5 - ii Part 5: Detailed Design of Trusses FOREWORD

More information

INTRODUCTION TO LIMIT STATES

INTRODUCTION TO LIMIT STATES 4 INTRODUCTION TO LIMIT STATES 1.0 INTRODUCTION A Civil Engineering Designer has to ensure that the structures and facilities he designs are (i) fit for their purpose (ii) safe and (iii) economical and

More information

Optimising plate girder design

Optimising plate girder design Optimising plate girder design NSCC29 R. Abspoel 1 1 Division of structural engineering, Delft University of Technology, Delft, The Netherlands ABSTRACT: In the design of steel plate girders a high degree

More information

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

More information

A NEW DESIGN METHOD FOR INDUSTRIAL PORTAL FRAMES IN FIRE

A NEW DESIGN METHOD FOR INDUSTRIAL PORTAL FRAMES IN FIRE Application of Structural Fire Engineering, 9-2 February 29, Prague, Czech Republic A NEW DESIGN METHOD FOR INDUSTRIAL PORTAL FRAMES IN FIRE Yuanyuan Song a, Zhaohui Huang b, Ian Burgess c, Roger Plank

More information

Approximate Analysis of Statically Indeterminate Structures

Approximate Analysis of Statically Indeterminate Structures Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis

More information

Add-on Module STEEL EC3. Ultimate Limit State, Serviceability, Fire Resistance, and Stability Analyses According. Program Description

Add-on Module STEEL EC3. Ultimate Limit State, Serviceability, Fire Resistance, and Stability Analyses According. Program Description Version December 2014 Add-on Module STEEL EC3 Ultimate Limit State, Serviceability, Fire Resistance, and Stability Analyses According to Eurocode 3 Program Description All rights, including those of translations,

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar Problem 1 Design a hand operated overhead crane, which is provided in a shed, whose details are: Capacity of crane = 50 kn Longitudinal spacing of column = 6m Center to center distance of gantry girder

More information

Deflections. Question: What are Structural Deflections?

Deflections. Question: What are Structural Deflections? Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges 7.7 Truss bridges Fig. 7.21 some of the trusses that are used in steel bridges Truss Girders, lattice girders or open web girders are efficient and economical structural systems, since the members experience

More information

DS/EN 1993-1-1 DK NA:2014

DS/EN 1993-1-1 DK NA:2014 National Annex to Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings Foreword This national annex (NA) is a revision of DS/EN 1993-1-1 DK NA:2013 and replaces the

More information

Aluminium systems profile selection

Aluminium systems profile selection Aluminium systems profile selection The purpose of this document is to summarise the way that aluminium profile selection should be made, based on the strength requirements for each application. Curtain

More information

Pancake-type collapse energy absorption mechanisms and their influence on the final outcome (complete version)

Pancake-type collapse energy absorption mechanisms and their influence on the final outcome (complete version) Report, Structural Analysis and Steel Structures Institute, Hamburg University of Technology, Hamburg, June, 2013 Pancake-type collapse energy absorption mechanisms and their influence on the final outcome

More information

Statics of Structural Supports

Statics of Structural Supports Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure

More information

4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections.

4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections. Shear Walls Buildings that use shear walls as the lateral force-resisting system can be designed to provide a safe, serviceable, and economical solution for wind and earthquake resistance. Shear walls

More information

Full-Scale Load Testing of Steel Strutting System. For. Yongnam Holding Limited

Full-Scale Load Testing of Steel Strutting System. For. Yongnam Holding Limited Report on Full-Scale Load Testing of Steel Strutting System For Yongnam Holding Limited Prepared by Dr Richard Liew PhD, MIStrutE, CEng, PE(S pore) Department of Civil Engineering National University of

More information

PRACTICAL METHODS FOR CRITICAL LOAD DETERMINATION AND STABILITY EVALUATION OF STEEL STRUCTURES PEDRO FERNANDEZ

PRACTICAL METHODS FOR CRITICAL LOAD DETERMINATION AND STABILITY EVALUATION OF STEEL STRUCTURES PEDRO FERNANDEZ PRACTICAL METHODS FOR CRITICAL LOAD DETERMINATION AND STABILITY EVALUATION OF STEEL STRUCTURES By PEDRO FERNANDEZ B.S., Instituto Tecnologico y de Estudios Superiores de Occidente, 1992 A Thesis submitted

More information

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES Yang-Cheng Wang Associate Professor & Chairman Department of Civil Engineering Chinese Military Academy Feng-Shan 83000,Taiwan Republic

More information

Stability Of Structures: Additional Topics

Stability Of Structures: Additional Topics 26 Stability Of Structures: Additional Topics ASEN 3112 Lecture 26 Slide 1 Unified Column Buckling Formula Euler formula for pinned-pinned column P cr = π 2 EI L 2 Actual column length Unified formula

More information

Eurocode 3 for Dummies The Opportunities and Traps

Eurocode 3 for Dummies The Opportunities and Traps Eurocode 3 for Dummies The Opportunities and Traps a brief guide on element design to EC3 Tim McCarthy Email tim.mccarthy@umist.ac.uk Slides available on the web http://www2.umist.ac.uk/construction/staff/

More information

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar,

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar, Volume, Special Issue, ICSTSD Behaviour of Steel Bracing as a Global Retrofitting Technique Miss S. S. Nibhorkar M. E (Structure) Scholar, Civil Engineering Department, G. H. Raisoni College of Engineering

More information

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams Introduction to Beam Theory Area Moments of Inertia, Deflection, and Volumes of Beams Horizontal structural member used to support horizontal loads such as floors, roofs, and decks. Types of beam loads

More information

Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0

Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0 Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0 1 Problem Description Design a gantry crane meeting the geometry presented in Figure 1 on page #325 of the course textbook

More information

OPTIMAL DIAGRID ANGLE TO MINIMIZE DRIFT IN HIGH-RISE STEEL BUILDINGS SUBJECTED TO WIND LOADS

OPTIMAL DIAGRID ANGLE TO MINIMIZE DRIFT IN HIGH-RISE STEEL BUILDINGS SUBJECTED TO WIND LOADS International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 215, pp. 1-1, Article ID: IJCIET_6_11_1 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11

More information

bi directional loading). Prototype ten story

bi directional loading). Prototype ten story NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation

More information

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014 Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered

More information

DESIGN OF BLAST RESISTANT BUILDINGS IN AN LNG PROCESSING PLANT

DESIGN OF BLAST RESISTANT BUILDINGS IN AN LNG PROCESSING PLANT DESIGN OF BLAST RESISTANT BUILDINGS IN AN LNG PROCESSING PLANT Troy Oliver 1, Mark Rea 2 ABSTRACT: This paper provides an overview of the work undertaken in the design of multiple buildings for one of

More information

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST Abstract Camelia SLAVE University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti

More information

INSTALLATION. General. Important Note. Design. Transport

INSTALLATION. General. Important Note. Design. Transport General The roof trusses you are about to install have been manufactured to precise engineering standards. To ensure that the trusses perform as designed, it is essential that they be handled, erected

More information

Chapter 3 - Structural Design

Chapter 3 - Structural Design Chapter 3 - Structural Design 3.0 General 3.0.1 Design Overview Greenhouse buildings are a complete structure including the structural support and enclosure elements. The primary structural system includes:

More information

Design Parameters for Steel Special Moment Frame Connections

Design Parameters for Steel Special Moment Frame Connections SEAOC 2011 CONVENTION PROCEEDINGS Design Parameters for Steel Special Moment Frame Connections Scott M. Adan, Ph.D., S.E., SECB, Chair SEAONC Structural Steel Subcommittee Principal Adan Engineering Oakland,

More information

Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module - 5.3.

Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module - 5.3. Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 5.3 Lecture - 29 Matrix Analysis of Beams and Grids Good morning. This is

More information

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading: SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the

More information

Laterally Loaded Piles

Laterally Loaded Piles Laterally Loaded Piles 1 Soil Response Modelled by p-y Curves In order to properly analyze a laterally loaded pile foundation in soil/rock, a nonlinear relationship needs to be applied that provides soil

More information

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Concrete Frame Design Manual

Concrete Frame Design Manual Concrete Frame Design Manual Turkish TS 500-2000 with Turkish Seismic Code 2007 For SAP2000 ISO SAP093011M26 Rev. 0 Version 15 Berkeley, California, USA October 2011 COPYRIGHT Copyright Computers and Structures,

More information

DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTI-STAGE RUBBER BEARINGS FOR VIBRATION CONTROL OF STRUCTURES

DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTI-STAGE RUBBER BEARINGS FOR VIBRATION CONTROL OF STRUCTURES 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2243 DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTI-STAGE RUBBER BEARINGS FOR

More information

DISTRIBUTION OF LOADSON PILE GROUPS

DISTRIBUTION OF LOADSON PILE GROUPS C H A P T E R 7 DISTRIBUTION OF LOADSON PILE GROUPS Section I. DESIGN LOADS 7-1. Basic design. The load carried by an individual pile or group of piles in a foundation depends upon the structure concerned

More information

Rigid and Braced Frames

Rigid and Braced Frames Rigid Frames Rigid and raced Frames Rigid frames are identified b the lack of pinned joints within the frame. The joints are rigid and resist rotation. The ma be supported b pins or fied supports. The

More information

CE591 Lecture 8: Shear Walls

CE591 Lecture 8: Shear Walls CE591 Lecture 8: Shear Walls Introduction History, examples Benefits Disadvantages Plate Girder Analogy Behavior of Special Plate Shear Walls (SPSW) Design of SPSW Important considerations Special Plate

More information

Loads Tools Checks Reports

Loads Tools Checks Reports Loads Tools Checks Reports SDC Verifier or the Structural Design Code Verifier is a powerful postprocessor program with an advanced calculation core which works seamlessly with Siemens multi-solver, FEA

More information

Collapse of Underground Storm Water Detention System

Collapse of Underground Storm Water Detention System Collapse of Underground Storm Water Detention System No. 16 March 2008 Shopping malls have large roof areas and large paved areas for parking. In many cases, during heavy rainfall, the drainage from these

More information

FOUR-PLATE HEB-100 BEAM SPLICE BOLTED CONNECTIONS: TESTS AND COMMENTS

FOUR-PLATE HEB-100 BEAM SPLICE BOLTED CONNECTIONS: TESTS AND COMMENTS FOUR-PLATE HEB- BEAM SPLICE BOLTED CONNECTIONS: TESTS AND COMMENTS M.D. Zygomalas and C.C. Baniotopoulos Institute of Steel Structures, Aristotle University of Thessaloniki, Greece ABSTRACT The present

More information

Introduction. Background

Introduction. Background Introduction Welcome to CFS, the comprehensive cold-formed steel component design software. The endless variety of shapes and sizes of cold-formed steel members, combined with the complex failure modes

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

Timber Frame Construction

Timber Frame Construction Timber Frame Construction Introduction Design and Detailing What is timber? Failure modes History of timber frame construction Forms of timber frame construction Live and dead loads Wind loads Roof construction

More information

Compression Members: Structural elements that are subjected to axial compressive forces

Compression Members: Structural elements that are subjected to axial compressive forces CHAPTER 3. COMPRESSION MEMBER DESIGN 3.1 INTRODUCTORY CONCEPTS Compression Members: Structural elements that are subjected to axial compressive forces onl are called columns. Columns are subjected to axial

More information

ARCH 331 Structural Glossary S2014abn. Structural Glossary

ARCH 331 Structural Glossary S2014abn. Structural Glossary Structural Glossary Allowable strength: Nominal strength divided by the safety factor. Allowable stress: Allowable strength divided by the appropriate section property, such as section modulus or cross

More information

SIMPLE ANALYSIS OF FRAMED-TUBE STRUCTURES WITH MULTIPLE INTERNAL TUBES

SIMPLE ANALYSIS OF FRAMED-TUBE STRUCTURES WITH MULTIPLE INTERNAL TUBES SIMPLE ANALYSIS OF FRAMED-TUBE STRUCTURES WITH MULTIPLE INTERNAL TUBES By Kang-Kun Lee, Yew-Chaye Loo 2, and Hong Guan 3 ABSTRACT: Framed-tube system with multiple internal tubes is analysed using an orthotropic

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Analysis of Statically Indeterminate Structures by the Matrix Force Method esson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be able

More information

Scheme development: Purlin structure design

Scheme development: Purlin structure design Provides the information required for designing the purlin structure of a steel-frame building. Gives details on the interaction between purlins and roofing. Contents 1. Introduction function of purlins

More information

Structural Design Calculation For Pergola

Structural Design Calculation For Pergola Structural Design Calculation For Pergola Revision :5 Prepared by :EC Date : 8/10/009 CONTENTS 1. Introduction... Design Code and Reference 3. Design Synopsis 4. Design Parameters 4.1 Design Load. 4. Design

More information

Brandangersundet Bridge A slender and light network arch

Brandangersundet Bridge A slender and light network arch Brandangersundet Bridge A slender and light network arch Rolf Magne Larssen Dr. ing./ Ph.D. Dr. ing A. Aas-Jakobsen AS Oslo, Norway rml@aaj.no Rolf Magne Larssen, born 1958, received his Ph.D. in structural

More information

2011-2012. Crane Runway Girder. Dr. Ibrahim Fahdah Damascus University. https://sites.google.com/site/ifahdah/home/lectures

2011-2012. Crane Runway Girder. Dr. Ibrahim Fahdah Damascus University. https://sites.google.com/site/ifahdah/home/lectures Crane Runway Girder Dr. Ibrahim Fahdah Damascus University https://sites.google.com/site/ifahdah/home/lectures Components of Crane system The Crane Runway Girder and the Structure Issue1: Vertical Load

More information

Bending Stress in Beams

Bending Stress in Beams 936-73-600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending

More information

Introduction to Mechanical Behavior of Biological Materials

Introduction to Mechanical Behavior of Biological Materials Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure

More information

The Collapse of Building 7 by Arthur Scheuerman December 8, 06

The Collapse of Building 7 by Arthur Scheuerman December 8, 06 The Collapse of Building 7 by Arthur Scheuerman December 8, 06 WTC s Building 7 was a 47-story office building completed in 1987 by Silverstein Properties on land owned by the Port Authority. It was built

More information

Stresses in Beam (Basic Topics)

Stresses in Beam (Basic Topics) Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and

More information

Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

More information

16. Beam-and-Slab Design

16. Beam-and-Slab Design ENDP311 Structural Concrete Design 16. Beam-and-Slab Design Beam-and-Slab System How does the slab work? L- beams and T- beams Holding beam and slab together University of Western Australia School of Civil

More information

Timber frame structures platform frame construction (part 1)

Timber frame structures platform frame construction (part 1) Timber frame structures platform frame construction (part 1) Introduction The platform frame method of building timber frame structures is suited to both low-rise and medium-rise buildings. Many buildings

More information

Determination of Structural Capacity by Non-linear FE analysis Methods

Determination of Structural Capacity by Non-linear FE analysis Methods RECOMMENDED PRACTICE DNV-RP-C208 Determination of Structural Capacity by Non-linear FE analysis Methods JUNE 2013 The electronic pdf version of this document found through http://www.dnv.com is the officially

More information

TECHNICAL NOTE. Design of Diagonal Strap Bracing Lateral Force Resisting Systems for the 2006 IBC. On Cold-Formed Steel Construction INTRODUCTION

TECHNICAL NOTE. Design of Diagonal Strap Bracing Lateral Force Resisting Systems for the 2006 IBC. On Cold-Formed Steel Construction INTRODUCTION TECHNICAL NOTE On Cold-Formed Steel Construction 1201 15th Street, NW, Suite 320 W ashington, DC 20005 (202) 785-2022 $5.00 Design of Diagonal Strap Bracing Lateral Force Resisting Systems for the 2006

More information

Nueva Edición del libro clásico para estudiantes de grado.

Nueva Edición del libro clásico para estudiantes de grado. Nueva Edición del libro clásico para estudiantes de grado. Ha aparecido la quinta edición del que ya se ha convertido en uno de los libros más vendidos de Diseño de estructuras de Acero para su uso en

More information

Transverse web stiffeners and shear moment interaction for steel plate girder bridges

Transverse web stiffeners and shear moment interaction for steel plate girder bridges Transverse web stiffeners and shear moment 017 Chris R Hendy MA (Cantab) CEng FICE Head of Bridge Design and Technology Highways & Transportation Atkins Epsom, UK Francesco Presta CEng, MIStructE Senior

More information

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Guidance to developers of software for the design of composite beams

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Guidance to developers of software for the design of composite beams STEEL BUILDINGS IN EUROPE Multi-Storey Steel Buildings Part 10: Guidance to developers of software for the design of Multi-Storey Steel Buildings Part 10: Guidance to developers of software for the design

More information

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems: Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI318-02 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems

More information

Basic principles of steel structures. Dr. Xianzhong ZHAO x.zhao@mail.tongji.edu.cn

Basic principles of steel structures. Dr. Xianzhong ZHAO x.zhao@mail.tongji.edu.cn Basic principles of steel structures Dr. Xianzhong ZHAO x.zhao@mail.tongji.edu.cn 1 Lecture Questionnaire (1) Language preferred ( C = in Chinese, E = in English) NO. Oral Presentation Writing on the blackboard

More information

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

SEISMIC RETROFITTING OF STRUCTURES

SEISMIC RETROFITTING OF STRUCTURES SEISMIC RETROFITTING OF STRUCTURES RANJITH DISSANAYAKE DEPT. OF CIVIL ENGINEERING, FACULTY OF ENGINEERING, UNIVERSITY OF PERADENIYA, SRI LANKA ABSTRACT Many existing reinforced concrete structures in present

More information

ANALYSIS OF A LAP JOINT FRICTION CONNECTION USING HIGH STRENGTH BOLTS

ANALYSIS OF A LAP JOINT FRICTION CONNECTION USING HIGH STRENGTH BOLTS Nordic Steel Construction Conference 212 Hotel Bristol, Oslo, Norway 5-7 September 212 ANALYSIS OF A LAP JOINT FRICTION CONNECTION USING HIGH STRENGTH BOLTS Marouene Limam a, Christine Heistermann a and

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

UNRESTRAINED BEAM DESIGN I

UNRESTRAINED BEAM DESIGN I 11 UNRESTRAINED BEA DESIGN I 1.0 INTRODUCTION Generally, a beam resists transverse loads by bending action. In a typical building frame, main beams are employed to span between adjacent columns; secondary

More information

Design of pile foundations following Eurocode 7-Section 7

Design of pile foundations following Eurocode 7-Section 7 Brussels, 18-20 February 2008 Dissemination of information workshop 1 Workshop Eurocodes: background and applications Brussels, 18-20 Februray 2008 Design of pile foundations following Eurocode 7-Section

More information

How to Design Helical Piles per the 2009 International Building Code

How to Design Helical Piles per the 2009 International Building Code ABSTRACT How to Design Helical Piles per the 2009 International Building Code by Darin Willis, P.E. 1 Helical piles and anchors have been used in construction applications for more than 150 years. The

More information

RFEM 5. Spatial Models Calculated acc. to Finite Element Method. of DLUBAL SOFTWARE GMBH. Dlubal Software GmbH Am Zellweg 2 D-93464 Tiefenbach

RFEM 5. Spatial Models Calculated acc. to Finite Element Method. of DLUBAL SOFTWARE GMBH. Dlubal Software GmbH Am Zellweg 2 D-93464 Tiefenbach Version July 2013 Program RFEM 5 Spatial Models Calculated acc. to Finite Element Method Tutorial All rights, including those of translations, are reserved. No portion of this book may be reproduced mechanically,

More information

CE591 Fall 2013 Lecture 26: Moment Connections

CE591 Fall 2013 Lecture 26: Moment Connections CE591 Fall 2013 Lecture 26: Moment Connections Explain basic design procedure for moment (FR) connections Explain considerations for connections in momentresisting frames for seismic demands Describe problems

More information

Seismic Risk Prioritization of RC Public Buildings

Seismic Risk Prioritization of RC Public Buildings Seismic Risk Prioritization of RC Public Buildings In Turkey H. Sucuoğlu & A. Yakut Middle East Technical University, Ankara, Turkey J. Kubin & A. Özmen Prota Inc, Ankara, Turkey SUMMARY Over the past

More information

Conceptual Design of Buildings (Course unit code 1C2)

Conceptual Design of Buildings (Course unit code 1C2) (Course unit code 1C2) Module C Design of Steel Members J.P. Jaspart (University of Liège) 520121-1-2011-1-CZ-ERA MUNDUS-EMMC Bolts are the main type of fasteners used in steel joints. The main geometrical

More information

Selecting and Sizing Ball Screw Drives

Selecting and Sizing Ball Screw Drives Selecting and Sizing Ball Screw Drives Jeff G. Johnson, Product Engineer Thomson Industries, Inc. Wood Dale, IL 540-633-3549 www.thomsonlinear.com Thomson@thomsonlinear.com Fig 1: Ball screw drive is a

More information

5 Steel elements. 5.1 Structural design At present there are two British Standards devoted to the design of strucof tural steel elements:

5 Steel elements. 5.1 Structural design At present there are two British Standards devoted to the design of strucof tural steel elements: 5 Steel elements 5.1 Structural design At present there are two British Standards devoted to the design of strucof steelwork tural steel elements: BS 449 The use of structural steel in building. BS 5950

More information

Type of Force 1 Axial (tension / compression) Shear. 3 Bending 4 Torsion 5 Images 6 Symbol (+ -)

Type of Force 1 Axial (tension / compression) Shear. 3 Bending 4 Torsion 5 Images 6 Symbol (+ -) Cause: external force P Force vs. Stress Effect: internal stress f 05 Force vs. Stress Copyright G G Schierle, 2001-05 press Esc to end, for next, for previous slide 1 Type of Force 1 Axial (tension /

More information

Reinforced Concrete Design

Reinforced Concrete Design FALL 2013 C C Reinforced Concrete Design CIVL 4135 ii 1 Chapter 1. Introduction 1.1. Reading Assignment Chapter 1 Sections 1.1 through 1.8 of text. 1.2. Introduction In the design and analysis of reinforced

More information

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14 Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 318-14 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318

More information

National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination

National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination Structural Effective Beginning with the April 2011 The structural engineering exam is a breadth and exam examination offered in two components on successive days. The 8-hour Vertical Forces (Gravity/Other)

More information

REVISION OF GUIDELINE FOR POST- EARTHQUAKE DAMAGE EVALUATION OF RC BUILDINGS IN JAPAN

REVISION OF GUIDELINE FOR POST- EARTHQUAKE DAMAGE EVALUATION OF RC BUILDINGS IN JAPAN 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska REVISION OF GUIDELINE FOR POST- EARTHQUAKE DAMAGE EVALUATION OF RC

More information

Finite Element Formulation for Beams - Handout 2 -

Finite Element Formulation for Beams - Handout 2 - Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called

More information

Preliminary steel concrete composite bridge design charts for Eurocodes

Preliminary steel concrete composite bridge design charts for Eurocodes Preliminary steel concrete composite bridge 90 Rachel Jones Senior Engineer Highways & Transportation Atkins David A Smith Regional Head of Bridge Engineering Highways & Transportation Atkins Abstract

More information