Dr. Seshu Adluri. Structural Steel Design Compression Members

Size: px
Start display at page:

Download "Dr. Seshu Adluri. Structural Steel Design Compression Members"

Transcription

1 Dr. Seshu Adluri Structural Steel Design Compression Members

2 Columns in Buildings

3 Columns in Buildings

4 Column supports

5 Compression members in trusses

6 Compression members in trusses

7 Compression members in OWSJ

8 Compression members in bridges Howrah bridge, Kolkata, India

9 Compression members in towers Eiffel Tower ( ) The new Tokyo Tower is set to be completed in It will stand 610m high.

10 Compression in equipment

11 Introduction Steel Compression members Building columns Frame Bracing Truss members (chords and bracing) Useful in pure compression as well as in beamcolumns Design Clauses: CAN/CSA-S16 Over-all strength as per Clause 13.3 Local buckling check: Clause 11 (Table 1) Built-up members: Clause 19

12 Column erection

13 Different column c/s shapes

14 Different column c/s shapes

15 Instability and bifurcation Stable, neutral and unstable equilibriums

16 Buckling

17 Instability and bifurcation Instability effect To compress or not to compress? Energy considerations Long column

18 Compression terminology -review Moment of inertia I x Parallel axis theorem Radius of gyration Effective length = A da kl Slenderness ratio kl/r Principal axes (major and minor) Critical Load P cr Factored compressive strength, C r y 2 I x = I x + r = I A 2 Ax h b Symmetric (major) axis Unsymmetric (minor) axis

19 Compression members Bucking Elastic (Euler) buckling Inelastic buckling Buckling modes Overall buckling Flexural buckling Torsional buckling Torsional-flexural buckling Local buckling

20 Elastic Buckling Equilibrium equation Internal moment + applied moment = 0 2 d w EI + Pw = 0; w = y = 0; w = 2 dx πx Solution : w = Asin satisfies the b. c. L Substituting int o the differential equation, y = L EI 2 π A L πx x sin π + P Asin L L = 0 P 2 π L cr EI + P 2 π EI = 2 L = 0

21 Inelastic Buckling

22 Compression members Moment of inertia Radius of gyration Effective length Slenderness ratio σ pl = σ y - κλ/ρ es σ pl = (0.5~1.0)σ y

23 Effective length factors Different end conditions give different lengths for equivalent half-sine wave

24 Theoretical Effective length factors

25 Theoretical Effective length factors

26 Effective length factors US practice

27 Effective lengths in different directions

28 Effective length factors Canadian practice k =.65 k =.8 k = 1.2 k = 1.0 k = 2.0 k = 2.0

29 US recommended values Free-Free Hinged-Free Guided-Free Boundary Conditions Hinged-Hinged (Simply-Supported) Guided-Hinged Guided-Guided Clamped-Free (Cantilever) Clamped-Hinged Clamped-Guided Theoretical Eff. Length, L eff T L L L 2 L 2 L L 2 L 0.7 L L Engrg. Eff. Length L eff E (1.2 L) (1.2 L) L (2.1 L) 2 L 1.2 L 2.1 L 0.8 L 1.2 L Clamped-Clamped 0.5 L 0.65 L

30 Canadian recommended values Appendix F CAN/CSA/S16-01 Free-Free Hinged-Free Guided-Free Boundary Conditions Hinged-Hinged (Simply-Supported) Guided-Hinged Guided-Guided Clamped-Free (Cantilever) Clamped-Hinged Clamped-Guided Theoretical Eff. Length, L eff T L L L 2 L 2 L L 2 L 0.7 L L Engrg. Eff. Length L eff E (1.2 L) (1.2 L) L (2.0 L) 2 L 1.2 L 2.0 L 0.8 L 1.2 L Clamped-Clamped 0.5 L 0.65 L

31 Effective lengths in frame columns

32 Effective lengths in frame columns

33 Real columns -Factors for consideration Partially plastic buckling Initial out-ofstraightness (L/2000 to L/1000)

34 Real columns - Factors for consideration Residual stresses in Hot-rolled shapes (idealized)

35 Real columns - Factors for consideration Residual stresses in Hot-rolled shapes (idealized)

36 Perfect column failure

37 Perfect column failure

38 Practical column failure

39 Column curve

40 Material Short Column (Strength Limit) Intermediate Column (Inelastic Stability Limit) Long Column (Elastic Stability Limit) Slenderness Ratio ( kl/r = L eff / r) Structural Steel kl/r < < kl/r < 150 kl/r > 150 Aluminum Alloy AA T6 kl/r < < kl/r < 66 kl/r > 66 Aluminum Alloy AA T6 kl/r < < kl/r < 55 kl/r > 55 Wood kl/r < < kl/r < (18~30) (18~30)<kL/r<50

41 Over-all buckling Flexural Torsional Torsional-flexural

42 Flexural Buckling About minor axis (with higher kl/r) for doubly symmetric shapes About minor axis (the unsymmetric axis) for singly symmetric shapes 1964 Alaska quake, EqIIS collection

43 Flexural Buckling

44 Torsional buckling Short lengths Usually kl/r less than approx. 50 doubly symmetric sections Wide flange sections, cruciform sections, double channels, point symmetric sections,. Not for closed sections such as HSS since they are very strong in torsion

45 Torsion Torque is a moment that causes twisting along the length of a bar. The twist is also the torsional deformation. For a circular shaft, the torque (or torsional moment) rotates each c/s relative to the nearby c/s.

46 Torsional deformation

47 Torsion of non-circular sections Torsion of non-circular sections involves torsional shear and warping. Torsional shear needs the use of torsion constant J. J is similar to the use of polar moment of inertia for circular shafts. J=Σbt 3 /3 Warping calculation needs the use od the constant C w. Both J and C w are listed in the Handbook In addition, we need to use the effective length in torsion (k z L z ). Usually, k z is taken as 1.0

48 Torsional buckling of open sections Buckling in pure torsional mode (not needed for HSS or closed sections): K z is normally taken as 1.0. C w, J, r x, r y are given in the properties tables, x and y are the axes of symmetry of the section. E= MPa (assumed), G= MPa (assumed). F ez λ = 2 1 π EC w = + GJ 2 2 Ar o ( KL z ) F y F r = x + y + r + r o o o x y ( ) 2n C 1 1 e r = φafy + λ n

49 Shear centre Sections always rotate about shear centre Shear centre lies on the axis of symmetry

50 Torsionalflexural buckling For of singly symmetric sections, about the major axis For unsymmetric sections, about any axis Rotation is always about shear centre

51 Torsional-flexural buckling

52 Shear flow

53 Shear flow

54 Shear flow

55 Shear centre

56 Shear flow effect

57 Shear centre

58 Shear centre

59 Local (Plate) buckling

60 Plate buckling

61 Plate buckling Effective width concept

62 Plate buckling Different types of buckling depending on b/t ratio end conditions for plate segments Table 1 for columns Table 2 for beams and beam-columns

63 Web buckling

64 Plate buckling b/t ratio effect

65 Built-up columns Two or more sections Stitch bolts Batten plates Lacing Combined batten & lacing Perforated cover plates

66 Built-up columns Two or more sections Stitch bolts Batten plates Lacing Combined

67 Built-up columns

68 Built-up columns Closely spaced channels

69 Built-up columns Built-up member buckling is somewhat similar to frame buckling Batten acts like beams Battens get shear and moment due to the bending of the frame like built-up member at the time of buckling

70 Battened column

71 Built-up columns Design as per normal procedure Moment of inertia about the axis which shifts due to the presence of gap needs parallel axis theorem Effective slenderness ratio as per Cl. 19.1

72 References AISC Digital Library (2008) ESDEP-the European Steel Design Education Programme - lectures Earthquake Image Information System Hibbeler, R.C., Mechanics of Solids, Prentice-Hall

III. Compression Members. Design of Steel Structures. Introduction. Compression Members (cont.)

III. Compression Members. Design of Steel Structures. Introduction. Compression Members (cont.) ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University it of Maryland Compression Members Following subjects are covered:

More information

Compression Members: Structural elements that are subjected to axial compressive forces

Compression Members: Structural elements that are subjected to axial compressive forces CHAPTER 3. COMPRESSION MEMBER DESIGN 3.1 INTRODUCTORY CONCEPTS Compression Members: Structural elements that are subjected to axial compressive forces onl are called columns. Columns are subjected to axial

More information

Stresses in Beam (Basic Topics)

Stresses in Beam (Basic Topics) Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and

More information

Section 16: Neutral Axis and Parallel Axis Theorem 16-1

Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

Deflections. Question: What are Structural Deflections?

Deflections. Question: What are Structural Deflections? Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the

More information

Stability Of Structures: Additional Topics

Stability Of Structures: Additional Topics 26 Stability Of Structures: Additional Topics ASEN 3112 Lecture 26 Slide 1 Unified Column Buckling Formula Euler formula for pinned-pinned column P cr = π 2 EI L 2 Actual column length Unified formula

More information

Design Analysis and Review of Stresses at a Point

Design Analysis and Review of Stresses at a Point Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to

More information

MODULE E: BEAM-COLUMNS

MODULE E: BEAM-COLUMNS MODULE E: BEAM-COLUMNS This module of CIE 428 covers the following subjects P-M interaction formulas Moment amplification Web local buckling Braced and unbraced frames Members in braced frames Members

More information

ARCH 331 Structural Glossary S2014abn. Structural Glossary

ARCH 331 Structural Glossary S2014abn. Structural Glossary Structural Glossary Allowable strength: Nominal strength divided by the safety factor. Allowable stress: Allowable strength divided by the appropriate section property, such as section modulus or cross

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend

More information

PRACTICAL METHODS FOR CRITICAL LOAD DETERMINATION AND STABILITY EVALUATION OF STEEL STRUCTURES PEDRO FERNANDEZ

PRACTICAL METHODS FOR CRITICAL LOAD DETERMINATION AND STABILITY EVALUATION OF STEEL STRUCTURES PEDRO FERNANDEZ PRACTICAL METHODS FOR CRITICAL LOAD DETERMINATION AND STABILITY EVALUATION OF STEEL STRUCTURES By PEDRO FERNANDEZ B.S., Instituto Tecnologico y de Estudios Superiores de Occidente, 1992 A Thesis submitted

More information

New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

More information

Add-on Module STEEL EC3. Ultimate Limit State, Serviceability, Fire Resistance, and Stability Analyses According. Program Description

Add-on Module STEEL EC3. Ultimate Limit State, Serviceability, Fire Resistance, and Stability Analyses According. Program Description Version December 2014 Add-on Module STEEL EC3 Ultimate Limit State, Serviceability, Fire Resistance, and Stability Analyses According to Eurocode 3 Program Description All rights, including those of translations,

More information

Optimising plate girder design

Optimising plate girder design Optimising plate girder design NSCC29 R. Abspoel 1 1 Division of structural engineering, Delft University of Technology, Delft, The Netherlands ABSTRACT: In the design of steel plate girders a high degree

More information

Canadian Standards Association

Canadian Standards Association S6S1-10 10.10.2.2 Laterally supported members When continuous lateral support is provided to the compression flange of a member subjected to bending about its major axis, the factored moment resistance,

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges 7.7 Truss bridges Fig. 7.21 some of the trusses that are used in steel bridges Truss Girders, lattice girders or open web girders are efficient and economical structural systems, since the members experience

More information

bi directional loading). Prototype ten story

bi directional loading). Prototype ten story NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation

More information

INTRODUCTION TO BEAMS

INTRODUCTION TO BEAMS CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis

More information

Shear Center in Thin-Walled Beams Lab

Shear Center in Thin-Walled Beams Lab Shear Center in Thin-Walled Beams Lab Shear flow is developed in beams with thin-walled cross sections shear flow (q sx ): shear force per unit length along cross section q sx =τ sx t behaves much like

More information

Duan, L. and Chen, W. Effective Length of Compression Members Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 2000

Duan, L. and Chen, W. Effective Length of Compression Members Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 2000 Duan, L. and Chen, W. Effective Length of Compression Members Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 000 5 Effective Length of Compression Members 5.1 Introduction

More information

UNRESTRAINED BEAM DESIGN I

UNRESTRAINED BEAM DESIGN I 11 UNRESTRAINED BEA DESIGN I 1.0 INTRODUCTION Generally, a beam resists transverse loads by bending action. In a typical building frame, main beams are employed to span between adjacent columns; secondary

More information

Course in. Nonlinear FEM

Course in. Nonlinear FEM Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited

More information

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams Introduction to Beam Theory Area Moments of Inertia, Deflection, and Volumes of Beams Horizontal structural member used to support horizontal loads such as floors, roofs, and decks. Types of beam loads

More information

CSA S16-09 Design of Steel Structures Canada

CSA S16-09 Design of Steel Structures Canada CSA S16-09 Design of Steel Structures Canada Ed Whalen, P.Eng CISC President CSA S16-09 1 CSA Standard S16-09 Standard, Design of Steel Structures. Sets out minimum requirements used by engineers in the

More information

Eurocode 3 for Dummies The Opportunities and Traps

Eurocode 3 for Dummies The Opportunities and Traps Eurocode 3 for Dummies The Opportunities and Traps a brief guide on element design to EC3 Tim McCarthy Email tim.mccarthy@umist.ac.uk Slides available on the web http://www2.umist.ac.uk/construction/staff/

More information

Concrete Frame Design Manual

Concrete Frame Design Manual Concrete Frame Design Manual Turkish TS 500-2000 with Turkish Seismic Code 2007 For SAP2000 ISO SAP093011M26 Rev. 0 Version 15 Berkeley, California, USA October 2011 COPYRIGHT Copyright Computers and Structures,

More information

Design of Members. Rui Simões. Department of Civil Engineering University of Coimbra

Design of Members. Rui Simões. Department of Civil Engineering University of Coimbra Design o embers Rui Simões Department o Civil Engineering Universit o Coimbra Eurocodes Design o steel buildings with worked examples Brussels, 6 7 October 04 Contents Introduction Design o columns Design

More information

Vibrations of a Free-Free Beam

Vibrations of a Free-Free Beam Vibrations of a Free-Free Beam he bending vibrations of a beam are described by the following equation: y EI x y t 4 2 + ρ A 4 2 (1) y x L E, I, ρ, A are respectively the Young Modulus, second moment of

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following. MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

More information

4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections.

4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections. Shear Walls Buildings that use shear walls as the lateral force-resisting system can be designed to provide a safe, serviceable, and economical solution for wind and earthquake resistance. Shear walls

More information

Nueva Edición del libro clásico para estudiantes de grado.

Nueva Edición del libro clásico para estudiantes de grado. Nueva Edición del libro clásico para estudiantes de grado. Ha aparecido la quinta edición del que ya se ha convertido en uno de los libros más vendidos de Diseño de estructuras de Acero para su uso en

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.

More information

Mechanics of Materials. Chapter 5 Stresses In Beams

Mechanics of Materials. Chapter 5 Stresses In Beams Mechanics of Materials Chapter 5 Stresses In Beams 5.1 Introduction In previous chapters, the stresses in bars caused by axial loading and torsion. Here consider the third fundamental loading : bending.

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0

Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0 Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0 1 Problem Description Design a gantry crane meeting the geometry presented in Figure 1 on page #325 of the course textbook

More information

Full-Scale Load Testing of Steel Strutting System. For. Yongnam Holding Limited

Full-Scale Load Testing of Steel Strutting System. For. Yongnam Holding Limited Report on Full-Scale Load Testing of Steel Strutting System For Yongnam Holding Limited Prepared by Dr Richard Liew PhD, MIStrutE, CEng, PE(S pore) Department of Civil Engineering National University of

More information

Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module - 5.3.

Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module - 5.3. Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 5.3 Lecture - 29 Matrix Analysis of Beams and Grids Good morning. This is

More information

Introduction to Mechanical Behavior of Biological Materials

Introduction to Mechanical Behavior of Biological Materials Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure

More information

Approximate Analysis of Statically Indeterminate Structures

Approximate Analysis of Statically Indeterminate Structures Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis

More information

CLASSIFICATION BOUNDARIES FOR STIFFNESS OF BEAM-TO- COLUMN JOINTS AND COLUMN BASES

CLASSIFICATION BOUNDARIES FOR STIFFNESS OF BEAM-TO- COLUMN JOINTS AND COLUMN BASES Nordic Steel Construction Conference 2012 Hotel Bristol, Oslo, Norway 5-7 September 2012 CLASSIFICATION BOUNDARIES FOR STIFFNESS OF BEAM-TO- COLUMN JOINTS AND COLUMN BASES Ina Birkeland a,*, Arne Aalberg

More information

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia DESIGN OF SLABS Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction Types of Slab Slabs are plate elements

More information

Statics of Structural Supports

Statics of Structural Supports Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure

More information

ETABS. Integrated Building Design Software. Composite Floor Frame Design Manual. Computers and Structures, Inc. Berkeley, California, USA

ETABS. Integrated Building Design Software. Composite Floor Frame Design Manual. Computers and Structures, Inc. Berkeley, California, USA ETABS Integrated Building Design Software Composite Floor Frame Design Manual Computers and Structures, Inc. Berkeley, California, USA Version 8 January 2002 Copyright The computer program ETABS and all

More information

Sheet metal operations - Bending and related processes

Sheet metal operations - Bending and related processes Sheet metal operations - Bending and related processes R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Table of Contents 1.Quiz-Key... Error! Bookmark not defined. 1.Bending

More information

APPENDIX H DESIGN CRITERIA FOR NCHRP 12-79 PROJECT NEW BRIDGE DESIGNS

APPENDIX H DESIGN CRITERIA FOR NCHRP 12-79 PROJECT NEW BRIDGE DESIGNS APPENDIX H DESIGN CRITERIA FOR NCHRP 12-79 PROJECT NEW BRIDGE DESIGNS This appendix summarizes the criteria applied for the design of new hypothetical bridges considered in NCHRP 12-79 s Task 7 parametric

More information

CENTER OF GRAVITY, CENTER OF MASS AND CENTROID OF A BODY

CENTER OF GRAVITY, CENTER OF MASS AND CENTROID OF A BODY CENTER OF GRAVITY, CENTER OF MASS AND CENTROID OF A BODY Dr. Amilcar Rincon-Charris, MSME Mechanical Engineering Department MECN 3005 - STATICS Objective : Students will: a) Understand the concepts of

More information

Bending Stress in Beams

Bending Stress in Beams 936-73-600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending

More information

CE591 Lecture 8: Shear Walls

CE591 Lecture 8: Shear Walls CE591 Lecture 8: Shear Walls Introduction History, examples Benefits Disadvantages Plate Girder Analogy Behavior of Special Plate Shear Walls (SPSW) Design of SPSW Important considerations Special Plate

More information

Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

More information

Steel Design Report. Governing Criteria Stress Ratio

Steel Design Report. Governing Criteria Stress Ratio Steel Design Report Element: Untitled2 () Company: Description: User: Date: 01:06 PM Software: Digital Canal Steel Design 4.0 GENERAL INFORMATION Description Value Description Value Run Mode Design Mode

More information

STEEL BUILDINGS IN EUROPE. Single-Storey Steel Buildings Part 5: Detailed Design of Trusses

STEEL BUILDINGS IN EUROPE. Single-Storey Steel Buildings Part 5: Detailed Design of Trusses STEEL BUILDIGS I EUROPE Single-Storey Steel Buildings Part 5: Detailed Design of Trusses Single-Storey Steel Buildings Part 5: Detailed Design of Trusses 5 - ii Part 5: Detailed Design of Trusses FOREWORD

More information

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.

More information

CH 6: Fatigue Failure Resulting from Variable Loading

CH 6: Fatigue Failure Resulting from Variable Loading CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture).

More information

Basic principles of steel structures. Dr. Xianzhong ZHAO x.zhao@mail.tongji.edu.cn

Basic principles of steel structures. Dr. Xianzhong ZHAO x.zhao@mail.tongji.edu.cn Basic principles of steel structures Dr. Xianzhong ZHAO x.zhao@mail.tongji.edu.cn 1 Lecture Questionnaire (1) Language preferred ( C = in Chinese, E = in English) NO. Oral Presentation Writing on the blackboard

More information

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES Yang-Cheng Wang Associate Professor & Chairman Department of Civil Engineering Chinese Military Academy Feng-Shan 83000,Taiwan Republic

More information

ETABS. Integrated Building Design Software. Concrete Frame Design Manual. Computers and Structures, Inc. Berkeley, California, USA

ETABS. Integrated Building Design Software. Concrete Frame Design Manual. Computers and Structures, Inc. Berkeley, California, USA ETABS Integrated Building Design Software Concrete Frame Design Manual Computers and Structures, Inc. Berkeley, California, USA Version 8 January 2002 Copyright The computer program ETABS and all associated

More information

2. Axial Force, Shear Force, Torque and Bending Moment Diagrams

2. Axial Force, Shear Force, Torque and Bending Moment Diagrams 2. Axial Force, Shear Force, Torque and Bending Moment Diagrams In this section, we learn how to summarize the internal actions (shear force and bending moment) that occur throughout an axial member, shaft,

More information

Mechanics of Materials Summary

Mechanics of Materials Summary Mechanics of Materials Summary 1. Stresses and Strains 1.1 Normal Stress Let s consider a fixed rod. This rod has length L. Its cross-sectional shape is constant and has area. Figure 1.1: rod with a normal

More information

Eurocode 3: Design of steel structures

Eurocode 3: Design of steel structures Eurocode 3: Design of steel structures David Brown, Associate Director, Steel Construction Institute Introduction Structural engineers should be encouraged that at least in steel, design conforming to

More information

Yamaguchi, E. Basic Theory of Plates and Elastic Stability Structural Engineering Handbook Ed. Chen Wai-Fah Boca Raton: CRC Press LLC, 1999

Yamaguchi, E. Basic Theory of Plates and Elastic Stability Structural Engineering Handbook Ed. Chen Wai-Fah Boca Raton: CRC Press LLC, 1999 Yamaguchi, E. Basic Theory of Plates and Elastic Stability Structural Engineering Handbook Ed. Chen Wai-Fah Boca Raton: CRC Press LLC, 1999 Basic Theory of Plates and Elastic Stability Eiki Yamaguchi Department

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Analysis of Statically Indeterminate Structures by the Matrix Force Method esson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be able

More information

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general three-dimensional solid deformable

More information

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3279 SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP Yuming DING 1, Bruce HAMERSLEY 2 SUMMARY Vancouver

More information

CE591 Fall 2013 Lecture 26: Moment Connections

CE591 Fall 2013 Lecture 26: Moment Connections CE591 Fall 2013 Lecture 26: Moment Connections Explain basic design procedure for moment (FR) connections Explain considerations for connections in momentresisting frames for seismic demands Describe problems

More information

Comparative Study of Steel Structures Design Using IS 800:1984 & IS 800:2007

Comparative Study of Steel Structures Design Using IS 800:1984 & IS 800:2007 International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 810 Comparative Study of Steel Structures Design Using IS 800:1984 & IS 800:2007 Prof. S.S.Patil, L.A.Pasnur Abstract

More information

Introduction. Background

Introduction. Background Introduction Welcome to CFS, the comprehensive cold-formed steel component design software. The endless variety of shapes and sizes of cold-formed steel members, combined with the complex failure modes

More information

How to Design Helical Piles per the 2009 International Building Code

How to Design Helical Piles per the 2009 International Building Code ABSTRACT How to Design Helical Piles per the 2009 International Building Code by Darin Willis, P.E. 1 Helical piles and anchors have been used in construction applications for more than 150 years. The

More information

Analysis of Stresses and Strains

Analysis of Stresses and Strains Chapter 7 Analysis of Stresses and Strains 7.1 Introduction axial load = P / A torsional load in circular shaft = T / I p bending moment and shear force in beam = M y / I = V Q / I b in this chapter, we

More information

MATERIALS AND MECHANICS OF BENDING

MATERIALS AND MECHANICS OF BENDING HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL

More information

Torsion Tests. Subjects of interest

Torsion Tests. Subjects of interest Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test

More information

BUCKLING OF BARS, PLATES, AND SHELLS. Virginia Polytechnic Institute and State University Biacksburg, Virginia 24061-0219

BUCKLING OF BARS, PLATES, AND SHELLS. Virginia Polytechnic Institute and State University Biacksburg, Virginia 24061-0219 BUCKLING OF BARS, PLATES, AND SHELLS ROBERT M. JONES Science and Mechanics Professor Emeritus of Engineering Virginia Polytechnic Institute and State University Biacksburg, Virginia 24061-0219 Bull Ridge

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar Problem 1 Design a hand operated overhead crane, which is provided in a shed, whose details are: Capacity of crane = 50 kn Longitudinal spacing of column = 6m Center to center distance of gantry girder

More information

Local buckling of plates made of high strength steel

Local buckling of plates made of high strength steel Local buckling of plates made of high strength steel Tapani Halmea, Lauri Huusko b,a, Gary Marquis a, Timo Björk a a Lappeenranta University of Technology, Faculty of Technology Engineering, Lappeenranta,

More information

Chapter 3 - Structural Design

Chapter 3 - Structural Design Chapter 3 - Structural Design 3.0 General 3.0.1 Design Overview Greenhouse buildings are a complete structure including the structural support and enclosure elements. The primary structural system includes:

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

SEISMIC RETROFITTING OF STRUCTURES

SEISMIC RETROFITTING OF STRUCTURES SEISMIC RETROFITTING OF STRUCTURES RANJITH DISSANAYAKE DEPT. OF CIVIL ENGINEERING, FACULTY OF ENGINEERING, UNIVERSITY OF PERADENIYA, SRI LANKA ABSTRACT Many existing reinforced concrete structures in present

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading: SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the

More information

Rigid and Braced Frames

Rigid and Braced Frames Rigid Frames Rigid and raced Frames Rigid frames are identified b the lack of pinned joints within the frame. The joints are rigid and resist rotation. The ma be supported b pins or fied supports. The

More information

Problem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions

Problem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions Problem 1: Computation of Reactions Problem 2: Computation of Reactions Problem 3: Computation of Reactions Problem 4: Computation of forces and moments Problem 5: Bending Moment and Shear force Problem

More information

SHAFTS: TORSION LOADING AND DEFORMATION

SHAFTS: TORSION LOADING AND DEFORMATION ECURE hird Edition SHAFS: ORSION OADING AND DEFORMAION A. J. Clark Shool of Engineering Department of Civil and Environmental Engineering 6 Chapter 3.1-3.5 by Dr. Ibrahim A. Assakkaf SPRING 2003 ENES 220

More information

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Guidance to developers of software for the design of composite beams

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Guidance to developers of software for the design of composite beams STEEL BUILDINGS IN EUROPE Multi-Storey Steel Buildings Part 10: Guidance to developers of software for the design of Multi-Storey Steel Buildings Part 10: Guidance to developers of software for the design

More information

Challenging Skew: Higgins Road Steel I-Girder Bridge over I-90 OTEC 2015 - October 27, 2015 Session 26

Challenging Skew: Higgins Road Steel I-Girder Bridge over I-90 OTEC 2015 - October 27, 2015 Session 26 2014 HDR Architecture, 2014 2014 HDR, HDR, Inc., all all rights reserved. Challenging Skew: Higgins Road Steel I-Girder Bridge over I-90 OTEC 2015 - October 27, 2015 Session 26 Brandon Chavel, PhD, P.E.,

More information

Design Parameters for Steel Special Moment Frame Connections

Design Parameters for Steel Special Moment Frame Connections SEAOC 2011 CONVENTION PROCEEDINGS Design Parameters for Steel Special Moment Frame Connections Scott M. Adan, Ph.D., S.E., SECB, Chair SEAONC Structural Steel Subcommittee Principal Adan Engineering Oakland,

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL 3 - TORSION

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL 3 - TORSION ENGINEEING COUNCI CETIFICATE EVE ENGINEEING SCIENCE C10 TUTOIA - TOSION You should judge your progress by completing the self assessment exercises. These may be sent for marking or you may request copies

More information

Automated Strength Analysis Processes for Aircraft Structures

Automated Strength Analysis Processes for Aircraft Structures Automated Strength Analysis Processes for Aircraft Structures Automatisierte Festigkeitsanalyseprozesse für Flugzeugstrukturen Univ.-Prof. Dr. Martin Schagerl Overview Structure Build-Up Structure Design

More information

BEHAVIOR OF WEB-TAPERED BUILT-UP I-SHAPED BEAMS. Bryan Scott Miller. B.S. in Civil Engineering, University of Pittsburgh, 2002

BEHAVIOR OF WEB-TAPERED BUILT-UP I-SHAPED BEAMS. Bryan Scott Miller. B.S. in Civil Engineering, University of Pittsburgh, 2002 BEHAVIOR OF WEB-TAPERED BUILT-UP I-SHAPED BEAMS by Bryan Scott Miller B.S. in Civil Engineering, University of Pittsburgh, 2002 Submitted to the Graduate Faculty of School of Engineering in partial fulfillment

More information

Shell Elements in ABAQUS/Explicit

Shell Elements in ABAQUS/Explicit ABAQUS/Explicit: Advanced Topics Appendix 2 Shell Elements in ABAQUS/Explicit ABAQUS/Explicit: Advanced Topics A2.2 Overview ABAQUS/Explicit: Advanced Topics ABAQUS/Explicit: Advanced Topics A2.4 Triangular

More information

BLIND TEST ON DAMAGE DETECTION OF A STEEL FRAME STRUCTURE

BLIND TEST ON DAMAGE DETECTION OF A STEEL FRAME STRUCTURE BLIND TEST ON DAMAGE DETECTION OF A STEEL FRAME STRUCTURE C.J. Black< 1 >,C.E. Ventura(2) Graduate Student, < 2 > Associate Professor University of British Columbia Department of Civil Engineering

More information

Reinforced Concrete Design

Reinforced Concrete Design FALL 2013 C C Reinforced Concrete Design CIVL 4135 ii 1 Chapter 1. Introduction 1.1. Reading Assignment Chapter 1 Sections 1.1 through 1.8 of text. 1.2. Introduction In the design and analysis of reinforced

More information

جامعة البلقاء التطبيقية

جامعة البلقاء التطبيقية AlBalqa Applied University تا سست عام 997 The curriculum of associate degree in Air Conditioning, Refrigeration and Heating Systems consists of (7 credit hours) as follows: Serial No. Requirements First

More information

2011-2012. Crane Runway Girder. Dr. Ibrahim Fahdah Damascus University. https://sites.google.com/site/ifahdah/home/lectures

2011-2012. Crane Runway Girder. Dr. Ibrahim Fahdah Damascus University. https://sites.google.com/site/ifahdah/home/lectures Crane Runway Girder Dr. Ibrahim Fahdah Damascus University https://sites.google.com/site/ifahdah/home/lectures Components of Crane system The Crane Runway Girder and the Structure Issue1: Vertical Load

More information

2.75 6.525 Problem Set 1 Solutions to ME problems Fall 2013

2.75 6.525 Problem Set 1 Solutions to ME problems Fall 2013 2.75 6.525 Problem Set 1 Solutions to ME problems Fall 2013 2. Pinned Joint problem Jacob Bayless a) Draw a free-body diagram for the pin. How is it loaded? Does the loading depend on whether the pin is

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information