AMS526: Numerical Analysis I (Numerical Linear Algebra)
|
|
|
- Claribel Johns
- 9 years ago
- Views:
Transcription
1 AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 19: SVD revisited; Software for Linear Algebra Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 9
2 Outline 1 Computing SVD 2 Software for Linear Algebra Xiangmin Jiao Numerical Analysis I 2 / 9
3 Computing the SVD Intuitive idea for computing SVD of A R m n : Form A A and compute its eigenvalue decomposition A A = V ΛV Let Σ = Λ, i.e., diag( λ 1, λ 2,..., λ n ) Solve system UΣ = AV to obtain U This method can be very efficient if m n. However, it is not very stable, especially for smaller singular values because of the squaring of the condition number For SVD of A, σk σ k = O(ɛ machine A ), where σ k and σ k denote the computed and exact kth singular value If computed from eigenvalue decomposition of A A, σ k σ k = O(ɛ machine A 2 /σ k ), which is problematic if σ k A If one is interested in only relatively large singular values, then using eigenvalue decomposition is not a problem. For general situations, a more stable algorithm is desired. Xiangmin Jiao Numerical Analysis I 3 / 9
4 Computing the SVD Typical algorithm for computing SVD are similar to computation of eigenvalues [ ] 0 A Consider A R m m, then hermitian matrix H = has A 0 eigenvalue decomposition [ ] [ ] [ ] V V V V Σ 0 H =, U U U U 0 Σ where A = UΣV gives the SVD. This approach is stable. In practice, such a reduction is done implicitly without forming the large matrix Typically done in two or more stages: First, reduce to bidiagonal form by applying different orthogonal transformations on left and right, Second, reduce to diagonal form using a variant of QR algorithm or divide-and-conquer algorithm Xiangmin Jiao Numerical Analysis I 4 / 9
5 Generalized Eigenvalue Problem Generalized eigenvalue problem has the form Ax = λbx, where A and B are m m matrices For example, in structural vibration problems, A represents the stiffness matrix, B the mass matrix, and eigenvalues and eigenvectors determine natural frequencies and modes of vibration of structures If A or B is nonsingular, then it can be converted into standard eigenvalue problem (B 1 A)x = λx or (A 1 B)x = (1/λ)x If A and B are both symmetric, preceding transformation loses symmetry and in turn may lose orthogonality of generalized eigenvectors. If B is positive definite, alternative transformation is (L 1 AL T )y = λy, where B = LL T and y = L T x If A and B are both singular or indefinite, then use QZ algorithm to reduce A and B into triangular matrices simultaneously by orthogonal transformation (see Golub and van Loan for detail) Xiangmin Jiao Numerical Analysis I 5 / 9
6 Outline 1 Computing SVD 2 Software for Linear Algebra Xiangmin Jiao Numerical Analysis I 6 / 9
7 Software for Linear Algebra LAPACK: Linear Algebra PACKage ( Standard library for solving linear systems and eigenvalue problems Successor of LINPACK ( and EISPACK ( Depends on BLAS (Basic Linear Algebra Subprograms) Parallel extensions include ScaLAPACK and PLAPACK Note: Uses Fortran conventions for matrix arrangements MATLAB Factorization A: lu(a) and chol(a) Solve Ax = b: x = A\b Uses back/forward substitution for triangular matrices Uses Cholesky factorization for positive-definite matrices Uses LU factorization with column pivoting for nonsymmetric matrices Uses Householder QR for least squares problems Uses some special routines for matrices with special sparsity patterns Uses LAPACK and other packages internally Serial and parallel solvers for sparse matrices (e.g., SuperLU, TAUCS) Xiangmin Jiao Numerical Analysis I 7 / 9
8 Some Commonly Used Functions Example BLAS routines: Matrix-vector multip.: dgemv; Matrix-matrix multip: dgemm LU Factorization Solve linear system Est. cond General Symmetric General Symmetric LAPACK dgetrf dpotrf/dsytrf dgesv dposv/dposvx dgecon LINPACK dgefa dpofa/dsifa dgesl dposl/dsisl dgeco MATLAB lu chol \ \ rcond Linear least squares Eigenvalue/vector SVD QR Solve Rank-deficient General Sym. LAPACK dgeqrf dgels dgelsy dgeev dsyev dgesvd LINPACK dqrdc dqrsl dqrst - - dsvdc MATLAB qr \ \ eig eig svd For BLAS, LINPACK, and LAPACK, first letter s stands for single-precision real, d for double-precision real, c for single-precision complex, and z for double-precision complex. Boldface LAPACK routines are driver routines; others are computational routines. Xiangmin Jiao Numerical Analysis I 8 / 9
9 Using LAPACK Routines in C Programs LAPACK was written in Fortran 77. Special attention is required when calling from C. Key differences between C and Fortran 1 Storage of matrices: column major (Fortran) versus row major (C/C++) 2 Argument passing for subroutines in C and Fortran: pass by reference (Fortran) and pass by value (C/C++) Simple example C code, example.c, for solving linear system using sgesv. See class website for sample code. To compile, issue command cc -o example example.c -llapack -lblas Hint: To find a function name, refer to LAPACK Users Guide. To find out arguments for a given function, search on netlib.org Xiangmin Jiao Numerical Analysis I 9 / 9
Numerical Methods I Eigenvalue Problems
Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 [email protected] 1 Course G63.2010.001 / G22.2420-001, Fall 2010 September 30th, 2010 A. Donev (Courant Institute)
7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix
7. LU factorization EE103 (Fall 2011-12) factor-solve method LU factorization solving Ax = b with A nonsingular the inverse of a nonsingular matrix LU factorization algorithm effect of rounding error sparse
Lecture 5: Singular Value Decomposition SVD (1)
EEM3L1: Numerical and Analytical Techniques Lecture 5: Singular Value Decomposition SVD (1) EE3L1, slide 1, Version 4: 25-Sep-02 Motivation for SVD (1) SVD = Singular Value Decomposition Consider the system
CS3220 Lecture Notes: QR factorization and orthogonal transformations
CS3220 Lecture Notes: QR factorization and orthogonal transformations Steve Marschner Cornell University 11 March 2009 In this lecture I ll talk about orthogonal matrices and their properties, discuss
Examination paper for TMA4205 Numerical Linear Algebra
Department of Mathematical Sciences Examination paper for TMA4205 Numerical Linear Algebra Academic contact during examination: Markus Grasmair Phone: 97580435 Examination date: December 16, 2015 Examination
Linear Algebra Review. Vectors
Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka [email protected] http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length
Similar matrices and Jordan form
Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive
3 Orthogonal Vectors and Matrices
3 Orthogonal Vectors and Matrices The linear algebra portion of this course focuses on three matrix factorizations: QR factorization, singular valued decomposition (SVD), and LU factorization The first
6. Cholesky factorization
6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix
The Assessment of Benchmarks Executed on Bare-Metal and Using Para-Virtualisation
The Assessment of Benchmarks Executed on Bare-Metal and Using Para-Virtualisation Mark Baker, Garry Smith and Ahmad Hasaan SSE, University of Reading Paravirtualization A full assessment of paravirtualization
Numerical Methods I Solving Linear Systems: Sparse Matrices, Iterative Methods and Non-Square Systems
Numerical Methods I Solving Linear Systems: Sparse Matrices, Iterative Methods and Non-Square Systems Aleksandar Donev Courant Institute, NYU 1 [email protected] 1 Course G63.2010.001 / G22.2420-001,
Orthogonal Diagonalization of Symmetric Matrices
MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
Linear Algebra: Determinants, Inverses, Rank
D Linear Algebra: Determinants, Inverses, Rank D 1 Appendix D: LINEAR ALGEBRA: DETERMINANTS, INVERSES, RANK TABLE OF CONTENTS Page D.1. Introduction D 3 D.2. Determinants D 3 D.2.1. Some Properties of
7 Gaussian Elimination and LU Factorization
7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method
HSL and its out-of-core solver
HSL and its out-of-core solver Jennifer A. Scott [email protected] Prague November 2006 p. 1/37 Sparse systems Problem: we wish to solve where A is Ax = b LARGE Informal definition: A is sparse if many
Notes on Cholesky Factorization
Notes on Cholesky Factorization Robert A. van de Geijn Department of Computer Science Institute for Computational Engineering and Sciences The University of Texas at Austin Austin, TX 78712 [email protected]
SOLVING LINEAR SYSTEMS
SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis
Matrix Multiplication
Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2016 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2016 1 / 32 Outline 1 Matrix operations Importance Dense and sparse
Eigenvalues and Eigenvectors
Chapter 6 Eigenvalues and Eigenvectors 6. Introduction to Eigenvalues Linear equations Ax D b come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution
DATA ANALYSIS II. Matrix Algorithms
DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where
LINEAR ALGEBRA. September 23, 2010
LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................
The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression
The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal type matrix decompositions Every
October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix
Linear Algebra & Properties of the Covariance Matrix October 3rd, 2012 Estimation of r and C Let rn 1, rn, t..., rn T be the historical return rates on the n th asset. rn 1 rṇ 2 r n =. r T n n = 1, 2,...,
Using row reduction to calculate the inverse and the determinant of a square matrix
Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible
Constrained Least Squares
Constrained Least Squares Authors: G.H. Golub and C.F. Van Loan Chapter 12 in Matrix Computations, 3rd Edition, 1996, pp.580-587 CICN may05/1 Background The least squares problem: min Ax b 2 x Sometimes,
ASEN 3112 - Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1
19 MDOF Dynamic Systems ASEN 3112 Lecture 1 Slide 1 A Two-DOF Mass-Spring-Dashpot Dynamic System Consider the lumped-parameter, mass-spring-dashpot dynamic system shown in the Figure. It has two point
Direct Methods for Solving Linear Systems. Matrix Factorization
Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011
13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.
3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms
Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.
Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(
Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.
Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry
15.062 Data Mining: Algorithms and Applications Matrix Math Review
.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop
Chapter 6. Orthogonality
6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be
Applied Linear Algebra I Review page 1
Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties
Mathematical Libraries on JUQUEEN. JSC Training Course
Mitglied der Helmholtz-Gemeinschaft Mathematical Libraries on JUQUEEN JSC Training Course May 10, 2012 Outline General Informations Sequential Libraries, planned Parallel Libraries and Application Systems:
Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components
Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they
[1] Diagonal factorization
8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:
Linear Algebraic Equations, SVD, and the Pseudo-Inverse
Linear Algebraic Equations, SVD, and the Pseudo-Inverse Philip N. Sabes October, 21 1 A Little Background 1.1 Singular values and matrix inversion For non-smmetric matrices, the eigenvalues and singular
Operation Count; Numerical Linear Algebra
10 Operation Count; Numerical Linear Algebra 10.1 Introduction Many computations are limited simply by the sheer number of required additions, multiplications, or function evaluations. If floating-point
Solving Linear Systems of Equations. Gerald Recktenwald Portland State University Mechanical Engineering Department [email protected].
Solving Linear Systems of Equations Gerald Recktenwald Portland State University Mechanical Engineering Department [email protected] These slides are a supplement to the book Numerical Methods with Matlab:
Solution of Linear Systems
Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start
Elementary Matrices and The LU Factorization
lementary Matrices and The LU Factorization Definition: ny matrix obtained by performing a single elementary row operation (RO) on the identity (unit) matrix is called an elementary matrix. There are three
Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8
Spaces and bases Week 3: Wednesday, Feb 8 I have two favorite vector spaces 1 : R n and the space P d of polynomials of degree at most d. For R n, we have a canonical basis: R n = span{e 1, e 2,..., e
ALGEBRAIC EIGENVALUE PROBLEM
ALGEBRAIC EIGENVALUE PROBLEM BY J. H. WILKINSON, M.A. (Cantab.), Sc.D. Technische Universes! Dsrmstedt FACHBEREICH (NFORMATiK BIBL1OTHEK Sachgebieto:. Standort: CLARENDON PRESS OXFORD 1965 Contents 1.
1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
Mathematical Libraries and Application Software on JUROPA and JUQUEEN
Mitglied der Helmholtz-Gemeinschaft Mathematical Libraries and Application Software on JUROPA and JUQUEEN JSC Training Course May 2014 I.Gutheil Outline General Informations Sequential Libraries Parallel
Lecture 2 Matrix Operations
Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or
Preconditioning Sparse Matrices for Computing Eigenvalues and Solving Linear Systems of Equations. Tzu-Yi Chen
Preconditioning Sparse Matrices for Computing Eigenvalues and Solving Linear Systems of Equations by Tzu-Yi Chen B.S. (Massachusetts Institute of Technology) 1995 B.S. (Massachusetts Institute of Technology)
3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.
Exercise 1 1. Let A be an n n orthogonal matrix. Then prove that (a) the rows of A form an orthonormal basis of R n. (b) the columns of A form an orthonormal basis of R n. (c) for any two vectors x,y R
Numerical Analysis. Gordon K. Smyth in. Encyclopedia of Biostatistics (ISBN 0471 975761) Edited by. Peter Armitage and Theodore Colton
Numerical Analysis Gordon K. Smyth in Encyclopedia of Biostatistics (ISBN 0471 975761) Edited by Peter Armitage and Theodore Colton John Wiley & Sons, Ltd, Chichester, 1998 Numerical Analysis Numerical
Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.
ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the n-dimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?
Solving Linear Systems, Continued and The Inverse of a Matrix
, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing
Similarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
Linear Algebra Methods for Data Mining
Linear Algebra Methods for Data Mining Saara Hyvönen, [email protected] Spring 2007 Lecture 3: QR, least squares, linear regression Linear Algebra Methods for Data Mining, Spring 2007, University
Review Jeopardy. Blue vs. Orange. Review Jeopardy
Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round $200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?
Inner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
P164 Tomographic Velocity Model Building Using Iterative Eigendecomposition
P164 Tomographic Velocity Model Building Using Iterative Eigendecomposition K. Osypov* (WesternGeco), D. Nichols (WesternGeco), M. Woodward (WesternGeco) & C.E. Yarman (WesternGeco) SUMMARY Tomographic
NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS
Faculty of Civil Engineering Belgrade Master Study COMPUTATIONAL ENGINEERING Fall semester 2004/2005 NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS 1. NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS - Matrices
by the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that
Introduction to Matrix Algebra
Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary
Text Analytics (Text Mining)
CSE 6242 / CX 4242 Apr 3, 2014 Text Analytics (Text Mining) LSI (uses SVD), Visualization Duen Horng (Polo) Chau Georgia Tech Some lectures are partly based on materials by Professors Guy Lebanon, Jeffrey
FAST EXACT AFFINE PROJECTION ALGORITHM USING DISPLACEMENT STRUCTURE THEORY. Manolis C. Tsakiris and Patrick A. Naylor
FAST EXACT AFFINE PROJECTION ALGORITHM USING DISPLACEMENT STRUCTURE THEORY Manolis C Tsakiris and Patrick A Naylor Dept of Electrical and Electronic Engineering, Imperial College London Communications
ST-HEC: Reliable and Scalable Software for Linear Algebra Computations on High End Computers Introduction Putting more of LAPACK into ScaLAPACK.
ST-HEC: Reliable and Scalable Software for Linear Algebra Computations on High End Computers James Demmel (U California, Berkeley) and Jack Dongarra (U Tennessee, Knoxville) 1 Introduction There is inadequate
Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013
Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,
CS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #18: Dimensionality Reduc7on
CS 5614: (Big) Data Management Systems B. Aditya Prakash Lecture #18: Dimensionality Reduc7on Dimensionality Reduc=on Assump=on: Data lies on or near a low d- dimensional subspace Axes of this subspace
Section 6.1 - Inner Products and Norms
Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,
Lecture 1: Schur s Unitary Triangularization Theorem
Lecture 1: Schur s Unitary Triangularization Theorem This lecture introduces the notion of unitary equivalence and presents Schur s theorem and some of its consequences It roughly corresponds to Sections
Solving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
Orthogonal Bases and the QR Algorithm
Orthogonal Bases and the QR Algorithm Orthogonal Bases by Peter J Olver University of Minnesota Throughout, we work in the Euclidean vector space V = R n, the space of column vectors with n real entries
NUMERICAL METHODS FOR LARGE EIGENVALUE PROBLEMS
NUMERICAL METHODS FOR LARGE EIGENVALUE PROBLEMS Second edition Yousef Saad Copyright c 2011 by the Society for Industrial and Applied Mathematics Contents Preface to Classics Edition Preface xiii xv 1
MAT 242 Test 2 SOLUTIONS, FORM T
MAT 242 Test 2 SOLUTIONS, FORM T 5 3 5 3 3 3 3. Let v =, v 5 2 =, v 3 =, and v 5 4 =. 3 3 7 3 a. [ points] The set { v, v 2, v 3, v 4 } is linearly dependent. Find a nontrivial linear combination of these
APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder
APPM4720/5720: Fast algorithms for big data Gunnar Martinsson The University of Colorado at Boulder Course objectives: The purpose of this course is to teach efficient algorithms for processing very large
A note on companion matrices
Linear Algebra and its Applications 372 (2003) 325 33 www.elsevier.com/locate/laa A note on companion matrices Miroslav Fiedler Academy of Sciences of the Czech Republic Institute of Computer Science Pod
Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).
MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix
1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
Vector and Matrix Norms
Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty
LU Factoring of Non-Invertible Matrices
ACM Communications in Computer Algebra, LU Factoring of Non-Invertible Matrices D. J. Jeffrey Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7 Revised
Factorization Theorems
Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization
AN OUT-OF-CORE SPARSE SYMMETRIC INDEFINITE FACTORIZATION METHOD
AN OUT-OF-CORE SPARSE SYMMETRIC INDEFINITE FACTORIZATION METHOD OMER MESHAR AND SIVAN TOLEDO Abstract. We present a new out-of-core sparse symmetric-indefinite factorization algorithm. The most significant
It s Not A Disease: The Parallel Solver Packages MUMPS, PaStiX & SuperLU
It s Not A Disease: The Parallel Solver Packages MUMPS, PaStiX & SuperLU A. Windisch PhD Seminar: High Performance Computing II G. Haase March 29 th, 2012, Graz Outline 1 MUMPS 2 PaStiX 3 SuperLU 4 Summary
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
Finite Dimensional Hilbert Spaces and Linear Inverse Problems
Finite Dimensional Hilbert Spaces and Linear Inverse Problems ECE 174 Lecture Supplement Spring 2009 Ken Kreutz-Delgado Electrical and Computer Engineering Jacobs School of Engineering University of California,
Data Structures and Performance for Scientific Computing with Hadoop and Dumbo
Data Structures and Performance for Scientific Computing with Hadoop and Dumbo Austin R. Benson Computer Sciences Division, UC-Berkeley ICME, Stanford University May 15, 2012 1 1 Matrix storage 2 Data
Matrix Differentiation
1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have
Inner products on R n, and more
Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +
Mean value theorem, Taylors Theorem, Maxima and Minima.
MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.
Numerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 6. Eigenvalues and Singular Values In this section, we collect together the basic facts about eigenvalues and eigenvectors. From a geometrical viewpoint,
Math 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
u = [ 2 4 5] has one row with three components (a 3 v = [2 4 5] has three rows separated by semicolons (a 3 w = 2:5 generates the row vector w = [ 2 3
MATLAB Tutorial You need a small numb e r of basic commands to start using MATLAB. This short tutorial describes those fundamental commands. You need to create vectors and matrices, to change them, and
