Example 1: Dear Abby. Stat Camp for the Fulltime MBA Program


 Dominick Stephens
 1 years ago
 Views:
Transcription
1 Stat Camp for the Fulltime MBA Program Daniel Solow Lecture 4 The Normal Distribution and the Central Limit Theorem 188 Example 1: Dear Abby You wrote that a woman is pregnant for 266 days. Who said so? I carried my baby for ten months and five days, and there is no doubt about it because I know the exact date my baby was conceived. My husband is in the Navy and it couldn t possibly have been any other time because I saw him only once for an hour, and I didn t see him again until the day before the baby was born. I don t drink or run around, and there is no way this baby isn t his, so please print a retraction about the 266day carrying time because otherwise I am in a lot of trouble. San Diego Reader 189 Dear Abby Step 1: Identify an appropriate random variable. Y = number of days of pregnancy What are the possible values for Y? About ? What is the density function for Y???? Prob. Density Days Idea: Approximate the density of Y with a normal! 190 Dear Abby Question: If you are going to use a normal approximation, what information do you need? Answer: The mean and standard deviation. Fact: According to the collective experience of generations of pediatricians, pregnancies have a mean of 266 and standard deviation of 16 days, so Y ~ N ( = 266, = 16). Question: What are the possible values for Y? to Question: How can the number of days of pregnancy be < 230? Answer: Using the normal distribution, you have that P(Y < 230) = NORMDIST(230, 266, 16, true) Thus, when using the normal approximation, there is only about 1% chance that a pregnancy lasts less than 230 days. Models are NOT the real world but hopefully good approximations! 191 1
2 Dear Abby Step 2: State what you are looking for as a probability question in terms of the rv. You want to find P(Y 10 mo. and 5 days) = P(Y 310). Step 3: Use the probability distribution of the rv to answer the probability question. P(Y 310) = 1 P(Y < 310) = 1 NORMDIST(310, 266, 16, TRUE) = Was she telling the truth? Possibly, but highly unlikely. 192 Example 2: Problem of GoodTire GoodTire has a new tire for which, in order to be competitive, they want to offer a warranty of 30,000 miles. Before doing so, the company wants to know what fraction of tires they can expect to be returned under the warranty. 193 The Problem of GoodTire Step 1: Identify an appropriate random variable. For GoodTire, let X = number of miles such a tire will last. What are the possible values for X? What is the density function for X? ???? (cont.) From statistical analysis of a random sample, GoodTire believes the mileage follows approximately a normal distribution with a mean of 40,000 miles and a standard deviation of 10,000 miles, so assume that X ~N( = 40000, = 10000) with possible values: to 194 The Problem of GoodTire Step 2: State what you are looking for in terms of a probability question pertaining to the random variable. GoodTire wants to know the Fraction of tires returned = Likelihood a tire fails = P{X 30000} =? 195 2
3 The Problem of GoodTire Step 3: Use the probability distribution of the random variable to answer the probability question. For GoodTire,,y you have P{X { 30000} =? NORMDIST(30000, 40000, 10000, TRUE) = X N(40000, 10000) The Problem of GoodTire Question: The CEO finds that a 16% return rate is too high. What warranty mileage s should they offer to get a 5% return rate? Step 2: Probability Question: What should s be so that P{X s} = 0.05? Step 3: s = NORMINV(0.05, 40000, 10000) = Fact: While you cannot control the value of a rv, you 0.05 can control the likelihood of certain events occurring s =? with that RV. 197 Example 3: Marketing Projections From historical data over a number of years, a firm knows that its annual sales average $25 million. For planning purposes, the CEO wants to know the likelihood that sales next year will: Exceed $30 million. Be within $1.5 million of the average. The CEO is willing to issue bonuses if sales are sufficiently high. What level should be set so that bonuses are given at most 20% of the time? 198 Marketing Projections Step 1: Identify an appropriate random variable. Let Y = next year s sales in $ millions. What are the possible values for Y? 0 50? What is the density function for Y???? From statistical analysis over a number of years, they believe that annual sales follows approximately a normal distribution with a mean of $25 mil. and a standard deviation of $3 mil., so assume that Y ~N( = 25, = 3) 199 3
4 Marketing Projections Step 2: State what you are looking for in terms of a probability question pertaining to the random variable. You want to know: P(sales exceeds $30 mil.) = P(Y 30). P(sales is within $1.5 of $25 mil.) = P(23.5 Y 26.5). What should be the value of sales (s) so that P(giving a bonus) = 0.20? P(Y s) = 0.20? 200 Marketing Projections Step 3: Use the probability distribution of the random variable to answer the probability question. From Excel, using = 25 and = 3: P(Y 30) = 1 NORMDIST(30, 25, 3, TRUE) = P(23.5 Y 26.5) = NORMDIST(26.5, 25, 3, TRUE) NORMDIST(23.5, 25, 3, TRUE) = s = NORMINV(0.8, 25, 3) = Example 4: DUI Test In many states, a driver is legally drunk if the blood alcohol concentration, as determined by a breath analyzer, is 0.10% or higher. Suppose that a driver has a true blood alcohol concentration of 0.095%. With the breath analyzer test, what is the probability that the person will be (incorrectly) booked on a DUI charge? Step 1: Identify an appropriate random variable. Let Y = the measurement of the analyzer as a %. (cont.) Question: What are the possible values for Y? 0 0.3? 202 DUI Test Step 1 (continued). Question: What is the density function for Y? Answer: We do not know, but experience indicates that Y follows approximately a normal distribution with mean equal to the person ss true alcohol level and standard deviation equal to 0.004%, so Y ~N(, = 0.004), where = the person s true blood alcohol level (%) 203 4
5 DUI Test Step 2: State what you are looking for in terms of a probability question pertaining to the random variable. You want to know the probability that a person with = will be (incorrectly) booked on a DUI charge: P(being booked on a DUI) = P(Y 0.10) 204 DUI Test Step 3: Use the probability distribution of the random variable to answer the probability question. From Excel l( (using = and = 0.004): 004) P(Y 0.10) = NORMDIST(0.10, 0.095, 0.004, true) = There is about a 10% chance that such a person will be incorrectly charged with a DUI. 205 An Insurance Problem GoodHands is considering insuring employees of GoodTire. What annual premium should the company charge to be sure that there is a likelihood of no more than 1% of losing money on each customer? This is an example of decision making under uncertainty: you have to make a decision today how much should the annual premium be facing an uncertain future. Question: Why is the future uncertain? 206 Solving the Insurance Problem Step 1: Identify an appropriate random variable. Let X = the $ claimed by a customer in one year. What are the possible values for X? [0, (?)] Is X continuous or discrete? discrete What is the density function for X? It is unknown, so borrow one. From statistical analysis, the annual claim for these people follows approximately a normal distribution with a mean of $2500 and a standard deviation of $1000, so: X ~N( = 2500, = 1000) discrete or cont.? Note: It can be OK to approximate a discrete RV with a continuous distribution
6 An Insurance Problem Step 2: State what you are looking for in terms of a probability question pertaining to the RV. For GoodHands, what should the premium s be so that the likelihood of losing money is no more than 1%. Question: When do you lose money on a customer? Probability bili Question: What should the premium s be so that the P( X s) = 0.01? X N(2500, 1000) 2500 P{ X s} 0.01 s 208 An Insurance Problem Step 3: Use the probability distribution of the random variable to answer the probability question. X N(2500, 1000) P{ X s} s = NORMINV(0.99, 2500, 1000) = $ Fact: While you cannot control the value of a rv (such as the claim of a person), you can control the likelihood of certain events occurring with that RV (such as the likelihood of such a claim exceeding the premium). 209 The Insurance Problem (cont.) Question: GoodTire wants to insure all 100 of its employees through GoodHands. What premium should GoodHands charge per employee so that the likelihood of losing money on the average of all these claims is 1%? Step 1: Identify appropriate random variables. For GoodHands, let X i = the $ / annual claim of customer i (i = 1,,100) X i ~N( = 2500, = 1000) X ( X 1... X100 ) /100 Question: What is the distribution of the random variable X? Answer: You do not know. However, because X is the AVERAGE of other rvs, try 210 The Central Limit Theorem The Central Limit Theorem provides an approximate density function when the r.v. you are interested in is the average of n other rvs, say, X 1, X 2,, X n, that are: (1) Independent (knowing the value of one rv tells you nothing about the values of the other rvs). (2) Identically distributed (have the same density function with mean and standard deviation ), then, for large n, X1... X X n ~ N(, / n) (approx.) n 211 6
7 The Insurance Problem (cont.) For the insurance problem, you have X i = annual $ claimed by person i (i = 1,, 100) ~ N 2500, =1000. X1... X100 X ~ N 2500, 1000 / 100 N 2500, (1) Are X 1, X 2,, X 100 independent random variables? Yes, because the amount claimed by one person has no effect on the amount claimed by another person. (2) Are X 1, X 2,, X 100 identically distributed? Yes, because Therefore, by the CLT, X is approximately Normal with An Insurance Problem Step 2: State what you are looking for in terms of a probability question pertaining to the random variable. For GoodHands, What should the premium s be so that the probability that the average of the 100 claims exceeds s is 0.01? Probability Question: What should s be so that X X P X 100 s 0.01? An Insurance Problem (cont.) Probability Question: What should the premium s be so that P X s 0.01? X N(2500, 100) P{ X s} s Step 3: Use the probability distribution of the random variable to answer the probability question. s = NORMINV(0.99, 2500, 100) = $ Another Example of the CLT In modeling the performance of a team with 5 people, consider the following five rvs: P i = performance contribution of person i for (i = 1,,5) Possible values: [0, 1] (continuous) Density function: U[0,1] 1 E[P i ] = = 0.5 STDEV[P i ] = = However, what is of interest is the team performance, so let 215 7
8 Another Example of the CLT T = performance of the whole team P P P P P Possible values: [0, 1] (continuous) Density function:??? You cannot find the true density function, so borrow one. Because the rv T is the average of other RVs, think of using the Central Limit Theorem to approximate the density function of T. 216 The Team Problem For the team problem, you have P i = performance of person i (i = 1, 2, 3, 4, 5) ~U[0, 1] with mean = 0.5 and std. dev. = P1 P2 P3 P4 P5 T ~ N (0.5,0.29/ 5) N(0.5,0.13). ) 5 (1) Are P 1, P 2, P 3, P 4, P 5 independent random variables? Yes, assuming that the performance of a person says nothing about the performance of another person. (2) Are P 1, P 2, P 3, P 4, P 5 identically distributed? Yes, because Therefore, by the CLT, P is approximately Normal with 217 The Team Problem Question: What is the probability that the team performance is at least 0.75? P(T 0.75) = NORMDIST(0.75, 0.5, 0.13, TRUE) = T N(0.5, 0.13) P(T 0.75) The Average of a Sample Suppose you are going to record the numbers X 1, X 2,, X n taken from a sample of size n from a population and then compute: X1... X n Is X a rv? X n The answer depends on timing. If you have already taken the sample, then X is NOT a rv. If you have not yet taken the sample, then X IS arv rv. All possible values: The (finite) list of averages of every group of size n in the population. Groups of size n: G1 G2 G3 Discrete, X for the group: A1 A2 A3 but There is no practical way to list the possible values, so YOU CANNOT WRITE THE DENSITY FUNCTION
9 The Average of a Sample X1... X n X The rvs X 1, X 2,, X n are iid n from the same population with mean = and std. dev. = Solution: Because X is the average of rvs, think of the using the CLT which, if applicable, results in the following density function for X : X ~ N(, / n ) Possible Values: (, + ) Now you can use the Normal Distribution to answer your probability question about X. 220 A Final Example of the CLT Historical data collected at a paper mill show that 40% of sheet breaks are due to water drops, resulting from the condensation of steam. Suppose that the causes of the next 100 sheet breaks are monitored and that the sheet breaks are independent d of one another. Find the expected value and the standard deviation of the number of sheet breaks that will be caused by water drops. What is the probability that at least 35 of the breaks will be due to water drops? 221 Exact Answer Success = break due to water drops P(success) = p = 0.4 X = number of breaks due to water drops X is Binomial with n = 100 and p = 0.4 E(X) = np = (100)(0.4) = 40 SD(X) = n p (1 p) = (100)(0.4)(0.6) = 24 = 4.9 From Excel P(X 35) = 1 P(X < 35) = 1 P(X 34) = 1 BINOMDIST(34, 100, 0.4, TRUE) = Normal Approx. to Binomial For this problem, let p = P(success) = 0.4, and 1, if a success on trial i X i, i 1,..., 100 0, if a failure on trial i In this problem, you are interested in the rv X = number of successes in 100 trials = X 1 + X 2 + +X 100 To find P(X 35) = P(X / / 100), you need to know the probability distribution of X X /100, which, by the CLT, is approximately normal, so 223 9
10 Normal Approx. to Binomial Each X i ~ Binomial(1, p = 0.4), so E[X i ] = = p = 0.4 SD[ X i ] p(1 p) 0.49 Assuming that The X i are pairwise independent and n = 100 is large enough (np > 5and n(1 p) > 5), then by the CLT, the random variable X 1 L X100 X ~ N(, / n) (0.4, 0.049) 100 N 224 Normal Approx. to Binomial Then, for X = X X 100 X, P(X 35) = P(X / / 100) P( X 0.35) = 1 NORMDIST(0.35, 0.4, 0.049, TRUE) = (The exact answer was 0.86.) 225 Review of Basic Math A function y = f(x) describes a relationship between the two quantitative variables x and y. y = f(x) = x + 2 y = f(x) = x 2 2x + 1 (a linear relationship) (a nonlinear relationship) You can represent a function visually as follows: Review of Functions You can also think of a function f as transforming an input x into an output y, as follows: x y y f f(x ) = y x x Note: A function f can have many input values, instead of just one
11 Review of Linear Equations A linear equation y = mx + b, provides a relationship between the two variables, x and y, in which: y y = mx + b b = the yintercept = the value of y when x = 0. m = the slope of the line = the change in y per unit of increase in x. m > 0: as x increases, y increases. m= 0: as x increases, y remains the same. m < 0: as x increases, y decreases. b y x 1 m x + 1 x m > 0 m = 0 m < 0 x 228 An Example of a Line If y = the thousands of bushels of wheat x = the number of inches of rain then, for the line y = 80x + 71, b = 71 means that there are 71,000 bushels of wheat when there is no rain. m = 80 means that each extra inch of rain results in 80,000 more bushels of wheat. 229 A Different Equation for a Line Sometimes a line is written in the form: a 1 x 1 + a 2 x 2 = c Assuming that a 2 0, you can solve for x 2 : x 2 = (a 1 / a 2 ) x 1 + (c / a 2 ) y = m x + b How Large is Large Enough? For symmetric but outlierprone data, n = 15 samples should be enough to use the normal approximation. For mild skewness, n = 30 should generally be sufficient to make the normal approximation appropriate. For severe skewness, n should be at least 100 to use the normal approximation. Generally speaking, the larger n is, the better the normal approximation is
12 Graphing a Line Example of Graphing a Line To draw the graph of the line a 1 x 1 + a 2 x 2 = b: Find two different points on the line (usually by setting x 1 = 0 and finding x 2 and then setting x 2 = 0 and finding x 1 ). Plotting these two points on a graph. Drawing the straight line through those two points. The line: 2x 1 + x 2 = 230 When x 1 = 0, x 2 = 230 When x 2 = 0, x 1 = 115 2, 1 Note: Any point on the line gives a value for x 1 and a value for x 2 that satisfies 2x 1 + x 2 = x x Solving Two Linear Equations Objective: Solve the following two equations for x 1 and x 2 : 2x 1 + x 2 = 230 (a) x 1 + 2x 2 = 250 (b) Solution Procedure: Solve (a) for x 2 : x 2 = 230 2x 1 (c) Substitute x 2 = 230 2x 1 in (b): x 1 + 2(230 2x 1 ) = 3x = 250 (d) Solve (d) for x 1 : x 1 = 70 Substitute x 1 = 70 in (c): x 2 = 230 2x 1 = Another Approach Objective: Solve the following for x 1 and x 2 : (a) 2x 1 + x 2 = 230 (c) 4x 1 + 2x 2 = 460 (b) x 1 + 2x 2 = 250 [ (b) x 1 + 2x 2 = 250 ] Alternative Procedure: Multiply py( (a) through by 2. (d) 3x 1 = 210 Subtract (b) from (c). Solve (d) for x 1 : x 1 = 70 Substitute x 1 = 70 in (a) and solve for x 2 : x 2 = 230 2x 1 = 90 Note: There are computer packages for solving n linear equations in n unknowns
13 Exponentials An exponent is the power to which a number (called the base) is raised. Example: 2 5 (base = 2; exponent = 5) Question: How much will $1000 be worth after 5 years at t6% compound dinterest? t? Year 1 Year 2 Year 3 Year 4 Year 5 Principal $1, $1, $1, $1, $1, Interest $60.00 $63.60 $67.42 $71.46 $75.75 Total $1, $1, $1, $1, $1, Answer: Total = f (P, r, n) = P(1 + r ) n = 1000 ( ) 5 = Properties of Exponents Laws of Exponents: x a + b =x b + a =x a x b (example: = ) (x a ) b = (x b ) a = x ab (example: (2 3 ) 2 = 2 6 ) x a = 1 / x a (example: 2 3 = 1 / 2 3 = 1 / 8) x 0 = 1 Exponential Functions Increase and Decrease Rapidly: y = 2^x y = 2^x y = 2^(x) y = 2^(x) 237 Scientific Notation Scientific Notation: a 10 b (also written as a E ±b) means move the decimal point of a: b positions to the right, if b > 0. b positions to the left, if b < 0. Example: = E+3 = Example: = 4 E 3 = Logarithms The log base b of x [written log (x)] is the power to which you must raise b to get x. Examples: log 10 (100) = 2, log 2 (32) = 5 Logs are only defined for positive numbers. If the base is omitted, the default is 10. The base e = is used in some financial applications (such as continuous compounding), in which case, log e (x) is written as ln(x) (the natural log of x)
14 Laws of Logarithms Logs convert products to sums, that is, log b (xy) = log b (x) + log b (y). Ex: log 2 (64) = log 2 (4 16) = log 2 (4) + log 2 (16) = 2+4 = 6 log b (x / y) = log b (x) log b (y) Ex: log 10 (1000 / 100) = log 10 (1000) log 10 (100) = 3 2= 1 Logs bring down exponents, that is, log b (x y ) = y log b (x). Example: log 2 (4 5 ) = 5 log 2 (4) = 5(2) = 10 Logs undo exponentiation, that is, log b (b y ) = y log b (b) = y. Example: log 2 (2 5 ) = 5 log a (x) = k log b (x), where k = log a (b) Example: log 2 (x) = log 10 (x) 240 Problem Solving with Logs Question: How many years will it take to double an investment at i % interest compounded annually? Answer: Let P=the initial investment r = interest rate as a fraction = i / 100 n = the number of years of compounding Then, after n years, you will have P(1 + r ) n. 241 Problem Solving with Logs Answer (continued): Thus, you want to find n so that P(1 + r ) n = 2P (1 + r ) n = 2 (a) To solve (a) for n, take the log of both sides to bring the exponent n down: log[(1 + r ) n ] = log(2) Qn: Log base what? n log[(1 + r )] = log(2) n = log(2) / log[(1 + r )] Example: At 6% (r = 0.06), it will take n = log(2) / log(1.06) = / = 11.9 years. Ans: Log base 10 (but any base will work)
What are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
More informationChapter 6: Probability
Chapter 6: Probability In a more mathematically oriented statistics course, you would spend a lot of time talking about colored balls in urns. We will skip over such detailed examinations of probability,
More informationAP Physics 1 and 2 Lab Investigations
AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks
More informationMBA Jump Start Program
MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right
More informationAlgebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
More informationPart I Learning about SPSS
STATS 1000 / STATS 1004 / STATS 1504 Statistical Practice 1 Practical Week 5 2015 Practical Outline In this practical, we will look at how to do binomial calculations in Excel. look at how to do normal
More informationAn Introduction to Basic Statistics and Probability
An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random
More informationSTAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE
STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about
More informationparent ROADMAP MATHEMATICS SUPPORTING YOUR CHILD IN HIGH SCHOOL
parent ROADMAP MATHEMATICS SUPPORTING YOUR CHILD IN HIGH SCHOOL HS America s schools are working to provide higher quality instruction than ever before. The way we taught students in the past simply does
More informationThe Math. P (x) = 5! = 1 2 3 4 5 = 120.
The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct
More informationReturn on Investment (ROI)
ROI 1 Return on Investment (ROI) Prepared by Sarah Major What is ROI? Return on investment (ROI) is a measure that investigates the amount of additional profits produced due to a certain investment. Businesses
More informationCommon Core Unit Summary Grades 6 to 8
Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity 8G18G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations
More informationMATH 095, College Prep Mathematics: Unit Coverage Prealgebra topics (arithmetic skills) offered through BSE (Basic Skills Education)
MATH 095, College Prep Mathematics: Unit Coverage Prealgebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,
More informationHigher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
More informationCOGNITIVE TUTOR ALGEBRA
COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,
More informationPreSession Review. Part 2: Mathematics of Finance
PreSession Review Part 2: Mathematics of Finance For this section you will need a calculator with logarithmic and exponential function keys (such as log, ln, and x y ) D. Exponential and Logarithmic Functions
More informationMAT12X Intermediate Algebra
MAT12X Intermediate Algebra Workshop I  Exponential Functions LEARNING CENTER Overview Workshop I Exponential Functions of the form y = ab x Properties of the increasing and decreasing exponential functions
More informationHIBBING COMMUNITY COLLEGE COURSE OUTLINE
HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE:  Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,
More informationLinear Approximations ACADEMIC RESOURCE CENTER
Linear Approximations ACADEMIC RESOURCE CENTER Table of Contents Linear Function Linear Function or Not Real World Uses for Linear Equations Why Do We Use Linear Equations? Estimation with Linear Approximations
More information6 Rational Inequalities, (In)equalities with Absolute value; Exponents and Logarithms
AAU  Business Mathematics I Lecture #6, March 16, 2009 6 Rational Inequalities, (In)equalities with Absolute value; Exponents and Logarithms 6.1 Rational Inequalities: x + 1 x 3 > 1, x + 1 x 2 3x + 5
More informationMath Common Core Sampler Test
Math Common Core Sampler Test Our grade 8 sampler covers the twenty most common questions that we see targeted for this level in multiple choice format. For complete tests and break downs of each section,
More informationModuMath Algebra Lessons
ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations
More informationSection 1.5 Linear Models
Section 1.5 Linear Models Some reallife problems can be modeled using linear equations. Now that we know how to find the slope of a line, the equation of a line, and the point of intersection of two lines,
More informationExample: Find the expected value of the random variable X. X 2 4 6 7 P(X) 0.3 0.2 0.1 0.4
MATH 110 Test Three Outline of Test Material EXPECTED VALUE (8.5) Super easy ones (when the PDF is already given to you as a table and all you need to do is multiply down the columns and add across) Example:
More informationMATH 65 NOTEBOOK CERTIFICATIONS
MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1
More informationJoint Probability Distributions and Random Samples (Devore Chapter Five)
Joint Probability Distributions and Random Samples (Devore Chapter Five) 101634501 Probability and Statistics for Engineers Winter 20102011 Contents 1 Joint Probability Distributions 1 1.1 Two Discrete
More informationMath 141. Lecture 7: Variance, Covariance, and Sums. Albyn Jones 1. 1 Library 304. jones/courses/141
Math 141 Lecture 7: Variance, Covariance, and Sums Albyn Jones 1 1 Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 Last Time Variance: expected squared deviation from the mean: Standard
More informationAlgebra 1 Chapter 3 Vocabulary. equivalent  Equations with the same solutions as the original equation are called.
Chapter 3 Vocabulary equivalent  Equations with the same solutions as the original equation are called. formula  An algebraic equation that relates two or more reallife quantities. unit rate  A rate
More informationDefinition: Suppose that two random variables, either continuous or discrete, X and Y have joint density
HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,
More information3. Power of a Product: Separate letters, distribute to the exponents and the bases
Chapter 5 : Polynomials and Polynomial Functions 5.1 Properties of Exponents Rules: 1. Product of Powers: Add the exponents, base stays the same 2. Power of Power: Multiply exponents, bases stay the same
More informationChapter 4. iclicker Question 4.4 Prelecture. Part 2. Binomial Distribution. J.C. Wang. iclicker Question 4.4 Prelecture
Chapter 4 Part 2. Binomial Distribution J.C. Wang iclicker Question 4.4 Prelecture iclicker Question 4.4 Prelecture Outline Computing Binomial Probabilities Properties of a Binomial Distribution Computing
More informationMA 1125 Lecture 14  Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.
MA 5 Lecture 4  Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the
More informationNotes on the SHARP EL738 calculator
Chapter 1 Notes on the SHARP EL738 calculator General The SHARP EL738 calculator is recommended for this module. The advantage of this calculator is that it can do basic calculations, financial calculations
More informationIntroduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 4.4 Homework
Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 4.4 Homework 4.65 You buy a hot stock for $1000. The stock either gains 30% or loses 25% each day, each with probability.
More informationCollege Algebra. George Voutsadakis 1. LSSU Math 111. Lake Superior State University. 1 Mathematics and Computer Science
College Algebra George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 111 George Voutsadakis (LSSU) College Algebra December 2014 1 / 91 Outline 1 Exponential
More informationAlgebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
More informationMake sure you look at the reminders or examples before each set of problems to jog your memory! Solve
Name Date Make sure you look at the reminders or examples before each set of problems to jog your memory! I. Solving Linear Equations 1. Eliminate parentheses. Combine like terms 3. Eliminate terms by
More informationCOLLEGE ALGEBRA. Paul Dawkins
COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... Introduction... Integer Exponents... Rational Exponents... 9 Real Exponents...5 Radicals...6 Polynomials...5
More informationVocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
More informationMyMathLab ecourse for Developmental Mathematics
MyMathLab ecourse for Developmental Mathematics, North Shore Community College, University of New Orleans, Orange Coast College, Normandale Community College Table of Contents Module 1: Whole Numbers and
More information1. Determine graphically the solution set for each system of inequalities and indicate whether the solution set is bounded or unbounded:
Final Study Guide MATH 111 Sample Problems on Algebra, Functions, Exponents, & Logarithms Math 111 Part 1: No calculator or study sheet. Remember to get full credit, you must show your work. 1. Determine
More information3. Exponential and Logarithmic functions
3. ial and s ial and ic... 3.1. Here are a few examples to remind the reader of the definitions and laws for expressions involving exponents: 2 3 = 2 2 2 = 8, 2 0 = 1, 2 1 = 1 2, 2 3 = 1 2 3 = 1 8, 9 1/2
More informationProbability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special DistributionsVI Today, I am going to introduce
More informationAlgebra I Credit Recovery
Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,
More informationCAMI Education linked to CAPS: Mathematics
 1  TOPIC 1.1 Whole numbers _CAPS Curriculum TERM 1 CONTENT Properties of numbers Describe the real number system by recognizing, defining and distinguishing properties of: Natural numbers Whole numbers
More informationEvaluating Trading Systems By John Ehlers and Ric Way
Evaluating Trading Systems By John Ehlers and Ric Way INTRODUCTION What is the best way to evaluate the performance of a trading system? Conventional wisdom holds that the best way is to examine the system
More informationVertical Alignment Colorado Academic Standards 6 th  7 th  8 th
Vertical Alignment Colorado Academic Standards 6 th  7 th  8 th Standard 3: Data Analysis, Statistics, and Probability 6 th Prepared Graduates: 1. Solve problems and make decisions that depend on un
More informationCopyright 2013 by Laura Schultz. All rights reserved. Page 1 of 6
Using Your TINSpire Calculator: Binomial Probability Distributions Dr. Laura Schultz Statistics I This handout describes how to use the binompdf and binomcdf commands to work with binomial probability
More informationStatistics 100 Binomial and Normal Random Variables
Statistics 100 Binomial and Normal Random Variables Three different random variables with common characteristics: 1. Flip a fair coin 10 times. Let X = number of heads out of 10 flips. 2. Poll a random
More informationMath 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 5 Solutions
Math 370/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 5 Solutions About this problem set: These are problems from Course 1/P actuarial exams that I have collected over the
More informationUsing Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data
Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable
More informationeday Lessons HSCC Precalculus Logarithims FLE 4, BFB 5 11/2014 ELesson 1
eday Lessons HSCC Precalculus Logarithims FLE 4, BFB 5 11/2014 ELesson 1 Enclosed are the EDay assignments required to make up the 3 calamity days missed during the 20142015 school year for High School
More informationImportant Probability Distributions OPRE 6301
Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in reallife applications that they have been given their own names.
More informationThe Binomial Distribution. Summer 2003
The Binomial Distribution Summer 2003 Internet Bubble Several industry experts believe that 30% of internet companies will run out of cash in 6 months and that these companies will find it very hard to
More informationChapter 7  Roots, Radicals, and Complex Numbers
Math 233  Spring 2009 Chapter 7  Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the
More informationBookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line
College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina  Beaufort Lisa S. Yocco, Georgia Southern University
More informationMath 2020 Quizzes Winter 2009
Quiz : Basic Probability Ten Scrabble tiles are placed in a bag Four of the tiles have the letter printed on them, and there are two tiles each with the letters B, C and D on them (a) Suppose one tile
More informationCrosswalk Directions:
Crosswalk Directions: UMS Standards for College Readiness to 2007 MLR 1. Use a (yes), an (no), or a (partially) to indicate the extent to which the standard, performance indicator, or descriptor of the
More informationDraft 1, Attempted 2014 FR Solutions, AP Statistics Exam
Free response questions, 2014, first draft! Note: Some notes: Please make critiques, suggest improvements, and ask questions. This is just one AP stats teacher s initial attempts at solving these. I, as
More informationResults from the 2014 AP Statistics Exam. Jessica Utts, University of California, Irvine Chief Reader, AP Statistics jutts@uci.edu
Results from the 2014 AP Statistics Exam Jessica Utts, University of California, Irvine Chief Reader, AP Statistics jutts@uci.edu The six freeresponse questions Question #1: Extracurricular activities
More informationNormal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem
1.1.2 Normal distribution 1.1.3 Approimating binomial distribution by normal 2.1 Central Limit Theorem Prof. Tesler Math 283 October 22, 214 Prof. Tesler 1.1.23, 2.1 Normal distribution Math 283 / October
More informationSolving Exponential Equations
Solving Exponential Equations Deciding How to Solve Exponential Equations When asked to solve an exponential equation such as x + 6 = or x = 18, the first thing we need to do is to decide which way is
More informationChapter 5. Discrete Probability Distributions
Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable
More information5. Continuous Random Variables
5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be
More information4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
More informationECE302 Spring 2006 HW3 Solutions February 2, 2006 1
ECE302 Spring 2006 HW3 Solutions February 2, 2006 1 Solutions to HW3 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in
More informationBA35 Solar Quick Reference Guide
BA35 Solar Quick Reference Guide Table of Contents General Information... 2 The Display... 4 Arithmetic Operations... 6 Correcting Errors... 7 Display Formats... 8 Memory Operations... 9 Math Operations...
More informationRandom variables, probability distributions, binomial random variable
Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that
More informationCHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises
CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =
More informationALGEBRA 2/ TRIGONOMETRY
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA 2/ TRIGONOMETRY Friday, June 14, 2013 1:15 4:15 p.m. SAMPLE RESPONSE SET Table of Contents Practice Papers Question 28.......................
More informationThe Kelly Betting System for Favorable Games.
The Kelly Betting System for Favorable Games. Thomas Ferguson, Statistics Department, UCLA A Simple Example. Suppose that each day you are offered a gamble with probability 2/3 of winning and probability
More informationNCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
More informationMATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
More informationSect Exponents: Multiplying and Dividing Common Bases
40 Sect 5.1  Exponents: Multiplying and Dividing Common Bases Concept #1 Review of Exponential Notation In the exponential expression 4 5, 4 is called the base and 5 is called the exponent. This says
More information2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
More informationChapter 9. Systems of Linear Equations
Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables
More informationSection 5 Part 2. Probability Distributions for Discrete Random Variables
Section 5 Part 2 Probability Distributions for Discrete Random Variables Review and Overview So far we ve covered the following probability and probability distribution topics Probability rules Probability
More informationFINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x
More informationStatistics 151 Practice Midterm 1 Mike Kowalski
Statistics 151 Practice Midterm 1 Mike Kowalski Statistics 151 Practice Midterm 1 Multiple Choice (50 minutes) Instructions: 1. This is a closed book exam. 2. You may use the STAT 151 formula sheets and
More informationCommon Core State Standards for Mathematics Accelerated 7th Grade
A Correlation of 2013 To the to the Introduction This document demonstrates how Mathematics Accelerated Grade 7, 2013, meets the. Correlation references are to the pages within the Student Edition. Meeting
More informationUNIT AUTHOR: Elizabeth Hume, Colonial Heights High School, Colonial Heights City Schools
Money & Finance I. UNIT OVERVIEW & PURPOSE: The purpose of this unit is for students to learn how savings accounts, annuities, loans, and credit cards work. All students need a basic understanding of how
More informationCurrent Standard: Mathematical Concepts and Applications Shape, Space, and Measurement Primary
Shape, Space, and Measurement Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two and threedimensional shapes by demonstrating an understanding of:
More informationScientific Notation and Powers of Ten Calculations
Appendix A Scientific Notation and Powers of Ten Calculations A.1 Scientific Notation Often the quantities used in chemistry problems will be very large or very small numbers. It is much more convenient
More informationAlgebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test
Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action
More informationGRAPHING LINEAR EQUATIONS IN TWO VARIABLES
GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: SlopeIntercept Form: y = mx+ b In an equation
More informationThe normal approximation to the binomial
The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very
More informationMultivariate Normal Distribution
Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #47/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues
More informationFlorida Math for College Readiness
Core Florida Math for College Readiness Florida Math for College Readiness provides a fourthyear math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness
More informationStatistics 104: Section 6!
Page 1 Statistics 104: Section 6! TF: Deirdre (say: Deardra) Bloome Email: dbloome@fas.harvard.edu Section Times Thursday 2pm3pm in SC 109, Thursday 5pm6pm in SC 705 Office Hours: Thursday 6pm7pm SC
More informationIntroduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.
Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative
More informationMathematical Procedures
CHAPTER 6 Mathematical Procedures 168 CHAPTER 6 Mathematical Procedures The multidisciplinary approach to medicine has incorporated a wide variety of mathematical procedures from the fields of physics,
More informationAlgebra 1 Topic 8: Solving linear equations and inequalities Student Activity Sheet 1; use with Overview
Algebra 1 Topic 8: Student Activity Sheet 1; use with Overview 1. A car rental company charges $29.95 plus 16 cents per mile for each mile driven. The cost in dollars of renting a car, r, is a function
More informationAlgebra Unit 6 Syllabus revised 2/27/13 Exponents and Polynomials
Algebra Unit 6 Syllabus revised /7/13 1 Objective: Multiply monomials. Simplify expressions involving powers of monomials. Preassessment: Exponents, Fractions, and Polynomial Expressions Lesson: Pages
More informationSolving Logarithmic Equations
Solving Logarithmic Equations Deciding How to Solve Logarithmic Equation When asked to solve a logarithmic equation such as log (x + 7) = or log (7x + ) = log (x + 9), the first thing we need to decide
More information16 21 Linear vs. Exponential.notebook May 14, 2014. LT 1c: I can compare linear vs. exponential change.
LT 1c: I can compare linear vs. exponential change. The Situation: You have $1,000 saved. Now, you need to figure out which bank you want to invest your money in. You can choose from the following two
More informationMath 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 2 Solutions
Math 70/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 2 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,
More informationMath 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
More informationMATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab
MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 is established to accommodate students desiring noncourse based remediation in developmental mathematics. This structure will
More information" Y. Notation and Equations for Regression Lecture 11/4. Notation:
Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through
More informationSummary of Formulas and Concepts. Descriptive Statistics (Ch. 14)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 14) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
More information