Exam. Name. Find the number of subsets of the set. 1) {x x is an even number between 11 and 31} 2) {-13, 0, 13, 14, 15}
|
|
- Bennett Briggs
- 1 years ago
- Views:
Transcription
1 Exam Name Find the number of subsets of the set. 1) {x x is an even number between 11 and 31} 2) {-13, 0, 13, 1, 15} Let A = 6,, 1, 3, 0, 8, 9. Determine whether the statement is true or false. 3) 9 A ) 3 A Let A = {1, 3, 5, 7}; B = {5, 6, 7, 8}; C = {5, 8}; D = {2, 5, 8}; and U = {1, 2, 3,, 5, 6, 7, 8}. Determine whether the given statement is true or false. 5) B D 6) {0} U Decide whether the statement is true or false. 7) {13, 10, 6} {6, 13, 10} = {13, 6} 8) {3, 2, 13} = {3, 2, 13} Insert " " or " " in the blank to make the statement true. 9) {0, 6} {, 6} 10) {b, g, d} {b, g, d} Find the cardinal number of the indicated set by referring to the given table. 11) The table below shows the results of a poll taken in a U.S. city in which people are asked which candidate they intend to vote for in an upcoming presidential election. NonHispanic White (A) African Americ (C) Hispanic (B) Democrat (D) Republican (R) Other (O) Totals Find the number of people in the set D (B O) 12) The table below shows the results of a poll taken in a U.S. city in which people are asked which candidate they intend to vote for in an upcoming presidential election. NonHispanic White (A) African Americ (C) Hispanic (B) Democrat (D) Republican (R) Other (O) Totals Find the number of people in the set R' (A F) 1
2 Shade the Venn diagram to represent the set. 13) (A B C')' 20) A card is drawn from a well-shuffled deck of 52 cards. What is the probability of drawing a face card or a 5? 21) When a single card is drawn from a well-shuffled 52-card deck, find the probability of getting a red card. An experiment is conducted for which the sample space is S = {a, b, c, d}. Decide if the given probability assignment is possible for this experiment. If the assignment is not possible, tell why. Use a Venn diagram to answer the question. 1) A survey of 180 families showed that 67 had a dog; 52 had a cat; 22 had a dog and a cat; 70 had neither a cat nor a dog, and in addition did not have a parakeet; had a cat, a dog, and a parakeet. How many had a parakeet only? Use a Venn Diagram and the given information to determine the number of elements in the indicated region. 15) n(a) = 17, n(a B C) = 8, n(a C) = 12, n(a B') = 6, n(b C) = 15, n(b C') = 12, n(b C) = 32, n(a' B' C') = 10. Find n(a'). Find the probability of the given event. 16) A single fair die is rolled. The number on the die is prime. 17) Two fair dice are rolled. The sum of the numbers on the dice is 1 or 5. Find the probability. 18) Each digit from the number 6,727,887 is written on a different card. If one of these cards is selected at random, what is the probability of drawing a card that shows 6 or 8? 22) Find the odds. Outcomes Probabilities a 1/8 b 1/8 c 3/8 d 11/16 23) Find the odds in favor of rolling a number less than 3 when a fair die is rolled. 2) Find the odds in favor of drawing an even number when a card is drawn at random from the cards shown below. 25) Find the odds against correctly guessing the answer to a multiple choice question with 7 possible answers. Solve the problem. 26) The odds in favor of Jerome beating his friend in a round of golf are 1 :. Find the probability that Jerome will beat his friend. 27) The odds against Carl beating his friend in a round of golf are 9 : 2. Find the probability that Carl will lose. Find the indicated probability. 19) Each digit from the number 8,33,993 is written on a different card. If one of these cards is selected at random, what is the probability of drawing a card that shows 8, 3, or? 28) If you pick a card at random from a well shuffled deck, what is the probability that you get a face card or a spade? 29) Find the probability that the sum is either 10 or at most 3 when two fair dice are rolled. 2
3 Solve the problem. 30) Of the coffee makers sold in an appliance store, 5.0% have either a faulty switch or a defective cord, 1.8% have a faulty switch, and 0.5% have both defects. What is the probability that a coffee maker will have a defective cord? Express the answer as a percentage. 31) Among 170 households surveyed, 58 have a video camera, 5 have a snapshot camera, 23 have binoculars, have a video camera and a snapshot camera, 9 have a snapshot camera and binoculars, and 3 have all three products. What is the probability that a household will have a snapshot camera or binoculars? Express the answer as a fraction. Find the indicated probability. 32) Suppose one card is selected at random from an ordinary deck of 52 playing cards. Let A = event a queen is selected B = event a diamond is selected. Determine P(B A). 33) If two cards are drawn without replacement from an ordinary deck, find the probability that the second card is red, given that the first card was a heart. 3) If two cards are drawn without replacement from an ordinary deck, find the probability that the second card is an ace, given that the first card was an ace. 35) If a single fair die is rolled, find the probability of a given that the number rolled is odd. 36) If two fair dice are rolled, find the probability that the roll is a double given that the sum is ) Assume that two marbles are drawn without that the second marble is white, given that the first marble is blue. Use the given table to find the indicated probability. 38) The following table contains data from a study of two airlines which fly to Smalltown, USA. Number of flights arrived on time Number o arrived la Podunk Airlines 33 6 Upstate Airlines 3 5 If a flight is selected at random, what is the probability that it was on Upstate Airlines given that it arrived late? Find the probability. 39) If 80% of scheduled flights actually take place and cancellations are independent events, what is the probability that 3 separate flights will all take place? 0) A basketball player hits her shot 5% of the time. If she takes four shots during a game, what is the probability that she misses the first shot and hits the last three? Express the answer as a percentage, and round to the nearest tenth (if necessary). Assume independence of shots. Solve the problem. 1) The probability that a person passes a test on the first try is The probability that a person who fails the first test will pass on the second try is The probability that a person who fails the first and second tests will pass the third time is 0.6. Find the probability that a person fails the first and second tests and passes on the third try. 2) 52% of a store's computers come from factory A and the remainder come from factory B. 2% of computers from factory A are defective while 3% of computers from factory B are defective. If one of the store's computers is selected at random, what is the probability that it is defective and from factory B? 3
4 Find the indicated probability. 3) Assume that two marbles are drawn without that the first marble is white and the second marble is blue. ) You are dealt two cards successively (without replacement) from a shuffled deck of 52 playing cards. Find the probability that the first card is a king and the second card is a queen. 9) A company is conducting a sweepstakes, and ships two boxes of game pieces to a particular store. Box A has 5% of its contents being winners, while % of the contents of box B are winners. Box A contains 0% of the total tickets. The contents of both boxes are mixed in a drawer and a ticket is chosen at random. What is the probability it came from box A if it is a winner? 5) You are dealt two cards successively (without replacement) from a shuffled deck of 52 playing cards. Find the probability that both cards are black. 6) Assume that two marbles are drawn without that one marble is green, and one marble is red. Use Bayes' rule to find the indicated probability. 7) Two shipments of components were received by a factory and stored in two separate bins. Shipment I has 2% of its contents defective, while shipment II has 5% of its contents defective. If it is equally likely an employee will go to either bin and select a component randomly, what is the probability that a defective component came from shipment II? 8) In one town, 8% of year olds own a house, as do 2% of year olds and 5% of those over 50. According to a recent census taken in the town, 27.0% of adults in the town are years old, 36.5% are years old, and 36.5% are over 50. What percentage of house-owners are years old?
5 Answer Key Testname: 132-SET-PT 1) 102 2) 32 3) TRUE ) FALSE 5) TRUE 6) FALSE 7) FALSE 8) FALSE 9) 10) 11) 61 12) ) 29) ) 3.7% 31) ) ) ) ) 0 36) 0 37) 3 7 1) 13 15) 27 16) ) ) ) ) 13 38) ).51 0) 5% 1) ) ) 56 ) 5) 6) ) ) ) ) ) No; the sum of the probabilities is not 1 23) 1 to 2 2) 2 to 3 25) 6 : 1 26) ) )
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Practice Test Chapter 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the odds. ) Two dice are rolled. What are the odds against a sum
AP Stats - Probability Review
AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose
PROBABILITY 14.3. section. The Probability of an Event
4.3 Probability (4-3) 727 4.3 PROBABILITY In this section In the two preceding sections we were concerned with counting the number of different outcomes to an experiment. We now use those counting techniques
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Regular smoker
Exam Chapters 4&5 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 1) A 28-year-old man pays $181 for a one-year
6. Let X be a binomial random variable with distribution B(10, 0.6). What is the probability that X equals 8? A) (0.6) (0.4) B) 8! C) 45(0.6) (0.
Name: Date:. For each of the following scenarios, determine the appropriate distribution for the random variable X. A) A fair die is rolled seven times. Let X = the number of times we see an even number.
Question 31 38, worth 5 pts each for a complete solution, (TOTAL 40 pts) (Formulas, work
Exam Wk 6 Name Questions 1 30 are worth 2 pts each for a complete solution. (TOTAL 60 pts) (Formulas, work, or detailed explanation required.) Question 31 38, worth 5 pts each for a complete solution,
Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4?
Contemporary Mathematics- MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than
Determine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard.
Math 120 Practice Exam II Name You must show work for credit. 1) A pair of fair dice is rolled 50 times and the sum of the dots on the faces is noted. Outcome 2 4 5 6 7 8 9 10 11 12 Frequency 6 8 8 1 5
Find the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd.
Math 0 Practice Test 3 Fall 2009 Covers 7.5, 8.-8.3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. ) If a single
Probability. A random sample is selected in such a way that every different sample of size n has an equal chance of selection.
1 3.1 Sample Spaces and Tree Diagrams Probability This section introduces terminology and some techniques which will eventually lead us to the basic concept of the probability of an event. The Rare Event
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the mean for the given sample data. 1) Bill kept track of the number of hours he spent
(b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball.
Examples for Chapter 3 Probability Math 1040-1 Section 3.1 1. Draw a tree diagram for each of the following situations. State the size of the sample space. (a) You flip a coin three times. (b) You draw
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Ch. - Problems to look at Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability
https://assessment.casa.uh.edu/assessment/printtest.htm PRINTABLE VERSION Quiz 10
1 of 8 4/9/2013 8:17 AM PRINTABLE VERSION Quiz 10 Question 1 Let A and B be events in a sample space S such that P(A) = 0.34, P(B) = 0.39 and P(A B) = 0.19. Find P(A B). a) 0.4872 b) 0.5588 c) 0.0256 d)
Chapter 4 - Practice Problems 1
Chapter 4 - Practice Problems SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. ) Compare the relative frequency formula
Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR.
Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR. 1. Urn A contains 6 white marbles and 4 red marbles. Urn B contains 3 red marbles and two white
Remember to leave your answers as unreduced fractions.
Probability Worksheet 2 NAME: Remember to leave your answers as unreduced fractions. We will work with the example of picking poker cards out of a deck. A poker deck contains four suits: diamonds, hearts,
2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.
Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are
Math 210. 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. (e) None of the above.
Math 210 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. 2. Suppose that 80% of students taking calculus have previously had a trigonometry course. Of those that did, 75% pass their calculus
Section 6.2 Definition of Probability
Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will
Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 12-14 No Time Limit No Scratch Paper Calculator Allowed: Scientific
Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 12-14 No Time Limit No Scratch Paper Calculator Allowed: Scientific Name: The point value of each problem is in the left-hand margin. You
4.4 Conditional Probability
4.4 Conditional Probability It is often necessary to know the probability of an event under restricted conditions. Recall the results of a survey of 100 Grade 12 mathematics students in a local high school.
Definition and Calculus of Probability
In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the
Curriculum Design for Mathematic Lesson Probability
Curriculum Design for Mathematic Lesson Probability This curriculum design is for the 8th grade students who are going to learn Probability and trying to show the easiest way for them to go into this class.
AP STATISTICS TEST #2 - REVIEW - Ch. 14 &15 Period:
AP STATISTICS Name TEST #2 - REVIEW - Ch. 14 &15 Period: 1) The city council has 6 men and 3 women. If we randomly choose two of them to co-chair a committee, what is the probability these chairpersons
Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 www.math12.com
Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..
Ready, Set, Go! Math Games for Serious Minds
Math Games with Cards and Dice presented at NAGC November, 2013 Ready, Set, Go! Math Games for Serious Minds Rande McCreight Lincoln Public Schools Lincoln, Nebraska Math Games with Cards Close to 20 -
number of favorable outcomes total number of outcomes number of times event E occurred number of times the experiment was performed.
12 Probability 12.1 Basic Concepts Start with some Definitions: Experiment: Any observation of measurement of a random phenomenon is an experiment. Outcomes: Any result of an experiment is called an outcome.
Math 118 Study Guide. This study guide is for practice only. The actual question on the final exam may be different.
Math 118 Study Guide This study guide is for practice only. The actual question on the final exam may be different. Convert the symbolic compound statement into words. 1) p represents the statement "It's
The study of probability has increased in popularity over the years because of its wide range of practical applications.
6.7. Probability. The study of probability has increased in popularity over the years because of its wide range of practical applications. In probability, each repetition of an experiment is called a trial,
I. WHAT IS PROBABILITY?
C HAPTER 3 PROBABILITY Random Experiments I. WHAT IS PROBABILITY? The weatherman on 0 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and
Fundamentals of Probability
Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
STATISTICS/GRACEY PRACTICE TEST/EXAM 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Identify the given random variable as being discrete or continuous.
Hoover High School Math League. Counting and Probability
Hoover High School Math League Counting and Probability Problems. At a sandwich shop there are 2 kinds of bread, 5 kinds of cold cuts, 3 kinds of cheese, and 2 kinds of dressing. How many different sandwiches
Section 6-5 Sample Spaces and Probability
492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)
Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314
Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Ch. 4 Discrete Probability Distributions 4.1 Probability Distributions 1 Decide if a Random Variable is Discrete or Continuous 1) State whether the variable is discrete or continuous. The number of cups
The practice test follows this cover sheet. It is very similar to the real Chapter Test.
AP Stats Unit IV (Chapters 14-17) Take-Home Test Info The practice test follows this cover sheet. It is very similar to the real Chapter 14-17 Test. The real test will consist of 20 multiple-choice questions
Chapter 4 - Practice Problems 2
Chapter - Practice Problems 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. 1) If you flip a coin three times, the
2. Three dice are tossed. Find the probability of a) a sum of 4; or b) a sum greater than 4 (may use complement)
Probability Homework Section P4 1. A two-person committee is chosen at random from a group of four men and three women. Find the probability that the committee contains at least one man. 2. Three dice
Basic Probability Theory I
A Probability puzzler!! Basic Probability Theory I Dr. Tom Ilvento FREC 408 Our Strategy with Probability Generally, we want to get to an inference from a sample to a population. In this case the population
Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.
Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive
Chapter 5 - Practice Problems 1
Chapter 5 - Practice Problems 1 Identify the given random variable as being discrete or continuous. 1) The number of oil spills occurring off the Alaskan coast 1) A) Continuous B) Discrete 2) The ph level
FINAL EXAM REVIEW - Fa 13
FINAL EXAM REVIEW - Fa 13 Determine which of the four levels of measurement (nominal, ordinal, interval, ratio) is most appropriate. 1) The temperatures of eight different plastic spheres. 2) The sample
Basic concepts in probability. Sue Gordon
Mathematics Learning Centre Basic concepts in probability Sue Gordon c 2005 University of Sydney Mathematics Learning Centre, University of Sydney 1 1 Set Notation You may omit this section if you are
Study Guide and Review
State whether each sentence is or false. If false, replace the underlined term to make a sentence. 1. A tree diagram uses line segments to display possible outcomes. 2. A permutation is an arrangement
PROBABILITY. Thabisa Tikolo STATISTICS SOUTH AFRICA
PROBABILITY Thabisa Tikolo STATISTICS SOUTH AFRICA Probability is a topic that some educators tend to struggle with and thus avoid teaching it to learners. This is an indication that teachers are not yet
2.5 Conditional Probabilities and 2-Way Tables
2.5 Conditional Probabilities and 2-Way Tables Learning Objectives Understand how to calculate conditional probabilities Understand how to calculate probabilities using a contingency or 2-way table It
Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty
AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.
The Casino Lab STATION 1: CRAPS
The Casino Lab Casinos rely on the laws of probability and expected values of random variables to guarantee them profits on a daily basis. Some individuals will walk away very wealthy, while others will
Name Please Print MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Problems for Mid-Term 1, Fall 2012 (STA-120 Cal.Poly. Pomona) Name Please Print MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability that the result
A probability experiment is a chance process that leads to well-defined outcomes. 3) What is the difference between an outcome and an event?
Ch 4.2 pg.191~(1-10 all), 12 (a, c, e, g), 13, 14, (a, b, c, d, e, h, i, j), 17, 21, 25, 31, 32. 1) What is a probability experiment? A probability experiment is a chance process that leads to well-defined
Probability definitions
Probability definitions 1. Probability of an event = chance that the event will occur. 2. Experiment = any action or process that generates observations. In some contexts, we speak of a data-generating
PROBABILITY C A S I N O L A B
A P S T A T S A Fabulous PROBABILITY C A S I N O L A B AP Statistics Casino Lab 1 AP STATISTICS CASINO LAB: INSTRUCTIONS The purpose of this lab is to allow you to explore the rules of probability in the
Exam 2 Study Guide and Review Problems
Exam 2 Study Guide and Review Problems Exam 2 covers chapters 4, 5, and 6. You are allowed to bring one 3x5 note card, front and back, and your graphing calculator. Study tips: Do the review problems below.
AP Stats Fall Final Review Ch. 5, 6
AP Stats Fall Final Review 2015 - Ch. 5, 6 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails
Jan 17 Homework Solutions Math 151, Winter 2012. Chapter 2 Problems (pages 50-54)
Jan 17 Homework Solutions Math 11, Winter 01 Chapter Problems (pages 0- Problem In an experiment, a die is rolled continually until a 6 appears, at which point the experiment stops. What is the sample
6.1. Construct and Interpret Binomial Distributions. p Study probability distributions. Goal VOCABULARY. Your Notes.
6.1 Georgia Performance Standard(s) MM3D1 Your Notes Construct and Interpret Binomial Distributions Goal p Study probability distributions. VOCABULARY Random variable Discrete random variable Continuous
Factory example D MA ND 0 MB D ND
Bayes Theorem Now we look at how we can use information about conditional probabilities to calculate reverse conditional probabilities i.e., how we calculate ( A B when we know ( B A (and some other things.
Lab 11. Simulations. The Concept
Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that
Exam. Name. How many distinguishable permutations of letters are possible in the word? 1) CRITICS
Exam Name How many distinguishable permutations of letters are possible in the word? 1) CRITICS 2) GIGGLE An order of award presentations has been devised for seven people: Jeff, Karen, Lyle, Maria, Norm,
Prestatistics. Review #3. Find the square root. 1) 144 A) 72 B) -12 C) 12 D) Not a real number. 2) A) -312 B) 25 C) -25 D) Not a real number
Prestatistics Review #3 Find the square root. 1) 144 A) 72 B) -12 C) 12 D) Not a real number 2) - 625 A) -312 B) 25 C) -25 D) Not a real number 3) 0.25 A) 0.005 B) 0.05 C) 5 D) 0.5 Find the cube root.
Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes
Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all
8.3 Probability Applications of Counting Principles
8. Probability Applications of Counting Principles In this section, we will see how we can apply the counting principles from the previous two sections in solving probability problems. Many of the probability
Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.
Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers
8. You have three six-sided dice (one red, one green, and one blue.) The numbers of the dice are
Probability Warm up problem. Alice and Bob each pick, at random, a real number between 0 and 10. Call Alice s number A and Bob s number B. The is the probability that A B? What is the probability that
Conditional Probability and General Multiplication Rule
Conditional Probability and General Multiplication Rule Objectives: - Identify Independent and dependent events - Find Probability of independent events - Find Probability of dependent events - Find Conditional
Statistics 100A Homework 2 Solutions
Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6
Math 3C Homework 3 Solutions
Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada ilhwanjo@math.ucla.edu, akashiwada@ucla.edu Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard
1. General...3. 2. Black Jack...5. 3. Double Deck Black Jack...13. 4. Free Bet Black Jack...20. 5. Craps...28. 6. Craps Free Craps...
Table of Contents Sec Title Page # 1. General...3 2. Black Jack...5 3. Double Deck Black Jack...13 4. Free Bet Black Jack...20 5. Craps...28 6. Craps Free Craps...36 7. Roulette...43 8. Poker...49 9. 3-Card
Bayesian Tutorial (Sheet Updated 20 March)
Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that
Math 150 Sample Exam #2
Problem 1. (16 points) TRUE or FALSE. a. 3 die are rolled, there are 1 possible outcomes. b. If two events are complementary, then they are mutually exclusive events. c. If A and B are two independent
Chapter 20: chance error in sampling
Chapter 20: chance error in sampling Context 2 Overview................................................................ 3 Population and parameter..................................................... 4
Worldwide Casino Consulting Inc.
Card Count Exercises George Joseph The first step in the study of card counting is the recognition of those groups of cards known as Plus, Minus & Zero. It is important to understand that the House has
Ch. 13.2: Mathematical Expectation
Ch. 13.2: Mathematical Expectation Random Variables Very often, we are interested in sample spaces in which the outcomes are distinct real numbers. For example, in the experiment of rolling two dice, we
Statistical Inference. Prof. Kate Calder. If the coin is fair (chance of heads = chance of tails) then
Probability Statistical Inference Question: How often would this method give the correct answer if I used it many times? Answer: Use laws of probability. 1 Example: Tossing a coin If the coin is fair (chance
STAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia
STAT 319 robability and Statistics For Engineers LECTURE 03 ROAILITY Engineering College, Hail University, Saudi Arabia Overview robability is the study of random events. The probability, or chance, that
Probability and Venn diagrams UNCORRECTED PAGE PROOFS
Probability and Venn diagrams 12 This chapter deals with further ideas in chance. At the end of this chapter you should be able to: identify complementary events and use the sum of probabilities to solve
Chapter 5 A Survey of Probability Concepts
Chapter 5 A Survey of Probability Concepts True/False 1. Based on a classical approach, the probability of an event is defined as the number of favorable outcomes divided by the total number of possible
PROBABILITY. SIMPLE PROBABILITY is the likelihood that a specific event will occur, represented by a number between 0 and 1.
PROBABILITY SIMPLE PROBABILITY SIMPLE PROBABILITY is the likelihood that a specific event will occur, represented by a number between 0 and. There are two categories of simple probabilities. THEORETICAL
UNDERGROUND TONK LEAGUE
UNDERGROUND TONK LEAGUE WWW.TONKOUT.COM RULES Players are dealt (5) five cards to start. Player to left of dealer has first play. Player must draw a card from the deck or Go For Low. If a player draws
Probability of Compound Events
Probability of Compound Events Why? Then You calculated simple probability. (Lesson 0-11) Now Find probabilities of independent and dependent events. Find probabilities of mutually exclusive events. Online
Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University
Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments
14.4. Expected Value Objectives. Expected Value
. Expected Value Objectives. Understand the meaning of expected value. 2. Calculate the expected value of lotteries and games of chance.. Use expected value to solve applied problems. Life and Health Insurers
The game of roulette is played by throwing a small ball onto a rotating wheel with thirty seven numbered sectors.
LIVE ROULETTE The game of roulette is played by throwing a small ball onto a rotating wheel with thirty seven numbered sectors. The ball stops on one of these sectors. The aim of roulette is to predict
Quiz CHAPTER 16 NAME: UNDERSTANDING PROBABILITY AND LONG- TERM EXPECTATIONS
Quiz CHAPTER 16 NAME: UNDERSTANDING PROBABILITY AND LONG- TERM EXPECTATIONS 1. Give two examples of ways that we speak about probability in our every day lives. NY REASONABLE ANSWER OK. EXAMPLES: 1) WHAT
Probability OPRE 6301
Probability OPRE 6301 Random Experiment... Recall that our eventual goal in this course is to go from the random sample to the population. The theory that allows for this transition is the theory of probability.
Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay
QuestionofDay Question of the Day What is the probability that in a family with two children, both are boys? What is the probability that in a family with two children, both are boys, if we already know
Section 6.1 Discrete Random variables Probability Distribution
Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values
Homework 20: Compound Probability
Homework 20: Compound Probability Definition The probability of an event is defined to be the ratio of times that you expect the event to occur after many trials: number of equally likely outcomes resulting
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Final Exam Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A researcher for an airline interviews all of the passengers on five randomly
STAT 201 INTRODUCTION TO BUSINESS STATISTICS PROBABILITY REVIEW QUESTIONS
STAT 201 INTRODUCTION TO BUSINESS STATISTICS PROBABILITY REVIEW QUESTIONS Question 1: Five standard six-sided dice are rolled. What is the probability of getting the same number on all five dice? The probability
CONDITIONAL PROBABILITY AND TWO-WAY TABLES
CONDITIONAL PROBABILITY AND 7.2. 7.2.3 TWO-WAY TABLES The probability of one event occurring, knowing that another event has already occurred is called a conditional probability. Two-way tables are useful
Topic : Probability of a Complement of an Event- Worksheet 1. Do the following:
Topic : Probability of a Complement of an Event- Worksheet 1 1. You roll a die. What is the probability that 2 will not appear 2. Two 6-sided dice are rolled. What is the 3. Ray and Shan are playing football.
Math Games For Skills and Concepts
Math Games p.1 Math Games For Skills and Concepts Original material 2001-2006, John Golden, GVSU permission granted for educational use Other material copyright: Investigations in Number, Data and Space,
Stat 20: Intro to Probability and Statistics
Stat 20: Intro to Probability and Statistics Lecture 16: More Box Models Tessa L. Childers-Day UC Berkeley 22 July 2014 By the end of this lecture... You will be able to: Determine what we expect the sum
Probability & Probability Distributions
Probability & Probability Distributions Carolyn J. Anderson EdPsych 580 Fall 2005 Probability & Probability Distributions p. 1/61 Probability & Probability Distributions Elementary Probability Theory Definitions
CHAPTER 3: PROBABILITY TOPICS
CHAPTER 3: PROBABILITY TOPICS Exercise 1. In a particular college class, there are male and female students. Some students have long hair and some students have short hair. Write the symbols for the probabilities