Fast Monte-Carlo Low Rank Approximations for Matrices. Shmuel Friedland University of Illinois at Chicago

Size: px
Start display at page:

Download "Fast Monte-Carlo Low Rank Approximations for Matrices. Shmuel Friedland University of Illinois at Chicago"

Transcription

1 Fast Monte-Carlo Low Rank Approximations for Matrices Shmuel Friedland University of Illinois at Chicago joint work with M. Kaveh, A. Niknejad and H. Zare IEEE SoSE 2006, LA, April 25, friedlan 1

2 1 Statement of the problem Data is presented in terms of a matrix A = a 11 a a 1n a 21 a a 2n.... a m1 a m2... a mn Examples 1. digital picture: matrix of pixels 2. DNA-microarrays: 60, (rows are genes and columns are experiments) 3. web pages activities: a ij -the number of times webpage j was accessed from web page i Object: condense data and storage it effectively 2

3 2 Matrix SVD Let A C m n. Then A : C n C m. Assume C n, C m equipped with standard inner product x, y := y x. Then A = UΣV, where U U(m), V U(n), Σ = diag(σ 1,..., σ min(m,n) ) R m n +. U, V transition matrices from [u 1,..., u m ], [v 1,..., v n ] to the standard bases in C m, C n respectively. For k r let Σ k = diag(σ 1,..., σ k ) R k k, and U k U(m, k), V k U(n, k) having the first k columns of U, V respectively. Then A k := U k Σ k V k the best rank k approximation in Frobenius and operator norm of A: min B R(m,n,k) A B = A A k. A = U r Σ r V r is Reduced SVD (r ) ν numerical rank of A if σ ν+1 σ ν 0. A ν is a noise reduction of A. Noise reduction has many applications in image processing, DNA-Microarrays analysis, data compression. 3

4 3 SVD in inner product spaces U i is m i -dimensional IPS over C, with, i, i = 1, 2. T : U 1 U 2 linear operator. T : U 2 U 1 the adjoint operator: T x, y 2 = x, T y 1. S 1 := T T : U 1 U 1, S 2 := T T : U 2 U 2. S 1, S 2 self-adjoint: S 1 = S 1, S 2 = S 2 and nonnegative definite: S i x i, x i i 0. σ σ2 r > 0 positive eigenvalues of S 1 and S 2 and r = rank T = rank T. Let S 1 v i = σi 2v i, v i, v j 1 = δ ij, i, j =, 1,..., r. Define u i := σ 1 i T v i, i = 1,..., r. Then u i, u j 2 = δ ij, i, j = 1,..., r. Complete {v 1,..., v r } and {u 1,..., u r } to orthonormal bases [v 1,..., v m1 ] and [u 1,..., u m2 ] in U 1 and U 2. 4

5 4 RANDOM k-svd Stable numerical algortihms of SVD introduced by Golub-Kahan 1965, Golub-Reinsch 1970: Implicit QR Algo to reduce to upper bidiagonal form using Householder matrices, then Golub-Reinsch SVD algo to zero superdiagonal elements. Complexity: O(mn min(m, n)). In applications for massive data: A R m n, m, n >> 1 needed a good approximation A k = k i=1 x iy T i, x i R m, y i R n, i = 1,..., k << min(m, n). Random A k approximation algo: Find a good algo by reading l rows or columns of A at random and update the approximations. Frieze-Kannan-Vempala FOCS 1998 suggest algo without updating. 5

6 5 FKNZ RANDOM ALGO [4] Fast k-rank approximation and SVD algorithm Input: positive integers m, n, k, l, N, m n matrix A, ɛ > 0. Output: an m n k-rank approximation B f of A, with the ratios B 0 B t and B t 1 B t, approximations to k-singular values and k left and right singular vectors of A. 1. Choose k-rank approximation B 0 using k columns, (or rows), of A. 2. for t = 1 to N - Select l columns, (or rows), from A at random and update B t 1 to B t. - Compute the approximations to k-singular values, and k left and right singular vectors of A. - If B t 1 B t Complexity: O(mnk). > 1 ɛ let f = t and finish. Each iteration A B t 1 F A B t F. 6

7 6 DETAILS Choose at random k columns of A. Apply modified Gram-Schmidt algo to obtain x 1,..., x q R m, q k. Set B 0 := q i=1 x i(a T x i ) T. A B 0 2 F = tr AT A tr B T 0 B 0 = tr A T A q i=1 (AT x i ) T (A T x i ). Choose at random another l columns of A: w 1,..., w l. Apply modified Gram-Schmidt algo to x 1,..., x q, w 1,..., w l to obtain o.n.s. x 1,..., x q, x q+1,..., x p. Form C 0 := B 0 + p i=q+1 x i(a T x i ) T. Find the first left k-o.n. left singular vectors v 1,..., v k of C 0. Then B 1 := k i=1 v i(a T v i ) T and tr B T 0 B 0 tr B T 1 B 1. Obtain B t from B t 1 as above. 7

8 7 Lifting body original Figure 1: Lifting body image

9 8 Lifting body compressed Figure 2: 80-rank approximation of Lifting body image

10 9 SIMULATIONS x 10 4 Weighted sampling Uniform sampling with replacement Uniform sampling without replacement Relative error Number of iteration Figure 3: Convergence property of the Monte-Carlo method for Liftingbody image( ), k =

11 10 SIMULATIONS x Uniform sampling without replacement Uniform sampling with replacement Weighted sampling Relative error Total number of sampled rows Figure 4: Liftingbody: relative errors versus total number of sampled rows, k =

12 11 Camera man original Figure 5: Camera man image

13 12 Camera man compressed Figure 6: 80-rank approximation of Camera man

14 13 SIMULATIONS x 10 3 Uniform sampling without replacement Weighted sampling Uniform sampling with replacement Relative error Number of iteration Figure 7: Convergence property of the Monte-Carlo method for Cameraman image( ), k =

15 14 SIMULATIONS x 10 3 Uniform sampling without replacement Weighted sampling Uniform sampling with replacement Relative error Total number of sampled rows Figure 8: Cameraman: Relative error versus total number of sampled rows, k =

16 15 SIMULATIONS x Uniform sampling without replacement Uniform sampling with replacement Relative error Number of iteration Figure 9: Convergence property of the Monte-Carlo method for random data matrix( ) k = l =

17 16 COMPARISONS Table 1: Comparison of relative error and speed up of our algorithm with optimum k-rank approximation algorithm Data sets Speed up Re. ratio Cameraman( ), k = Liftingbody ( ), k = Map image( ) k = Random matrix( ) k =

18 17 Choosing columns of A Frieze, Kannan and Vempala [8] suggest to choose column c i (A) with probability c i(a) 2 A 2. F If s k are chosen then the k-approximation satisfies A k A A k 2 F m i=k+1 σ i(a) k s A 2 F. If s k 10ɛ then A A k 2 F m i=k+1 σ i(a) 2 + ɛ A 2 F. Deshpande, Rademacher, Vempala and Wang [2] improved the sampling by modifying the sampling c i (A) according to new probabilities c i(a A k ) 2 A A k 2 F Perhaps our algorithm can be combined with above sampling of columns to get better results.. 18

19 References [1] O. Alter, P.O. Brown and D. Botstein, Singular value decomposition for genome-wide expression data processing and modelling, Proc. Nat. Acad. Sci. USA 97 (2000), [2] A. Deshpande, L. Rademacher, S. Vemapala and G. Wang, Matrix Approximation and Projective Clustering via Volume Sampling, SODA, [3] S. Friedland, A New Approach to Generalized Singular Value Decomposition, SIMAX 27 (2005), [4] S. Friedland, M. Kaveh, A. Niknejad and H. Zare, Fast Monte-Carlo Low Rank Approximations for Matrices, Proc. IEEE SoSE, 2006, 6 pp., to appear. [5] S. Friedland, M. Kaveh, A. Niknejad and H. Zare, An Algorithm for Missing Value Estimation for DNA Microarray Data, Proceedings of ICASSP 2006, Toulouse, France, 4 pp., to appear. [6] S. Friedland, A. Niknejad and L. Chihara, A simultaneous reconstruction of missing data in DNA 19

20 microarrays, to appear in Linear Algebra and Its Applications. [7] S. Friedland, J. Nocedal and M. Overton, The formulation and analysis of numerical methods for inverse eigenvalue problems, SIAM J. Numer. Anal. 24 (1987), [8] A. Frieze, R. Kannan and S. Vempala, Fast Monte-Carlo algorithms for finding low rank approximations, Proceedings of the 39th Annual Symposium on Foundation of Computer Science, [9] G.H. Golub and C.F. Van Loan, Matrix Computation, John Hopkins Univ. Press, 3rd Ed.,

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal type matrix decompositions Every

More information

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder APPM4720/5720: Fast algorithms for big data Gunnar Martinsson The University of Colorado at Boulder Course objectives: The purpose of this course is to teach efficient algorithms for processing very large

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

More information

CS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #18: Dimensionality Reduc7on

CS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #18: Dimensionality Reduc7on CS 5614: (Big) Data Management Systems B. Aditya Prakash Lecture #18: Dimensionality Reduc7on Dimensionality Reduc=on Assump=on: Data lies on or near a low d- dimensional subspace Axes of this subspace

More information

Lecture 5: Singular Value Decomposition SVD (1)

Lecture 5: Singular Value Decomposition SVD (1) EEM3L1: Numerical and Analytical Techniques Lecture 5: Singular Value Decomposition SVD (1) EE3L1, slide 1, Version 4: 25-Sep-02 Motivation for SVD (1) SVD = Singular Value Decomposition Consider the system

More information

Constrained Least Squares

Constrained Least Squares Constrained Least Squares Authors: G.H. Golub and C.F. Van Loan Chapter 12 in Matrix Computations, 3rd Edition, 1996, pp.580-587 CICN may05/1 Background The least squares problem: min Ax b 2 x Sometimes,

More information

Applied Linear Algebra I Review page 1

Applied Linear Algebra I Review page 1 Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties

More information

Rank one SVD: un algorithm pour la visualisation d une matrice non négative

Rank one SVD: un algorithm pour la visualisation d une matrice non négative Rank one SVD: un algorithm pour la visualisation d une matrice non négative L. Labiod and M. Nadif LIPADE - Universite ParisDescartes, France ECAIS 2013 November 7, 2013 Outline Outline 1 Data visualization

More information

CS3220 Lecture Notes: QR factorization and orthogonal transformations

CS3220 Lecture Notes: QR factorization and orthogonal transformations CS3220 Lecture Notes: QR factorization and orthogonal transformations Steve Marschner Cornell University 11 March 2009 In this lecture I ll talk about orthogonal matrices and their properties, discuss

More information

Lecture Topic: Low-Rank Approximations

Lecture Topic: Low-Rank Approximations Lecture Topic: Low-Rank Approximations Low-Rank Approximations We have seen principal component analysis. The extraction of the first principle eigenvalue could be seen as an approximation of the original

More information

arxiv:1007.5510v2 [stat.co] 19 Mar 2011

arxiv:1007.5510v2 [stat.co] 19 Mar 2011 AN ALGORITHM FOR THE PRINCIPAL COMPONENT ANALYSIS OF LARGE DATA SETS NATHAN HALKO, PER-GUNNAR MARTINSSON, YOEL SHKOLNISKY, AND MARK TYGERT arxiv:1007.5510v2 [stat.co] 19 Mar 2011 Abstract. Recently popularized

More information

Examination paper for TMA4205 Numerical Linear Algebra

Examination paper for TMA4205 Numerical Linear Algebra Department of Mathematical Sciences Examination paper for TMA4205 Numerical Linear Algebra Academic contact during examination: Markus Grasmair Phone: 97580435 Examination date: December 16, 2015 Examination

More information

Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree of PhD of Engineering in Informatics

Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree of PhD of Engineering in Informatics INTERNATIONAL BLACK SEA UNIVERSITY COMPUTER TECHNOLOGIES AND ENGINEERING FACULTY ELABORATION OF AN ALGORITHM OF DETECTING TESTS DIMENSIONALITY Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree

More information

Parallel Data Selection Based on Neurodynamic Optimization in the Era of Big Data

Parallel Data Selection Based on Neurodynamic Optimization in the Era of Big Data Parallel Data Selection Based on Neurodynamic Optimization in the Era of Big Data Jun Wang Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Shatin, New Territories,

More information

NOVEL GENOME-SCALE CORRELATION BETWEEN DNA REPLICATION AND RNA TRANSCRIPTION DURING THE CELL CYCLE IN YEAST IS PREDICTED BY DATA-DRIVEN MODELS

NOVEL GENOME-SCALE CORRELATION BETWEEN DNA REPLICATION AND RNA TRANSCRIPTION DURING THE CELL CYCLE IN YEAST IS PREDICTED BY DATA-DRIVEN MODELS NOVEL GENOME-SCALE CORRELATION BETWEEN DNA REPLICATION AND RNA TRANSCRIPTION DURING THE CELL CYCLE IN YEAST IS PREDICTED BY DATA-DRIVEN MODELS Orly Alter (a) *, Gene H. Golub (b), Patrick O. Brown (c)

More information

3 Orthogonal Vectors and Matrices

3 Orthogonal Vectors and Matrices 3 Orthogonal Vectors and Matrices The linear algebra portion of this course focuses on three matrix factorizations: QR factorization, singular valued decomposition (SVD), and LU factorization The first

More information

Nonlinear Iterative Partial Least Squares Method

Nonlinear Iterative Partial Least Squares Method Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for

More information

Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning

Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning SAMSI 10 May 2013 Outline Introduction to NMF Applications Motivations NMF as a middle step

More information

Chapter 7. Lyapunov Exponents. 7.1 Maps

Chapter 7. Lyapunov Exponents. 7.1 Maps Chapter 7 Lyapunov Exponents Lyapunov exponents tell us the rate of divergence of nearby trajectories a key component of chaotic dynamics. For one dimensional maps the exponent is simply the average

More information

The Image Deblurring Problem

The Image Deblurring Problem page 1 Chapter 1 The Image Deblurring Problem You cannot depend on your eyes when your imagination is out of focus. Mark Twain When we use a camera, we want the recorded image to be a faithful representation

More information

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it. This material is posted here with permission of the IEEE Such permission of the IEEE does not in any way imply IEEE endorsement of any of Helsinki University of Technology's products or services Internal

More information

8. Linear least-squares

8. Linear least-squares 8. Linear least-squares EE13 (Fall 211-12) definition examples and applications solution of a least-squares problem, normal equations 8-1 Definition overdetermined linear equations if b range(a), cannot

More information

Similar matrices and Jordan form

Similar matrices and Jordan form Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 19: SVD revisited; Software for Linear Algebra Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 9 Outline 1 Computing

More information

Unsupervised and supervised dimension reduction: Algorithms and connections

Unsupervised and supervised dimension reduction: Algorithms and connections Unsupervised and supervised dimension reduction: Algorithms and connections Jieping Ye Department of Computer Science and Engineering Evolutionary Functional Genomics Center The Biodesign Institute Arizona

More information

Linear Algebra Methods for Data Mining

Linear Algebra Methods for Data Mining Linear Algebra Methods for Data Mining Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Spring 2007 Lecture 3: QR, least squares, linear regression Linear Algebra Methods for Data Mining, Spring 2007, University

More information

P164 Tomographic Velocity Model Building Using Iterative Eigendecomposition

P164 Tomographic Velocity Model Building Using Iterative Eigendecomposition P164 Tomographic Velocity Model Building Using Iterative Eigendecomposition K. Osypov* (WesternGeco), D. Nichols (WesternGeco), M. Woodward (WesternGeco) & C.E. Yarman (WesternGeco) SUMMARY Tomographic

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

NMR Measurement of T1-T2 Spectra with Partial Measurements using Compressive Sensing

NMR Measurement of T1-T2 Spectra with Partial Measurements using Compressive Sensing NMR Measurement of T1-T2 Spectra with Partial Measurements using Compressive Sensing Alex Cloninger Norbert Wiener Center Department of Mathematics University of Maryland, College Park http://www.norbertwiener.umd.edu

More information

Text Analytics (Text Mining)

Text Analytics (Text Mining) CSE 6242 / CX 4242 Apr 3, 2014 Text Analytics (Text Mining) LSI (uses SVD), Visualization Duen Horng (Polo) Chau Georgia Tech Some lectures are partly based on materials by Professors Guy Lebanon, Jeffrey

More information

SYMMETRIC EIGENFACES MILI I. SHAH

SYMMETRIC EIGENFACES MILI I. SHAH SYMMETRIC EIGENFACES MILI I. SHAH Abstract. Over the years, mathematicians and computer scientists have produced an extensive body of work in the area of facial analysis. Several facial analysis algorithms

More information

Big Data Analytics: Optimization and Randomization

Big Data Analytics: Optimization and Randomization Big Data Analytics: Optimization and Randomization Tianbao Yang, Qihang Lin, Rong Jin Tutorial@SIGKDD 2015 Sydney, Australia Department of Computer Science, The University of Iowa, IA, USA Department of

More information

Nimble Algorithms for Cloud Computing. Ravi Kannan, Santosh Vempala and David Woodruff

Nimble Algorithms for Cloud Computing. Ravi Kannan, Santosh Vempala and David Woodruff Nimble Algorithms for Cloud Computing Ravi Kannan, Santosh Vempala and David Woodruff Cloud computing Data is distributed arbitrarily on many servers Parallel algorithms: time Streaming algorithms: sublinear

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis

More information

ON THE DEGREES OF FREEDOM OF SIGNALS ON GRAPHS. Mikhail Tsitsvero and Sergio Barbarossa

ON THE DEGREES OF FREEDOM OF SIGNALS ON GRAPHS. Mikhail Tsitsvero and Sergio Barbarossa ON THE DEGREES OF FREEDOM OF SIGNALS ON GRAPHS Mikhail Tsitsvero and Sergio Barbarossa Sapienza Univ. of Rome, DIET Dept., Via Eudossiana 18, 00184 Rome, Italy E-mail: tsitsvero@gmail.com, sergio.barbarossa@uniroma1.it

More information

SMOOTHING APPROXIMATIONS FOR TWO CLASSES OF CONVEX EIGENVALUE OPTIMIZATION PROBLEMS YU QI. (B.Sc.(Hons.), BUAA)

SMOOTHING APPROXIMATIONS FOR TWO CLASSES OF CONVEX EIGENVALUE OPTIMIZATION PROBLEMS YU QI. (B.Sc.(Hons.), BUAA) SMOOTHING APPROXIMATIONS FOR TWO CLASSES OF CONVEX EIGENVALUE OPTIMIZATION PROBLEMS YU QI (B.Sc.(Hons.), BUAA) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF MATHEMATICS NATIONAL

More information

CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES. From Exploratory Factor Analysis Ledyard R Tucker and Robert C.

CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES. From Exploratory Factor Analysis Ledyard R Tucker and Robert C. CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES From Exploratory Factor Analysis Ledyard R Tucker and Robert C MacCallum 1997 180 CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES In

More information

1. Introduction. Consider the computation of an approximate solution of the minimization problem

1. Introduction. Consider the computation of an approximate solution of the minimization problem A NEW TIKHONOV REGULARIZATION METHOD MARTIN FUHRY AND LOTHAR REICHEL Abstract. The numerical solution of linear discrete ill-posed problems typically requires regularization, i.e., replacement of the available

More information

Factorization Theorems

Factorization Theorems Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization

More information

Capacity Limits of MIMO Channels

Capacity Limits of MIMO Channels Tutorial and 4G Systems Capacity Limits of MIMO Channels Markku Juntti Contents 1. Introduction. Review of information theory 3. Fixed MIMO channels 4. Fading MIMO channels 5. Summary and Conclusions References

More information

Modélisation et résolutions numérique et symbolique

Modélisation et résolutions numérique et symbolique Modélisation et résolutions numérique et symbolique via les logiciels Maple et Matlab Jeremy Berthomieu Mohab Safey El Din Stef Graillat Mohab.Safey@lip6.fr Outline Previous course: partial review of what

More information

Linear Algebra Methods for Data Mining

Linear Algebra Methods for Data Mining Linear Algebra Methods for Data Mining Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Spring 2007 Text mining & Information Retrieval Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki

More information

Review Jeopardy. Blue vs. Orange. Review Jeopardy

Review Jeopardy. Blue vs. Orange. Review Jeopardy Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round $200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?

More information

A Simultaneous Solution for General Linear Equations on a Ring or Hierarchical Cluster

A Simultaneous Solution for General Linear Equations on a Ring or Hierarchical Cluster Acta Technica Jaurinensis Vol. 3. No. 1. 010 A Simultaneous Solution for General Linear Equations on a Ring or Hierarchical Cluster G. Molnárka, N. Varjasi Széchenyi István University Győr, Hungary, H-906

More information

Journal of Computational and Applied Mathematics

Journal of Computational and Applied Mathematics Journal of Computational and Applied Mathematics 226 (2009) 92 102 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam

More information

Linköping University Electronic Press

Linköping University Electronic Press Linköping University Electronic Press Report A Preconditioned GMRES Method for Solving a 1D Sideways Heat Equation Zohreh Ranjbar and Lars Eldén LiTH-MAT-R, 348-296, No. 6 Available at: Linköping University

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Background: State Estimation

Background: State Estimation State Estimation Cyber Security of the Smart Grid Dr. Deepa Kundur Background: State Estimation University of Toronto Dr. Deepa Kundur (University of Toronto) Cyber Security of the Smart Grid 1 / 81 Dr.

More information

Clustered Subset Selection and its Applications on IT Service Metrics

Clustered Subset Selection and its Applications on IT Service Metrics Clustered Subset Selection and its Applications on IT Service Metrics Christos Boutsidis Computer Science Dept, RPI Troy, NY boutsc@cs.rpi.edu Jimeng Sun IBM T.J. Watson Lab Hawthorne, NY jimeng@us.ibm.com

More information

USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS

USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA natarajan.meghanathan@jsums.edu

More information

LINEAR ALGEBRA. September 23, 2010

LINEAR ALGEBRA. September 23, 2010 LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

Section 6.1 - Inner Products and Norms

Section 6.1 - Inner Products and Norms Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,

More information

Sparse Nonnegative Matrix Factorization for Clustering

Sparse Nonnegative Matrix Factorization for Clustering Sparse Nonnegative Matrix Factorization for Clustering Jingu Kim and Haesun Park College of Computing Georgia Institute of Technology 266 Ferst Drive, Atlanta, GA 30332, USA {jingu, hpark}@cc.gatech.edu

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

Numerical Methods I Solving Linear Systems: Sparse Matrices, Iterative Methods and Non-Square Systems

Numerical Methods I Solving Linear Systems: Sparse Matrices, Iterative Methods and Non-Square Systems Numerical Methods I Solving Linear Systems: Sparse Matrices, Iterative Methods and Non-Square Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001,

More information

Linear Algebra and TI 89

Linear Algebra and TI 89 Linear Algebra and TI 89 Abdul Hassen and Jay Schiffman This short manual is a quick guide to the use of TI89 for Linear Algebra. We do this in two sections. In the first section, we will go over the editing

More information

A Toolbox for Bicluster Analysis in R

A Toolbox for Bicluster Analysis in R Sebastian Kaiser and Friedrich Leisch A Toolbox for Bicluster Analysis in R Technical Report Number 028, 2008 Department of Statistics University of Munich http://www.stat.uni-muenchen.de A Toolbox for

More information

A Parallel Quasi-Monte Carlo Method for Solving Systems of Linear Equations

A Parallel Quasi-Monte Carlo Method for Solving Systems of Linear Equations A Parallel Quasi-Monte Carlo Method for Solving Systems of Linear Equations Michael Mascagni 1, and Aneta Karaivanova 1,2 1 Department of Computer Science, Florida State University, 203 Love Building,

More information

Lecture 2 Matrix Operations

Lecture 2 Matrix Operations Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or

More information

Multidimensional data analysis

Multidimensional data analysis Multidimensional data analysis Ella Bingham Dept of Computer Science, University of Helsinki ella.bingham@cs.helsinki.fi June 2008 The Finnish Graduate School in Astronomy and Space Physics Summer School

More information

Computational Optical Imaging - Optique Numerique. -- Deconvolution --

Computational Optical Imaging - Optique Numerique. -- Deconvolution -- Computational Optical Imaging - Optique Numerique -- Deconvolution -- Winter 2014 Ivo Ihrke Deconvolution Ivo Ihrke Outline Deconvolution Theory example 1D deconvolution Fourier method Algebraic method

More information

A linear algebraic method for pricing temporary life annuities

A linear algebraic method for pricing temporary life annuities A linear algebraic method for pricing temporary life annuities P. Date (joint work with R. Mamon, L. Jalen and I.C. Wang) Department of Mathematical Sciences, Brunel University, London Outline Introduction

More information

Operation Count; Numerical Linear Algebra

Operation Count; Numerical Linear Algebra 10 Operation Count; Numerical Linear Algebra 10.1 Introduction Many computations are limited simply by the sheer number of required additions, multiplications, or function evaluations. If floating-point

More information

Variance Reduction. Pricing American Options. Monte Carlo Option Pricing. Delta and Common Random Numbers

Variance Reduction. Pricing American Options. Monte Carlo Option Pricing. Delta and Common Random Numbers Variance Reduction The statistical efficiency of Monte Carlo simulation can be measured by the variance of its output If this variance can be lowered without changing the expected value, fewer replications

More information

Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 September 30th, 2010 A. Donev (Courant Institute)

More information

Orthogonal Bases and the QR Algorithm

Orthogonal Bases and the QR Algorithm Orthogonal Bases and the QR Algorithm Orthogonal Bases by Peter J Olver University of Minnesota Throughout, we work in the Euclidean vector space V = R n, the space of column vectors with n real entries

More information

Matrix Differentiation

Matrix Differentiation 1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have

More information

Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances

Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances It is possible to construct a matrix X of Cartesian coordinates of points in Euclidean space when we know the Euclidean

More information

Using row reduction to calculate the inverse and the determinant of a square matrix

Using row reduction to calculate the inverse and the determinant of a square matrix Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible

More information

Clarify Some Issues on the Sparse Bayesian Learning for Sparse Signal Recovery

Clarify Some Issues on the Sparse Bayesian Learning for Sparse Signal Recovery Clarify Some Issues on the Sparse Bayesian Learning for Sparse Signal Recovery Zhilin Zhang and Bhaskar D. Rao Technical Report University of California at San Diego September, Abstract Sparse Bayesian

More information

Greedy Column Subset Selection for Large-scale Data Sets

Greedy Column Subset Selection for Large-scale Data Sets Knowledge and Information Systems manuscript No. will be inserted by the editor) Greedy Column Subset Selection for Large-scale Data Sets Ahmed K. Farahat Ahmed Elgohary Ali Ghodsi Mohamed S. Kamel Received:

More information

Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

More information

Subspace intersection tracking using the Signed URV algorithm

Subspace intersection tracking using the Signed URV algorithm Subspace intersection tracking using the Signed URV algorithm Mu Zhou and Alle-Jan van der Veen TU Delft, The Netherlands 1 Outline Part I: Application 1. AIS ship transponder signal separation 2. Algorithm

More information

Model order reduction via Proper Orthogonal Decomposition

Model order reduction via Proper Orthogonal Decomposition Model order reduction via Proper Orthogonal Decomposition Reduced Basis Summer School 2015 Martin Gubisch University of Konstanz September 17, 2015 Martin Gubisch (University of Konstanz) Model order reduction

More information

Notes on Symmetric Matrices

Notes on Symmetric Matrices CPSC 536N: Randomized Algorithms 2011-12 Term 2 Notes on Symmetric Matrices Prof. Nick Harvey University of British Columbia 1 Symmetric Matrices We review some basic results concerning symmetric matrices.

More information

Dantzig-Wolfe bound and Dantzig-Wolfe cookbook

Dantzig-Wolfe bound and Dantzig-Wolfe cookbook Dantzig-Wolfe bound and Dantzig-Wolfe cookbook thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline LP strength of the Dantzig-Wolfe The exercise from last week... The Dantzig-Wolfe

More information

Bilinear Prediction Using Low-Rank Models

Bilinear Prediction Using Low-Rank Models Bilinear Prediction Using Low-Rank Models Inderjit S. Dhillon Dept of Computer Science UT Austin 26th International Conference on Algorithmic Learning Theory Banff, Canada Oct 6, 2015 Joint work with C-J.

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

Randomized Robust Linear Regression for big data applications

Randomized Robust Linear Regression for big data applications Randomized Robust Linear Regression for big data applications Yannis Kopsinis 1 Dept. of Informatics & Telecommunications, UoA Thursday, Apr 16, 2015 In collaboration with S. Chouvardas, Harris Georgiou,

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information

A simplified implementation of the least squares solution for pairwise comparisons matrices

A simplified implementation of the least squares solution for pairwise comparisons matrices A simplified implementation of the least squares solution for pairwise comparisons matrices Marcin Anholcer Poznań University of Economics Al. Niepodleg lości 10, 61-875 Poznań, Poland V. Babiy McMaster

More information

Linear Algebra: Determinants, Inverses, Rank

Linear Algebra: Determinants, Inverses, Rank D Linear Algebra: Determinants, Inverses, Rank D 1 Appendix D: LINEAR ALGEBRA: DETERMINANTS, INVERSES, RANK TABLE OF CONTENTS Page D.1. Introduction D 3 D.2. Determinants D 3 D.2.1. Some Properties of

More information

The Characteristic Polynomial

The Characteristic Polynomial Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

More information

Statistical machine learning, high dimension and big data

Statistical machine learning, high dimension and big data Statistical machine learning, high dimension and big data S. Gaïffas 1 14 mars 2014 1 CMAP - Ecole Polytechnique Agenda for today Divide and Conquer principle for collaborative filtering Graphical modelling,

More information

7 Gaussian Elimination and LU Factorization

7 Gaussian Elimination and LU Factorization 7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method

More information

Mean value theorem, Taylors Theorem, Maxima and Minima.

Mean value theorem, Taylors Theorem, Maxima and Minima. MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.

More information

The PageRank Citation Ranking: Bring Order to the Web

The PageRank Citation Ranking: Bring Order to the Web The PageRank Citation Ranking: Bring Order to the Web presented by: Xiaoxi Pang 25.Nov 2010 1 / 20 Outline Introduction A ranking for every page on the Web Implementation Convergence Properties Personalized

More information

Discrete Frobenius-Perron Tracking

Discrete Frobenius-Perron Tracking Discrete Frobenius-Perron Tracing Barend J. van Wy and Michaël A. van Wy French South-African Technical Institute in Electronics at the Tshwane University of Technology Staatsartillerie Road, Pretoria,

More information

FAST EXACT AFFINE PROJECTION ALGORITHM USING DISPLACEMENT STRUCTURE THEORY. Manolis C. Tsakiris and Patrick A. Naylor

FAST EXACT AFFINE PROJECTION ALGORITHM USING DISPLACEMENT STRUCTURE THEORY. Manolis C. Tsakiris and Patrick A. Naylor FAST EXACT AFFINE PROJECTION ALGORITHM USING DISPLACEMENT STRUCTURE THEORY Manolis C Tsakiris and Patrick A Naylor Dept of Electrical and Electronic Engineering, Imperial College London Communications

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

More information

Derivative Free Optimization

Derivative Free Optimization Department of Mathematics Derivative Free Optimization M.J.D. Powell LiTH-MAT-R--2014/02--SE Department of Mathematics Linköping University S-581 83 Linköping, Sweden. Three lectures 1 on Derivative Free

More information

Math 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010

Math 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010 Math 550 Notes Chapter 7 Jesse Crawford Department of Mathematics Tarleton State University Fall 2010 (Tarleton State University) Math 550 Chapter 7 Fall 2010 1 / 34 Outline 1 Self-Adjoint and Normal Operators

More information

LOW-DIMENSIONAL MODELS FOR MISSING DATA IMPUTATION IN ROAD NETWORKS

LOW-DIMENSIONAL MODELS FOR MISSING DATA IMPUTATION IN ROAD NETWORKS LOW-DIMENSIONAL MODELS FOR MISSING DATA IMPUTATION IN ROAD NETWORKS Muhammad Tayyab Asif 1, Nikola Mitrovic 1, Lalit Garg 1,2, Justin Dauwels 1, Patrick Jaillet 3,4 1 School of Electrical and Electronic

More information

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8 Spaces and bases Week 3: Wednesday, Feb 8 I have two favorite vector spaces 1 : R n and the space P d of polynomials of degree at most d. For R n, we have a canonical basis: R n = span{e 1, e 2,..., e

More information

Accurate and robust image superresolution by neural processing of local image representations

Accurate and robust image superresolution by neural processing of local image representations Accurate and robust image superresolution by neural processing of local image representations Carlos Miravet 1,2 and Francisco B. Rodríguez 1 1 Grupo de Neurocomputación Biológica (GNB), Escuela Politécnica

More information

Observability Index Selection for Robot Calibration

Observability Index Selection for Robot Calibration Observability Index Selection for Robot Calibration Yu Sun and John M Hollerbach Abstract This paper relates 5 observability indexes for robot calibration to the alphabet optimalities from the experimental

More information

Lecture 1: Schur s Unitary Triangularization Theorem

Lecture 1: Schur s Unitary Triangularization Theorem Lecture 1: Schur s Unitary Triangularization Theorem This lecture introduces the notion of unitary equivalence and presents Schur s theorem and some of its consequences It roughly corresponds to Sections

More information

ALGEBRAIC EIGENVALUE PROBLEM

ALGEBRAIC EIGENVALUE PROBLEM ALGEBRAIC EIGENVALUE PROBLEM BY J. H. WILKINSON, M.A. (Cantab.), Sc.D. Technische Universes! Dsrmstedt FACHBEREICH (NFORMATiK BIBL1OTHEK Sachgebieto:. Standort: CLARENDON PRESS OXFORD 1965 Contents 1.

More information