Question 1 Question 2 Question 3 Question 4 Question 5 Question 6. Math 144 tutorial April, 2010
|
|
|
- Andrea Clarke
- 9 years ago
- Views:
Transcription
1 Math 144 tutorial 7 12 April, 2010
2 1. Let us define S 2 = 1 n n i=1 (X i X) 2. Show that E(S 2 ) = n 1 n σ2.
3 1. Let us define S 2 = 1 n n i=1 (X i X) 2. Show that E(S 2 ) = n 1 n σ2.
4 1. Let us define S 2 = 1 n n i=1 (X i X) 2. Show that E(S 2 ) = n 1 n σ2. This result also indicate that S 2 is a biased estimator of the σ 2.
5 2. If X is a binomial random variable, show that (a). ˆp = X/n is an unbiased estimator of p; (b). p = X+ n/2 n+ n is a biased estimator of p; (c). Show that the estimator p becomes unbiased as n.
6 2. If X is a binomial random variable, show that (a). ˆp = X/n is an unbiased estimator of p; (b). p = X+ n/2 n+ n is a biased estimator of p; (c). Show that the estimator p becomes unbiased as n. Solution: (a). Since E[ˆp] = E[X]/n = np/n = p, this shows that ˆp is an unbiased estimator of p. (b). E[p ] = E[X]+ n/2 n+ n = np+ n/2 n+ n p. (c). np + n/2 lim n n + n p = lim n 1 + n/n + lim 1 n 2(1 + n) = p.
7 3. An electrical firm manufactures light bulbs that have a length of life that is approximately normally distributed with a standard deviation of 40 hours. If a sample of 30 bulbs has an average life of 780 hours. (a). Find a 96% confidence interval for population mean of all bulbs produced by this firm; (b). How large a sample is needed if we wish to be 96% confident that our sample mean will be within 10 hours of the true mean?
8 3. An electrical firm manufactures light bulbs that have a length of life that is approximately normally distributed with a standard deviation of 40 hours. If a sample of 30 bulbs has an average life of 780 hours. (a). Find a 96% confidence interval for population mean of all bulbs produced by this firm; (b). How large a sample is needed if we wish to be 96% confident that our sample mean will be within 10 hours of the true mean? Solution: The sample mean x is 780, and the standard deviation of population is 40, using the Normal table, we can get z 0.02 = Hence the 96% confidence interval for µ is [ x z 0.02 ( σ 30 ), x + z 0.02 ( σ 30 )] = [ , ]. (b). We can be 96% confident that this error will less than z α/2 ( s n ), i.e, n = ( z e ) 2 = Therefore, a sample with size 68 is needed if we wish be 96% confident that our sample mean will be within 10 hours of the true mean.
9 4. Many cardiac patients wear implanted pacemakers to control their hear-beat. A plastic connector module mounts on the top of the pacemaker. Assuming a standard deviation of and an approximate normal distribution, (a). Find a 95% confidence interval for the mean of all connector modules made by a certain manufacturing company. A random sample of 75 modules has an average of inch. (b). How large a sample is needed if we wish to be 95% confident that our sample mean will be within inch of true mean?
10 (b). n = ( z ) 2 = That is, a sample with size 35 is needed if we wish to be 95% confident that our sample mean will be within inch of true mean. 4. Many cardiac patients wear implanted pacemakers to control their hear-beat. A plastic connector module mounts on the top of the pacemaker. Assuming a standard deviation of and an approximate normal distribution, (a). Find a 95% confidence interval for the mean of all connector modules made by a certain manufacturing company. A random sample of 75 modules has an average of inch. (b). How large a sample is needed if we wish to be 95% confident that our sample mean will be within inch of true mean? Solution (a). From the problem, we obtain n = 75, x = 0.310, σ = , hence the 95% confidence interval for the mean of all modules is: [0.310 z ( ), z ( )] = [ , ]
11 5.The heights of a random sample of 50 college students showed a mean of centimeters and a standard deviation of 6.9 centimeters. (a). Construct a 98% confidence interval for the mean height of all college students. (b). What can we assert with 98% confidence about the possible size of our error it we estimate the mean height of all college students to be centimeters?
12 5.The heights of a random sample of 50 college students showed a mean of centimeters and a standard deviation of 6.9 centimeters. (a). Construct a 98% confidence interval for the mean height of all college students. (b). What can we assert with 98% confidence about the possible size of our error it we estimate the mean height of all college students to be centimeters? Solution: Because standard deviation of the population is unknown, so we should use the t distribution: (a). Because s = 6.9, x = 174.5, n = 50, so 98% confidence interval for the mean height of all college students is: [174.5.t 0.01,49 ( ), t 0.01,49 ( )] = [ , ]. (b). We can be 98% confident that this error will less than t α/2 ( s n ), i.e, e t 0.01,49 ( ) =
13 6. A random sample of 100 automobile owners shows that, in the state of Virginia, an automobile is driven on the average 23,500 kilometers per year with a standard deviation of 3900 kilometers. Assume the distribution of measurements to be approximately normal. (a). Construct a 99% confidence interval for the average number of kilometers an automobile is driven annually in Virginia. (b). What can we assert with 99% confidence about the possible size of our error if we estimate the average number of kilometers driven by car owners in Virginia to be 23,500 kilometers per year?
14 6. A random sample of 100 automobile owners shows that, in the state of Virginia, an automobile is driven on the average 23,500 kilometers per year with a standard deviation of 3900 kilometers. Assume the distribution of measurements to be approximately normal. (a). Construct a 99% confidence interval for the average number of kilometers an automobile is driven annually in Virginia. (b). What can we assert with 99% confidence about the possible size of our error if we estimate the average number of kilometers driven by car owners in Virginia to be 23,500 kilometers per year? Solution: (a). We use the t distribution, x = 23500, s = 3900, n = 100, then the 99% confidence interval for population mean µ is: [23500 t 0.005,99 ( ), t 0.005,99 ( )] = [ , ]. (b). e t 0.005,99 ( ) =
The problems of first TA class of Math144
The problems of first TA class of Math144 T eaching Assistant : Liu Zhi Date : F riday, F eb 2, 27 Q1. According to the journal Chemical Engineering, an important property of a fiber is its water absorbency.
Chapter 6: Point Estimation. Fall 2011. - Probability & Statistics
STAT355 Chapter 6: Point Estimation Fall 2011 Chapter Fall 2011 6: Point1 Estimat / 18 Chap 6 - Point Estimation 1 6.1 Some general Concepts of Point Estimation Point Estimate Unbiasedness Principle of
0 x = 0.30 x = 1.10 x = 3.05 x = 4.15 x = 6 0.4 x = 12. f(x) =
. A mail-order computer business has si telephone lines. Let X denote the number of lines in use at a specified time. Suppose the pmf of X is as given in the accompanying table. 0 2 3 4 5 6 p(.0.5.20.25.20.06.04
2 Binomial, Poisson, Normal Distribution
2 Binomial, Poisson, Normal Distribution Binomial Distribution ): We are interested in the number of times an event A occurs in n independent trials. In each trial the event A has the same probability
Practice Midterm Exam #2
The Islamic University of Gaza Faculty of Engineering Department of Civil Engineering 12/12/2009 Statistics and Probability for Engineering Applications 9.2 X is a binomial random variable, show that (
Point and Interval Estimates
Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number
MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...
MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................
The Math. P (x) = 5! = 1 2 3 4 5 = 120.
The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) ±1.88 B) ±1.645 C) ±1.96 D) ±2.
Ch. 6 Confidence Intervals 6.1 Confidence Intervals for the Mean (Large Samples) 1 Find a Critical Value 1) Find the critical value zc that corresponds to a 94% confidence level. A) ±1.88 B) ±1.645 C)
Math 151. Rumbos Spring 2014 1. Solutions to Assignment #22
Math 151. Rumbos Spring 2014 1 Solutions to Assignment #22 1. An experiment consists of rolling a die 81 times and computing the average of the numbers on the top face of the die. Estimate the probability
BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420
BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test
1. Let A, B and C are three events such that P(A) = 0.45, P(B) = 0.30, P(C) = 0.35,
1. Let A, B and C are three events such that PA =.4, PB =.3, PC =.3, P A B =.6, P A C =.6, P B C =., P A B C =.7. a Compute P A B, P A C, P B C. b Compute P A B C. c Compute the probability that exactly
Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 5 Solutions
Math 370/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 5 Solutions About this problem set: These are problems from Course 1/P actuarial exams that I have collected over the
Module 2 Probability and Statistics
Module 2 Probability and Statistics BASIC CONCEPTS Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The standard deviation of a standard normal distribution
Population Mean (Known Variance)
Confidence Intervals Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Population Mean (Known Variance) 1. A random sample of n measurements was selected from a population with
BINOMIAL DISTRIBUTION
MODULE IV BINOMIAL DISTRIBUTION A random variable X is said to follow binomial distribution with parameters n & p if P ( X ) = nc x p x q n x where x = 0, 1,2,3..n, p is the probability of success & q
An Introduction to Basic Statistics and Probability
An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random
Math 425 (Fall 08) Solutions Midterm 2 November 6, 2008
Math 425 (Fall 8) Solutions Midterm 2 November 6, 28 (5 pts) Compute E[X] and Var[X] for i) X a random variable that takes the values, 2, 3 with probabilities.2,.5,.3; ii) X a random variable with the
2. Discrete random variables
2. Discrete random variables Statistics and probability: 2-1 If the chance outcome of the experiment is a number, it is called a random variable. Discrete random variable: the possible outcomes can be
Problem Solving and Data Analysis
Chapter 20 Problem Solving and Data Analysis The Problem Solving and Data Analysis section of the SAT Math Test assesses your ability to use your math understanding and skills to solve problems set in
Practice problems for Homework 11 - Point Estimation
Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:
Chapter 4. iclicker Question 4.4 Pre-lecture. Part 2. Binomial Distribution. J.C. Wang. iclicker Question 4.4 Pre-lecture
Chapter 4 Part 2. Binomial Distribution J.C. Wang iclicker Question 4.4 Pre-lecture iclicker Question 4.4 Pre-lecture Outline Computing Binomial Probabilities Properties of a Binomial Distribution Computing
Math 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2
Math 58. Rumbos Fall 2008 1 Solutions to Review Problems for Exam 2 1. For each of the following scenarios, determine whether the binomial distribution is the appropriate distribution for the random variable
Math 431 An Introduction to Probability. Final Exam Solutions
Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <
New Car $16,000 5 yr. payments Car note 266.70/month. New Car $30,000 5 yr. payments Car note $500./month Car insurance $250/month Gasoline $75/week
Gasoline $75/week Car insurance $250/month Gasoline $75/week Car insurance $250/month Car insurance $250/month Gasoline $90/week Gasoline $60/week Car insurance $80/month Car insurance $250/month Car insurance
Important Probability Distributions OPRE 6301
Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.
Chapter 15 Binomial Distribution Properties
Chapter 15 Binomial Distribution Properties Two possible outcomes (success and failure) A fixed number of experiments (trials) The probability of success, denoted by p, is the same on every trial The trials
Math 202-0 Quizzes Winter 2009
Quiz : Basic Probability Ten Scrabble tiles are placed in a bag Four of the tiles have the letter printed on them, and there are two tiles each with the letters B, C and D on them (a) Suppose one tile
University of Chicago Graduate School of Business. Business 41000: Business Statistics
Name: University of Chicago Graduate School of Business Business 41000: Business Statistics Special Notes: 1. This is a closed-book exam. You may use an 8 11 piece of paper for the formulas. 2. Throughout
Name: Date: Use the following to answer questions 3-4:
Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin
Need for Sampling. Very large populations Destructive testing Continuous production process
Chapter 4 Sampling and Estimation Need for Sampling Very large populations Destructive testing Continuous production process The objective of sampling is to draw a valid inference about a population. 4-
table to see that the probability is 0.8413. (b) What is the probability that x is between 16 and 60? The z-scores for 16 and 60 are: 60 38 = 1.
Review Problems for Exam 3 Math 1040 1 1. Find the probability that a standard normal random variable is less than 2.37. Looking up 2.37 on the normal table, we see that the probability is 0.9911. 2. Find
Ch. 6.1 #7-49 odd. The area is found by looking up z= 0.75 in Table E and subtracting 0.5. Area = 0.7734-0.5= 0.2734
Ch. 6.1 #7-49 odd The area is found by looking up z= 0.75 in Table E and subtracting 0.5. Area = 0.7734-0.5= 0.2734 The area is found by looking up z= 2.07 in Table E and subtracting from 0.5. Area = 0.5-0.0192
5.1 Identifying the Target Parameter
University of California, Davis Department of Statistics Summer Session II Statistics 13 August 20, 2012 Date of latest update: August 20 Lecture 5: Estimation with Confidence intervals 5.1 Identifying
Chapter 8 Section 1. Homework A
Chapter 8 Section 1 Homework A 8.7 Can we use the large-sample confidence interval? In each of the following circumstances state whether you would use the large-sample confidence interval. The variable
In the general population of 0 to 4-year-olds, the annual incidence of asthma is 1.4%
Hypothesis Testing for a Proportion Example: We are interested in the probability of developing asthma over a given one-year period for children 0 to 4 years of age whose mothers smoke in the home In the
Stat 104: Quantitative Methods for Economists. Study Guide Solutions, part 2
Stat 104: Quantitative Methods for Economists Study Guide Solutions, part 2 1) The table below shows, for credit card holders with one to three cards, the joint probabilities for number of cards owned
Notes on Continuous Random Variables
Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes
Binomial random variables
Binomial and Poisson Random Variables Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Binomial random variables 1. A certain coin has a 5% of landing heads, and a 75% chance
Math 108 Exam 3 Solutions Spring 00
Math 108 Exam 3 Solutions Spring 00 1. An ecologist studying acid rain takes measurements of the ph in 12 randomly selected Adirondack lakes. The results are as follows: 3.0 6.5 5.0 4.2 5.5 4.7 3.4 6.8
Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density
HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,
Math 201: Statistics November 30, 2006
Math 201: Statistics November 30, 2006 Fall 2006 MidTerm #2 Closed book & notes; only an A4-size formula sheet and a calculator allowed; 90 mins. No questions accepted! Instructions: There are eleven pages
Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution
Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.
Adverse Impact Ratio for Females (0/ 1) = 0 (5/ 17) = 0.2941 Adverse impact as defined by the 4/5ths rule was not found in the above data.
1 of 9 12/8/2014 12:57 PM (an On-Line Internet based application) Instructions: Please fill out the information into the form below. Once you have entered your data below, you may select the types of analysis
STAT 3502. x 0 < x < 1
Solution - Assignment # STAT 350 Total mark=100 1. A large industrial firm purchases several new word processors at the end of each year, the exact number depending on the frequency of repairs in the previous
Chapter 5. Random variables
Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like
List of Examples. Examples 319
Examples 319 List of Examples DiMaggio and Mantle. 6 Weed seeds. 6, 23, 37, 38 Vole reproduction. 7, 24, 37 Wooly bear caterpillar cocoons. 7 Homophone confusion and Alzheimer s disease. 8 Gear tooth strength.
Review. March 21, 2011. 155S7.1 2_3 Estimating a Population Proportion. Chapter 7 Estimates and Sample Sizes. Test 2 (Chapters 4, 5, & 6) Results
MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 7 Estimates and Sample Sizes 7 1 Review and Preview 7 2 Estimating a Population Proportion 7 3 Estimating a Population
Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
2 ESTIMATION. Objectives. 2.0 Introduction
2 ESTIMATION Chapter 2 Estimation Objectives After studying this chapter you should be able to calculate confidence intervals for the mean of a normal distribution with unknown variance; be able to calculate
WHERE DOES THE 10% CONDITION COME FROM?
1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay
The Binomial Probability Distribution
The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability
4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
Simple Random Sampling
Source: Frerichs, R.R. Rapid Surveys (unpublished), 2008. NOT FOR COMMERCIAL DISTRIBUTION 3 Simple Random Sampling 3.1 INTRODUCTION Everyone mentions simple random sampling, but few use this method for
STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE
STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about
CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.
Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,
Lecture 14. Chapter 7: Probability. Rule 1: Rule 2: Rule 3: Nancy Pfenning Stats 1000
Lecture 4 Nancy Pfenning Stats 000 Chapter 7: Probability Last time we established some basic definitions and rules of probability: Rule : P (A C ) = P (A). Rule 2: In general, the probability of one event
Specifications for this HLM2 run
One way ANOVA model 1. How much do U.S. high schools vary in their mean mathematics achievement? 2. What is the reliability of each school s sample mean as an estimate of its true population mean? 3. Do
Math 251, Review Questions for Test 3 Rough Answers
Math 251, Review Questions for Test 3 Rough Answers 1. (Review of some terminology from Section 7.1) In a state with 459,341 voters, a poll of 2300 voters finds that 45 percent support the Republican candidate,
SOME ASPECTS OF GAMBLING WITH THE KELLY CRITERION. School of Mathematical Sciences. Monash University, Clayton, Victoria, Australia 3168
SOME ASPECTS OF GAMBLING WITH THE KELLY CRITERION Ravi PHATARFOD School of Mathematical Sciences Monash University, Clayton, Victoria, Australia 3168 In this paper we consider the problem of gambling with
Normal Distribution as an Approximation to the Binomial Distribution
Chapter 1 Student Lecture Notes 1-1 Normal Distribution as an Approximation to the Binomial Distribution : Goals ONE TWO THREE 2 Review Binomial Probability Distribution applies to a discrete random variable
M 1313 Review Test 4 1
M 1313 Review Test 4 1 Review for test 4: 1. Let E and F be two events of an experiment, P (E) =. 3 and P (F) =. 2, and P (E F) =.35. Find the following probabilities: a. P(E F) b. P(E c F) c. P (E F)
6. Decide which method of data collection you would use to collect data for the study (observational study, experiment, simulation, or survey):
MATH 1040 REVIEW (EXAM I) Chapter 1 1. For the studies described, identify the population, sample, population parameters, and sample statistics: a) The Gallup Organization conducted a poll of 1003 Americans
Chapter 7 Review. Confidence Intervals. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Chapter 7 Review Confidence Intervals MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Suppose that you wish to obtain a confidence interval for
BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394
BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete
MAS2317/3317. Introduction to Bayesian Statistics. More revision material
MAS2317/3317 Introduction to Bayesian Statistics More revision material Dr. Lee Fawcett, 2014 2015 1 Section A style questions 1. Describe briefly the frequency, classical and Bayesian interpretations
MATH 110 Automotive Worksheet #4
MATH 110 Automotive Worksheet #4 Ratios The math name for a fraction is ratio. It is just a comparison of one quantity with another quantity that is similar. As an automotive technician, you will use ratios
STAT 200 QUIZ 2 Solutions Section 6380 Fall 2013
STAT 200 QUIZ 2 Solutions Section 6380 Fall 2013 The quiz covers Chapters 4, 5 and 6. 1. (8 points) If the IQ scores are normally distributed with a mean of 100 and a standard deviation of 15. (a) (3 pts)
Binomial random variables (Review)
Poisson / Empirical Rule Approximations / Hypergeometric Solutions STAT-UB.3 Statistics for Business Control and Regression Models Binomial random variables (Review. Suppose that you are rolling a die
Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X
Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chi-squared distributions, normal approx'n to the binomial Uniform [,1] random
Chapter 4 Statistical Inference in Quality Control and Improvement. Statistical Quality Control (D. C. Montgomery)
Chapter 4 Statistical Inference in Quality Control and Improvement 許 湘 伶 Statistical Quality Control (D. C. Montgomery) Sampling distribution I a random sample of size n: if it is selected so that the
Opgaven Onderzoeksmethoden, Onderdeel Statistiek
Opgaven Onderzoeksmethoden, Onderdeel Statistiek 1. What is the measurement scale of the following variables? a Shoe size b Religion c Car brand d Score in a tennis game e Number of work hours per week
Generalized Linear Models
Generalized Linear Models We have previously worked with regression models where the response variable is quantitative and normally distributed. Now we turn our attention to two types of models where the
Probability Distributions
Learning Objectives Probability Distributions Section 1: How Can We Summarize Possible Outcomes and Their Probabilities? 1. Random variable 2. Probability distributions for discrete random variables 3.
Lecture 8. Confidence intervals and the central limit theorem
Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of
Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 2 Solutions
Math 70/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 2 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,
NoteBox NoteBox with room for 16 tablets
NoteBox NoteBox with room for 16 tablets NoteBox is a storage unit that can hold up to 16 tablets. The 16 tablets are stored horizontally and are well protected by the foam inserts. The cables are secured
Measurement: Converting Distances
Measurement: Converting Distances Measuring Distances Measuring distances is done by measuring length. You may use a different system to measure length differently than other places in the world. This
Ź Ź ł ź Ź ś ź ł ź Ś ę ż ż ł ż ż Ż Ś ę Ż Ż ę ś ź ł Ź ł ł ż ż ź ż ż Ś ę ż ż Ź Ł Ż Ż Ą ż ż ę ź Ń Ź ś ł ź ż ł ś ź ź Ą ć ś ś Ź Ś ę ę ć ż Ź Ą Ń Ą ł ć ć ł ł ź ę Ś ę ś ę ł ś ć ź ś ł ś ł ł ł ł ć ć Ś ł ź Ś ł
ECE302 Spring 2006 HW3 Solutions February 2, 2006 1
ECE302 Spring 2006 HW3 Solutions February 2, 2006 1 Solutions to HW3 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in
Answers: a. 87.5325 to 92.4675 b. 87.06 to 92.94
1. The average monthly electric bill of a random sample of 256 residents of a city is $90 with a standard deviation of $24. a. Construct a 90% confidence interval for the mean monthly electric bills of
Draft 1, Attempted 2014 FR Solutions, AP Statistics Exam
Free response questions, 2014, first draft! Note: Some notes: Please make critiques, suggest improvements, and ask questions. This is just one AP stats teacher s initial attempts at solving these. I, as
BUS/ST 350 Exam 3 Spring 2012
BUS/ST 350 Exam 3 Spring 2012 Name Lab Section ID # INSTRUCTIONS: Write your name, lab section #, and ID# above. Note the statement at the bottom of this page that you must sign when you are finished with
STATISTICS 8, FINAL EXAM. Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4
STATISTICS 8, FINAL EXAM NAME: KEY Seat Number: Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4 Make sure you have 8 pages. You will be provided with a table as well, as a separate
Chapter 7 - Practice Problems 1
Chapter 7 - Practice Problems 1 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 1) Define a point estimate. What is the
5/31/2013. Chapter 8 Hypothesis Testing. Hypothesis Testing. Hypothesis Testing. Outline. Objectives. Objectives
C H 8A P T E R Outline 8 1 Steps in Traditional Method 8 2 z Test for a Mean 8 3 t Test for a Mean 8 4 z Test for a Proportion 8 6 Confidence Intervals and Copyright 2013 The McGraw Hill Companies, Inc.
Quantitative Methods for Finance
Quantitative Methods for Finance Module 1: The Time Value of Money 1 Learning how to interpret interest rates as required rates of return, discount rates, or opportunity costs. 2 Learning how to explain
Chapter 19 The Chi-Square Test
Tutorial for the integration of the software R with introductory statistics Copyright c Grethe Hystad Chapter 19 The Chi-Square Test In this chapter, we will discuss the following topics: We will plot
MAT 155. Key Concept. September 27, 2010. 155S5.5_3 Poisson Probability Distributions. Chapter 5 Probability Distributions
MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 5 Probability Distributions 5 1 Review and Preview 5 2 Random Variables 5 3 Binomial Probability Distributions 5 4 Mean, Variance and Standard
Normal distribution. ) 2 /2σ. 2π σ
Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a
東 海 大 學 資 訊 工 程 研 究 所 碩 士 論 文
東 海 大 學 資 訊 工 程 研 究 所 碩 士 論 文 指 導 教 授 楊 朝 棟 博 士 以 網 路 功 能 虛 擬 化 實 作 網 路 即 時 流 量 監 控 服 務 研 究 生 楊 曜 佑 中 華 民 國 一 零 四 年 五 月 摘 要 與 的 概 念 一 同 發 展 的, 是 指 利 用 虛 擬 化 的 技 術, 將 現 有 的 網 路 硬 體 設 備, 利 用 軟 體 來 取 代 其
2.6. Probability. In general the probability density of a random variable satisfies two conditions:
2.6. PROBABILITY 66 2.6. Probability 2.6.. Continuous Random Variables. A random variable a real-valued function defined on some set of possible outcomes of a random experiment; e.g. the number of points
Stats Review Chapters 9-10
Stats Review Chapters 9-10 Created by Teri Johnson Math Coordinator, Mary Stangler Center for Academic Success Examples are taken from Statistics 4 E by Michael Sullivan, III And the corresponding Test
Ďě Ž ť č ď ť ď ú ď ť ě Ě ň Ě ě ú ň ž ú ú Ú ú ú Ě ň é é ž ú ž Ť Ť Ť ú ň Ď ú ň ď Ě ú É ž ř ú ě ň ý Ě ň ý ň ň Ť ř ď ř ň ú Ť ě ř ě ý Š Ú Ú ň ň ú Ó Ú ň Ň Ů ž ú ň Č ř ř ú É ě ň ú Ž ý ú ú Ú Ú ť ž ž ď ý ž ď ž
Example 1: Dear Abby. Stat Camp for the Full-time MBA Program
Stat Camp for the Full-time MBA Program Daniel Solow Lecture 4 The Normal Distribution and the Central Limit Theorem 188 Example 1: Dear Abby You wrote that a woman is pregnant for 266 days. Who said so?
Tests of Hypotheses Using Statistics
Tests of Hypotheses Using Statistics Adam Massey and Steven J. Miller Mathematics Department Brown University Providence, RI 0292 Abstract We present the various methods of hypothesis testing that one
4. Simple regression. QBUS6840 Predictive Analytics. https://www.otexts.org/fpp/4
4. Simple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/4 Outline The simple linear model Least squares estimation Forecasting with regression Non-linear functional forms Regression
The normal approximation to the binomial
The normal approximation to the binomial In order for a continuous distribution (like the normal) to be used to approximate a discrete one (like the binomial), a continuity correction should be used. There
