Segment to Segment Contact in Marc

Size: px
Start display at page:

Download "Segment to Segment Contact in Marc"

Transcription

1 Segment to Segment Contact in Marc Presented by Kiranraj Shetty June 6 th, 2013 Copyright 2013 MSC.Software Corporation S1-1

2 OVERVIEW Introduction Disadvantages of Node to Segment method Segment to Segment Method Description Pre processing Post processing Benefits Limitations Demo Copyright 2013 MSC.Software Corporation S1-2

3 INTRODUCTION Segment to Segment contact algorithm provides an easy, efficient and faster solution to Contact analysis problems No Master Slave concept Better stress continuity at Contact interfaces Supported in both Mentat & Patran GUI Copyright 2013 MSC.Software Corporation S1-3

4 DISADVANTAGES NODE TO SEGMENT (N2S) CONTACT Solution depends on selection of master and slave contact body Stress continuity is not maintained across the contact interface Primary output is Force not Stress Conflict with other MPC s and/or boundary conditions Double sided shell contact doesn t work Copyright 2013 MSC.Software Corporation S1-4

5 N2S CONTACT MASTER SLAVE DEFINITION Fine meshed body has to be the slave Copyright 2013 MSC.Software Corporation S1-5

6 N2S CONTACT AND DOUBLE-SIDED SHELL CONTACT With node-segment contact a shell node can only touch another body at the top or at the bottom, not both. Body 2 cannot touch both Body 1 & Body 3 Copyright 2013 MSC.Software Corporation S1-6

7 SEGMENT TO SEGMENT CONTACT : PHASE 1 CONTACT DETECTION auxiliary points per contact segment are introduced to allow for a contact search Each contact segment has a number of auxiliary points, which are located at fixed positions on the contact segment and which are only used during the contact detection phase. Each segment (element edge/face) has a fixed number of auxiliary points; in 2D, we have 3 auxiliary points per segment, in 3D we have 9 auxiliary points (3x3 grid) per segment each auxiliary point can only touch one body at a time; at corners, multiple auxiliary points will be introduced Copyright 2013 MSC.Software Corporation S1-7

8 CONTACT DETECTION (CONTD.) Two-pass contact detection is performed for the auxiliary points Distance Check: check whether auxiliary point is inside the distance tolerance Direction Check: check whether the angle between the normal vector at the auxiliary point and the normal vector at the potentially contacted segment is larger than the threshold value α.the default value of α is 120º If both checks are passed, the segments are marked as potentially contacting Copyright 2013 MSC.Software Corporation S1-8

9 SEGMENT TO SEGMENT CONTACT : PHASE 2 CONTACT COSTRAINTS For each segment-segment combination within contact distance, polygons (polylines in 2D) will be generated element wise Each polygon has a number of polygon points These Polyline points does not coincide with the auxiliary points used of the contact detection before. Copyright 2013 MSC.Software Corporation S1-9

10 CONTACT CONSTRAINTS (CONTD.) Copyright 2013 MSC.Software Corporation S1-10

11 CONTACT CONSTRAINTS (CONTD.) In the same way as for the auxiliary points before, a second contact detection pass is performed for the polygon points (distance + direction check). At the end of this second pass, there is a set of polygon points being in contact and representing the contact area. The polygons can be treated as normal interface elements representing the contact stiffness. The polygon points build the basis for the numerical integration of the corresponding contact stiffness formulation. Copyright 2013 MSC.Software Corporation S1-11

12 SEGMENT TO SEGMENT CONTACT : PHASE 3 ADDING CONTACT CONSTRAINTS TO GLOBAL EQUATIONS For each polygon point in contact a weighted stiffness related to a penalty factor is added to a normal stiffness matrix. A tangential stiffness induced by sticking or glued contact is treated in a similar way. For each polygon point in contact a weighted contact force related to a Lagrange multiplier is added to a vector of normal forces. Tangential forces induced by friction or glued contact are treated in a similar way. Copyright 2013 MSC.Software Corporation S1-12

13 PENALTY FACTOR The penalty factor can be interpreted as a stiffness per area, applied to the normal interface elements. The default penalty stiffness is based upon the average initial material stiffness and a characteristic length L of the contacting bodies. For solid elements the characteristic length is L= 0.5 L_edge; L_edge = average edge length of all edges being part of the contact boundary. For shell elements L= 0.5 t; t = average thickness of all elements being part of a contact body. This choice gives good results in many application, particularly if the material stiffness of the contacting bodies is of the same order. In cases when a soft material touches a stiff material, or when two thin shell touch each other and are allowed to bend, the default penalty factor is possibly too high and may lead to convergence problems feature,10201 Can help. Copyright 2013 MSC.Software Corporation S1-13

14 AUGMENTATION In case that too large penetration occurs, the augmentation procedure may be used to iteratively adjust the contact normal stress so that the overlap of the contact bodies will be minimized. augmentation means that a gap function g defined by the contact gap (g=0 when gap is closed) will be minimized iteratively by adjusting the contact normal stresses p The augmentation procedure (adjustment of the spring base) forces additional recycles in the global Newton-Raphson algorithm. Copyright 2013 MSC.Software Corporation S1-14

15 AUGMENTATION (CONTD.) No augmentation. Recommended in most cases since it gives reasonable accurate results without additional recycles. Augmentation based on constant penetration field. Recommended for linear finite elements Augmentation based on (bi-)linear penetration field. Should be only used for quadratic elements. Automatic detection: choice is made based on the combination of elements corresponding to the contacting segments. Copyright 2013 MSC.Software Corporation S1-15

16 AUGMENTATION (CONTD.) An exact fulfillment of a zero gap is hardly achievable, therefore a threshold called penetration distance has been introduced to control the augmentation based iterations. If a gap exceeds the penetration distance, an additional recycle will be forced to reduce it. The default penetration distance beyond which an augmentation will be applied is defined as L; L = characteristic length of the contact pair. Users may redefine the penetration distance, either globally or individually per contact body pair. In the same way the augmentation method is applicable to adjust the tangential displacements under sticking conditions. Equivalent to the penetration distance, a slip distance is defined for the tangential augmentation procedure. Copyright 2013 MSC.Software Corporation S1-16

17 FINITE SLIDING Marc continuously monitors the relative displacements of the polygon points. Once a threshold value is exceeded, new polygon points will be created. The default value of the recreation threshold for the polygon points equals five times the contact tolerance. This value can be redefined by the user. As soon as new polygon points have been created, significant contact data like the contact stresses is mapped from the old to the new polygon points and used as a starting point to continue the analysis. Copyright 2013 MSC.Software Corporation S1-17

18 FRICTION & SEPARATION CONTROL Friction Only the bilinear coulomb and bilinear shear friction model based on stresses are available for S2S contact Separation control Separation is always based on absolute nodal stresses. If the contact normal stress is in tension, then the corresponding polygon point will separate, which implies that this point will no longer contribute to the global stiffness matrix and force vector. Copyright 2013 MSC.Software Corporation S1-18

19 SUMMARY S2S CONTACT ALGORITHM Contact Detection Auxiliary points located on each contact segment are used to detect contact between potential contact segments. A two-pass contact detection including a distance and a direction check is performed to check segments on contact. Contact Constraints Based on a projection from a contacting segment to a contacted segment, polygons representing the contact stiffness are built. Each polygon consists of a couple of polygon points building the basis for the numerical integration of the contact stiffness. The penalty factor represents the contact stiffness. It may be determined by Marc or defined by the user. Penetration may be limited by a correction procedure - augmentation. Copyright 2013 MSC.Software Corporation S1-19

20 PRE PROCESSING MENTAT GUI Copyright 2013 MSC.Software Corporation S1-20

21 PRE PROCESSING MENTAT GUI (CONTD.) Copyright 2013 MSC.Software Corporation S1-21

22 PRE PROCESSING PATRAN GUI Copyright 2013 MSC.Software Corporation S1-22

23 PRE PROCESSING PATRAN GUI (CONTD.) Copyright 2013 MSC.Software Corporation S1-23

24 PRE PROCESSING (CONTD.) 0 - N2S contact 1 - S2S contact 1- Poly point info is written in con.t19 file Copyright 2013 MSC.Software Corporation S1-24

25 POST PROCESSING Contact status: set to 1 as soon as contact has been detected in at least one polygon point on a contact segment to which the node belongs. So the contact status is shown on both contact bodies of a contact body pair. Contact normal force: computed by integration of the contact normal stresses in the polygon points. Contact friction force: computed by integration of the contact friction stresses in the polygon points. Contact normal stress: nodal vector representing the normal stresses in the polygon points based on a constant field approximation per contact segment of the polygon values. Contact friction stress: nodal vector representing the friction stresses in the polygon points based on a constant field approximation per contact segment of the polygon values. Copyright 2013 MSC.Software Corporation S1-25

26 BENEFITS Easy job setup Better stress continuity Better contact normal stress distribution Contact status shown in both bodies Faster solution time Run time comparison for Aerospace Buckling Application Contact Type Displacement # increments # iterations Wall Time (Sec) N 2 S S 2 S Copyright 2013 MSC.Software Corporation S1-26 S2S 62% Faster

27 LIMITATIONS AS OF MARC 2013 Anisotropic friction Deactivation of glued contact Breaking glue Brake squeal Pore pressure, fluid-solid and piezo-electric analyses Wear Domain Decomposition Method (DDM) Copyright 2013 MSC.Software Corporation S1-27

28 DEMO Copyright 2013 MSC.Software Corporation S1-28

29 Q & A Copyright 2013 MSC.Software Corporation S1-29

30 THANK YOU Copyright 2013 MSC.Software Corporation S1-30

(Seattle is home of Boeing Jets)

(Seattle is home of Boeing Jets) Dr. Faeq M. Shaikh Seattle, Washington, USA (Seattle is home of Boeing Jets) 1 Pre Requisites for Today s Seminar Basic understanding of Finite Element Analysis Working Knowledge of Laminate Plate Theory

More information

Back to Elements - Tetrahedra vs. Hexahedra

Back to Elements - Tetrahedra vs. Hexahedra Back to Elements - Tetrahedra vs. Hexahedra Erke Wang, Thomas Nelson, Rainer Rauch CAD-FEM GmbH, Munich, Germany Abstract This paper presents some analytical results and some test results for different

More information

Finite Element Formulation for Plates - Handout 3 -

Finite Element Formulation for Plates - Handout 3 - Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the

More information

Best practices for efficient HPC performance with large models

Best practices for efficient HPC performance with large models Best practices for efficient HPC performance with large models Dr. Hößl Bernhard, CADFEM (Austria) GmbH PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27, University of Ljubljana,

More information

Shell Elements in ABAQUS/Explicit

Shell Elements in ABAQUS/Explicit ABAQUS/Explicit: Advanced Topics Appendix 2 Shell Elements in ABAQUS/Explicit ABAQUS/Explicit: Advanced Topics A2.2 Overview ABAQUS/Explicit: Advanced Topics ABAQUS/Explicit: Advanced Topics A2.4 Triangular

More information

An Overview of the Finite Element Analysis

An Overview of the Finite Element Analysis CHAPTER 1 An Overview of the Finite Element Analysis 1.1 Introduction Finite element analysis (FEA) involves solution of engineering problems using computers. Engineering structures that have complex geometry

More information

Finite Elements for 2 D Problems

Finite Elements for 2 D Problems Finite Elements for 2 D Problems General Formula for the Stiffness Matrix Displacements (u, v) in a plane element are interpolated from nodal displacements (ui, vi) using shape functions Ni as follows,

More information

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

Nonlinear Analysis Using Femap with NX Nastran

Nonlinear Analysis Using Femap with NX Nastran Nonlinear Analysis Using Femap with NX Nastran Chip Fricke, Principal Applications Engineer, Agenda Nonlinear Analysis Using Femap with NX Nastran Who am I? Overview of Nonlinear Analysis Comparison of

More information

Reliable FE-Modeling with ANSYS

Reliable FE-Modeling with ANSYS Reliable FE-Modeling with ANSYS Thomas Nelson, Erke Wang CADFEM GmbH, Munich, Germany Abstract ANSYS is one of the leading commercial finite element programs in the world and can be applied to a large

More information

Topology. Shapefile versus Coverage Views

Topology. Shapefile versus Coverage Views Topology Defined as the the science and mathematics of relationships used to validate the geometry of vector entities, and for operations such as network tracing and tests of polygon adjacency Longley

More information

Finite Element Formulation for Beams - Handout 2 -

Finite Element Formulation for Beams - Handout 2 - Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called

More information

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response

More information

Overset Grids Technology in STAR-CCM+: Methodology and Applications

Overset Grids Technology in STAR-CCM+: Methodology and Applications Overset Grids Technology in STAR-CCM+: Methodology and Applications Eberhard Schreck, Milovan Perić and Deryl Snyder eberhard.schreck@cd-adapco.com milovan.peric@cd-adapco.com deryl.snyder@cd-adapco.com

More information

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of Table of Contents 1 One Dimensional Compression of a Finite Layer... 3 1.1 Problem Description... 3 1.1.1 Uniform Mesh... 3 1.1.2 Graded Mesh... 5 1.2 Analytical Solution... 6 1.3 Results... 6 1.3.1 Uniform

More information

FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS

FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS With Mathematica and MATLAB Computations M. ASGHAR BHATTI WILEY JOHN WILEY & SONS, INC. CONTENTS OF THE BOOK WEB SITE PREFACE xi xiii 1 FINITE ELEMENT

More information

Solved with COMSOL Multiphysics 4.3

Solved with COMSOL Multiphysics 4.3 Vibrating String Introduction In the following example you compute the natural frequencies of a pre-tensioned string using the 2D Truss interface. This is an example of stress stiffening ; in fact the

More information

STRUCTURAL ANALYSIS SKILLS

STRUCTURAL ANALYSIS SKILLS STRUCTURAL ANALYSIS SKILLS ***This document is held up to a basic level to represent a sample for our both theoretical background & software capabilities/skills. (Click on each link to see the detailed

More information

2.5 Physically-based Animation

2.5 Physically-based Animation 2.5 Physically-based Animation 320491: Advanced Graphics - Chapter 2 74 Physically-based animation Morphing allowed us to animate between two known states. Typically, only one state of an object is known.

More information

INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS

INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS Tom Kimerling University of Massachusetts, Amherst MIE 605 Finite Element Analysis Spring 2002 ABSTRACT A FEA transient thermal structural

More information

Course in. Nonlinear FEM

Course in. Nonlinear FEM Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited

More information

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

CHAPTER 4 4 NUMERICAL ANALYSIS

CHAPTER 4 4 NUMERICAL ANALYSIS 41 CHAPTER 4 4 NUMERICAL ANALYSIS Simulation is a powerful tool that engineers use to predict the result of a phenomenon or to simulate the working situation in which a part or machine will perform in

More information

Importing Boundary and Volume Meshes

Importing Boundary and Volume Meshes Appendix A. Importing Boundary and Volume Meshes The volume mesh generation scheme of TGrid requires sets of line segments (2D) or triangular and/or quadrilateral elements (3D) defining the boundaries

More information

820446 - ACMSM - Computer Applications in Solids Mechanics

820446 - ACMSM - Computer Applications in Solids Mechanics Coordinating unit: 820 - EUETIB - Barcelona College of Industrial Engineering Teaching unit: 737 - RMEE - Department of Strength of Materials and Structural Engineering Academic year: Degree: 2015 BACHELOR'S

More information

APPLICATION OF TOPOLOGY, SIZING AND SHAPE OPTIMIZATION METHODS TO OPTIMAL DESIGN OF AIRCRAFT COMPONENTS

APPLICATION OF TOPOLOGY, SIZING AND SHAPE OPTIMIZATION METHODS TO OPTIMAL DESIGN OF AIRCRAFT COMPONENTS APPLICATION OF TOPOLOGY, SIZING AND SHAPE OPTIMIZATION METHODS TO OPTIMAL DESIGN OF AIRCRAFT COMPONENTS Lars Krog, Alastair Tucker and Gerrit Rollema Airbus UK Ltd Advanced Numerical Simulations Department

More information

Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions

Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions Chandresh Shah Cummins, Inc. Abstract Any finite element analysis performed by an engineer is subject to several types of

More information

CAE -Finite Element Method

CAE -Finite Element Method 16.810 Engineering Design and Rapid Prototyping Lecture 3b CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 16, 2007 Numerical Methods Finite Element Method Boundary Element Method

More information

POISSON AND LAPLACE EQUATIONS. Charles R. O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078

POISSON AND LAPLACE EQUATIONS. Charles R. O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078 21 ELLIPTICAL PARTIAL DIFFERENTIAL EQUATIONS: POISSON AND LAPLACE EQUATIONS Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 2nd Computer

More information

ABAQUS/CAE Tutorial: Analysis of an Aluminum Bracket

ABAQUS/CAE Tutorial: Analysis of an Aluminum Bracket H. Kim FEA Tutorial 1 ABAQUS/CAE Tutorial: Analysis of an Aluminum Bracket Hyonny Kim last updated: August 2004 In this tutorial, you ll learn how to: 1. Sketch 2D geometry & define part. 2. Define material

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information

New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

More information

Begin creating the geometry by defining two Circles for the spherical endcap, and Subtract Areas to create the vessel wall.

Begin creating the geometry by defining two Circles for the spherical endcap, and Subtract Areas to create the vessel wall. ME 477 Pressure Vessel Example 1 ANSYS Example: Axisymmetric Analysis of a Pressure Vessel The pressure vessel shown below is made of cast iron (E = 14.5 Msi, ν = 0.21) and contains an internal pressure

More information

3 Concepts of Stress Analysis

3 Concepts of Stress Analysis 3 Concepts of Stress Analysis 3.1 Introduction Here the concepts of stress analysis will be stated in a finite element context. That means that the primary unknown will be the (generalized) displacements.

More information

Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

More information

FEA Analysis of a Caliper Abutment Bracket ME 404

FEA Analysis of a Caliper Abutment Bracket ME 404 FEA Analysis of a Caliper Abutment Bracket ME 404 Jesse Doty March 17, 2008 Abstract As braking forces are applied at the wheel of an automobile, those forces must be transmitted to the suspension of the

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

More information

CastNet: Modelling platform for open source solver technology

CastNet: Modelling platform for open source solver technology CastNet: Modelling platform for open source solver technology. DHCAE Tools GmbH Address: Friedrich-Ebert-Str. 368, 47800 Krefeld, Germany / Company site: Alte Rather Str. 207 / 47802 Krefeld Phone +49

More information

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014 Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered

More information

Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements

Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements K. Stein Department of Physics, Bethel College, St. Paul, MN 55112 T. Tezduyar Mechanical Engineering, Rice University, MS 321, Houston, TX 77005 R. Benney Natick Soldier Center, Natick, MA 01760 Mesh

More information

Odyssey of the Mind Technology Fair. Simple Electronics

Odyssey of the Mind Technology Fair. Simple Electronics Simple Electronics 1. Terms volts, amps, ohms, watts, positive, negative, AC, DC 2. Matching voltages a. Series vs. parallel 3. Battery capacity 4. Simple electronic circuit light bulb 5. Chose the right

More information

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN Titulación: INGENIERO INDUSTRIAL Título del proyecto: MODELING CRACKS WITH ABAQUS Pablo Sanchis Gurpide Pamplona, 22 de Julio del

More information

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 119-130, Article ID: IJMET_07_01_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

Linear Programming Problems

Linear Programming Problems Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved. 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

Lap Fillet Weld Calculations and FEA Techniques

Lap Fillet Weld Calculations and FEA Techniques Lap Fillet Weld Calculations and FEA Techniques By: MS.ME Ahmad A. Abbas Sr. Analysis Engineer Ahmad.Abbas@AdvancedCAE.com www.advancedcae.com Sunday, July 11, 2010 Advanced CAE All contents Copyright

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

10. Proximal point method

10. Proximal point method L. Vandenberghe EE236C Spring 2013-14) 10. Proximal point method proximal point method augmented Lagrangian method Moreau-Yosida smoothing 10-1 Proximal point method a conceptual algorithm for minimizing

More information

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc. Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

More information

List of Problems Solved Introduction p. 1 Concept p. 1 Nodes p. 3 Elements p. 4 Direct Approach p. 5 Linear Spring p. 5 Heat Flow p.

List of Problems Solved Introduction p. 1 Concept p. 1 Nodes p. 3 Elements p. 4 Direct Approach p. 5 Linear Spring p. 5 Heat Flow p. Preface p. v List of Problems Solved p. xiii Introduction p. 1 Concept p. 1 Nodes p. 3 Elements p. 4 Direct Approach p. 5 Linear Spring p. 5 Heat Flow p. 6 Assembly of the Global System of Equations p.

More information

Nonlinear Iterative Partial Least Squares Method

Nonlinear Iterative Partial Least Squares Method Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

Tutorial for Assignment #3 Heat Transfer Analysis By ANSYS (Mechanical APDL) V.13.0

Tutorial for Assignment #3 Heat Transfer Analysis By ANSYS (Mechanical APDL) V.13.0 Tutorial for Assignment #3 Heat Transfer Analysis By ANSYS (Mechanical APDL) V.13.0 1 Problem Description This exercise consists of an analysis of an electronics component cooling design using fins: All

More information

Largest Fixed-Aspect, Axis-Aligned Rectangle

Largest Fixed-Aspect, Axis-Aligned Rectangle Largest Fixed-Aspect, Axis-Aligned Rectangle David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 1998-2016. All Rights Reserved. Created: February 21, 2004 Last Modified: February

More information

Customer Training Material. Lecture 4. Meshing in Mechanical. Mechanical. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.

Customer Training Material. Lecture 4. Meshing in Mechanical. Mechanical. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved. Lecture 4 Meshing in Mechanical Introduction to ANSYS Mechanical L4-1 Chapter Overview In this chapter controlling meshing operations is described. Topics: A. Global Meshing Controls B. Local Meshing Controls

More information

DYNAMICAL ANALYSIS OF SILO SURFACE CLEANING ROBOT USING FINITE ELEMENT METHOD

DYNAMICAL ANALYSIS OF SILO SURFACE CLEANING ROBOT USING FINITE ELEMENT METHOD International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 190-202, Article ID: IJMET_07_01_020 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of Multi-Element Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty

More information

Circuit Analysis using the Node and Mesh Methods

Circuit Analysis using the Node and Mesh Methods Circuit Analysis using the Node and Mesh Methods We have seen that using Kirchhoff s laws and Ohm s law we can analyze any circuit to determine the operating conditions (the currents and voltages). The

More information

NONLINEAR FINITE ELEMENT ANALYSIS FOR REINFORCED CONCRETE SLABS UNDER PUNCHING LOADS

NONLINEAR FINITE ELEMENT ANALYSIS FOR REINFORCED CONCRETE SLABS UNDER PUNCHING LOADS International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 392 397, Article ID: IJCIET_07_03_040 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

More information

How To Draw In Autocad

How To Draw In Autocad DXF Import and Export for EASE 4.0 Page 1 of 9 DXF Import and Export for EASE 4.0 Bruce C. Olson, Dr. Waldemar Richert ADA Copyright 2002 Acoustic Design Ahnert EASE 4.0 allows both the import and export

More information

Numerical methods for American options

Numerical methods for American options Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment

More information

Physics 221 Experiment 5: Magnetic Fields

Physics 221 Experiment 5: Magnetic Fields Physics 221 Experiment 5: Magnetic Fields August 25, 2007 ntroduction This experiment will examine the properties of magnetic fields. Magnetic fields can be created in a variety of ways, and are also found

More information

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE ÖZDEMİR Y. I, AYVAZ Y. Posta Adresi: Department of Civil Engineering, Karadeniz Technical University, 68 Trabzon, TURKEY E-posta: yaprakozdemir@hotmail.com

More information

Structural Integrity Analysis

Structural Integrity Analysis Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces

More information

The GeoMedia Fusion Validate Geometry command provides the GUI for detecting geometric anomalies on a single feature.

The GeoMedia Fusion Validate Geometry command provides the GUI for detecting geometric anomalies on a single feature. The GeoMedia Fusion Validate Geometry command provides the GUI for detecting geometric anomalies on a single feature. Below is a discussion of the Standard Advanced Validate Geometry types. Empty Geometry

More information

What s New V 11. Preferences: Parameters: Layout/ Modifications: Reverse mouse scroll wheel zoom direction

What s New V 11. Preferences: Parameters: Layout/ Modifications: Reverse mouse scroll wheel zoom direction What s New V 11 Preferences: Reverse mouse scroll wheel zoom direction Assign mouse scroll wheel Middle Button as Fine tune Pricing Method (Manufacturing/Design) Display- Display Long Name Parameters:

More information

A COMPARATIVE STUDY OF TWO METHODOLOGIES FOR NON LINEAR FINITE ELEMENT ANALYSIS OF KNIFE EDGE GATE VALVE SLEEVE

A COMPARATIVE STUDY OF TWO METHODOLOGIES FOR NON LINEAR FINITE ELEMENT ANALYSIS OF KNIFE EDGE GATE VALVE SLEEVE International Journal of Mechanical Engineering and Technology (IJMET) Volume 6, Issue 12, Dec 2015, pp. 81-90, Article ID: IJMET_06_12_009 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=6&itype=12

More information

Geometric Constraints

Geometric Constraints Simulation in Computer Graphics Geometric Constraints Matthias Teschner Computer Science Department University of Freiburg Outline introduction penalty method Lagrange multipliers local constraints University

More information

RFEM 5. Spatial Models Calculated acc. to Finite Element Method. of DLUBAL SOFTWARE GMBH. Dlubal Software GmbH Am Zellweg 2 D-93464 Tiefenbach

RFEM 5. Spatial Models Calculated acc. to Finite Element Method. of DLUBAL SOFTWARE GMBH. Dlubal Software GmbH Am Zellweg 2 D-93464 Tiefenbach Version July 2013 Program RFEM 5 Spatial Models Calculated acc. to Finite Element Method Tutorial All rights, including those of translations, are reserved. No portion of this book may be reproduced mechanically,

More information

Embankment Consolidation

Embankment Consolidation Embankment Consolidation 36-1 Embankment Consolidation In this tutorial, RS2 is used for a coupled analysis of a road embankment subject to loading from typical daily traffic. Model Start the RS2 9.0 Model

More information

. Address the following issues in your solution:

. Address the following issues in your solution: CM 3110 COMSOL INSTRUCTIONS Faith Morrison and Maria Tafur Department of Chemical Engineering Michigan Technological University, Houghton, MI USA 22 November 2012 Zhichao Wang edits 21 November 2013 revised

More information

3.1 Solving Systems Using Tables and Graphs

3.1 Solving Systems Using Tables and Graphs Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

More information

ENS 07 Paris, France, 3-4 December 2007

ENS 07 Paris, France, 3-4 December 2007 ENS 7 Paris, France, 3-4 December 7 FRICTION DRIVE SIMULATION OF A SURFACE ACOUSTIC WAVE MOTOR BY NANO VIBRATION Minoru Kuribayashi Kurosawa, Takashi Shigematsu Tokyou Institute of Technology, Yokohama

More information

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in

More information

AN INTERFACE STRIP PRECONDITIONER FOR DOMAIN DECOMPOSITION METHODS

AN INTERFACE STRIP PRECONDITIONER FOR DOMAIN DECOMPOSITION METHODS AN INTERFACE STRIP PRECONDITIONER FOR DOMAIN DECOMPOSITION METHODS by M. Storti, L. Dalcín, R. Paz Centro Internacional de Métodos Numéricos en Ingeniería - CIMEC INTEC, (CONICET-UNL), Santa Fe, Argentina

More information

ANALYSIS OF A LAP JOINT FRICTION CONNECTION USING HIGH STRENGTH BOLTS

ANALYSIS OF A LAP JOINT FRICTION CONNECTION USING HIGH STRENGTH BOLTS Nordic Steel Construction Conference 212 Hotel Bristol, Oslo, Norway 5-7 September 212 ANALYSIS OF A LAP JOINT FRICTION CONNECTION USING HIGH STRENGTH BOLTS Marouene Limam a, Christine Heistermann a and

More information

SCALABILITY OF CONTEXTUAL GENERALIZATION PROCESSING USING PARTITIONING AND PARALLELIZATION. Marc-Olivier Briat, Jean-Luc Monnot, Edith M.

SCALABILITY OF CONTEXTUAL GENERALIZATION PROCESSING USING PARTITIONING AND PARALLELIZATION. Marc-Olivier Briat, Jean-Luc Monnot, Edith M. SCALABILITY OF CONTEXTUAL GENERALIZATION PROCESSING USING PARTITIONING AND PARALLELIZATION Abstract Marc-Olivier Briat, Jean-Luc Monnot, Edith M. Punt Esri, Redlands, California, USA mbriat@esri.com, jmonnot@esri.com,

More information

The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM

The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM 1 The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM tools. The approach to this simulation is different

More information

GAMBIT Demo Tutorial

GAMBIT Demo Tutorial GAMBIT Demo Tutorial Wake of a Cylinder. 1.1 Problem Description The problem to be considered is schematically in fig. 1. We consider flow across a cylinder and look at the wake behind the cylinder. Air

More information

CAE -Finite Element Method

CAE -Finite Element Method 16.810 Engineering Design and Rapid Prototyping CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 11, 2005 Plan for Today Hand Calculations Aero Æ Structures FEM Lecture (ca. 45 min)

More information

Working with Geodatabase Topology

Working with Geodatabase Topology Developed and Presented by Juniper GIS 1/38 Course Objectives Understanding how Geodatabase Topology works Geodatabase Rules Creating Geodatabase Topology Editing with Geodatabase Topology Geometric Networks

More information

Optimising plate girder design

Optimising plate girder design Optimising plate girder design NSCC29 R. Abspoel 1 1 Division of structural engineering, Delft University of Technology, Delft, The Netherlands ABSTRACT: In the design of steel plate girders a high degree

More information

Linear Static Analysis of a Cantilever Beam Using Beam Library (SI Units)

Linear Static Analysis of a Cantilever Beam Using Beam Library (SI Units) APPENDIX A Linear Static Analysis of a Cantilever Beam Using Beam Library (SI Units) Objectives: Create a geometric representation of a cantilever beam. Use the geometry model to define an MSC.Nastran

More information

Real Time Simulation for Off-Road Vehicle Analysis. Dr. Pasi Korkealaakso Mevea Ltd., May 2015

Real Time Simulation for Off-Road Vehicle Analysis. Dr. Pasi Korkealaakso Mevea Ltd., May 2015 Real Time Simulation for Off-Road Vehicle Analysis Dr. Pasi Korkealaakso Mevea Ltd., May 2015 Contents Introduction Virtual machine model Machine interaction with environment and realistic environment

More information

Burst Pressure Prediction of Pressure Vessel using FEA

Burst Pressure Prediction of Pressure Vessel using FEA Burst Pressure Prediction of Pressure Vessel using FEA Nidhi Dwivedi, Research Scholar (G.E.C, Jabalpur, M.P), Veerendra Kumar Principal (G.E.C, Jabalpur, M.P) Abstract The main objective of this paper

More information

HowTo Rhino & ICEM. 1) New file setup: choose Millimeter (automatically converts to Meters if imported to ICEM)

HowTo Rhino & ICEM. 1) New file setup: choose Millimeter (automatically converts to Meters if imported to ICEM) HowTo Rhino & ICEM Simple 2D model 1) New file setup: choose Millimeter (automatically converts to Meters if imported to ICEM) 2) Set units: File Properties Units: Model units: should already be Millimeters

More information

Roots of Equations (Chapters 5 and 6)

Roots of Equations (Chapters 5 and 6) Roots of Equations (Chapters 5 and 6) Problem: given f() = 0, find. In general, f() can be any function. For some forms of f(), analytical solutions are available. However, for other functions, we have

More information

Introduction to the Finite Element Method (FEM)

Introduction to the Finite Element Method (FEM) Introduction to the Finite Element Method (FEM) ecture First and Second Order One Dimensional Shape Functions Dr. J. Dean Discretisation Consider the temperature distribution along the one-dimensional

More information

Balancing Manufacturability and Optimal Structural Performance for Laminate Composites through a Genetic Algorithm

Balancing Manufacturability and Optimal Structural Performance for Laminate Composites through a Genetic Algorithm Balancing Manufacturability and Optimal Structural Performance for Laminate Composites through a Genetic Algorithm Mike Stephens Senior Composites Stress Engineer, Airbus UK Composite Research, Golf Course

More information

Seismic Analysis and Design of Steel Liquid Storage Tanks

Seismic Analysis and Design of Steel Liquid Storage Tanks Vol. 1, 005 CSA Academic Perspective 0 Seismic Analysis and Design of Steel Liquid Storage Tanks Lisa Yunxia Wang California State Polytechnic University Pomona ABSTRACT Practicing engineers face many

More information

Finite Element Method

Finite Element Method 16.810 (16.682) Engineering Design and Rapid Prototyping Finite Element Method Instructor(s) Prof. Olivier de Weck deweck@mit.edu Dr. Il Yong Kim kiy@mit.edu January 12, 2004 Plan for Today FEM Lecture

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

Laminar Flow in a Baffled Stirred Mixer

Laminar Flow in a Baffled Stirred Mixer Laminar Flow in a Baffled Stirred Mixer Introduction This exercise exemplifies the use of the rotating machinery feature in the CFD Module. The Rotating Machinery interface allows you to model moving rotating

More information

Finite Element Methods (in Solid and Structural Mechanics)

Finite Element Methods (in Solid and Structural Mechanics) CEE570 / CSE 551 Class #1 Finite Element Methods (in Solid and Structural Mechanics) Spring 2014 Prof. Glaucio H. Paulino Donald Biggar Willett Professor of Engineering Department of Civil and Environmental

More information

Nonlinear analysis and form-finding in GSA Training Course

Nonlinear analysis and form-finding in GSA Training Course Nonlinear analysis and form-finding in GSA Training Course Non-linear analysis and form-finding in GSA 1 of 47 Oasys Ltd Non-linear analysis and form-finding in GSA 2 of 47 Using the GSA GsRelax Solver

More information

Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0

Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0 Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0 1 Problem Description Design a gantry crane meeting the geometry presented in Figure 1 on page #325 of the course textbook

More information

FINITE ELEMENT : MATRIX FORMULATION. Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 7633

FINITE ELEMENT : MATRIX FORMULATION. Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 7633 FINITE ELEMENT : MATRIX FORMULATION Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 76 FINITE ELEMENT : MATRIX FORMULATION Discrete vs continuous Element type Polynomial approximation

More information

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

More information