An Effective Design of Grounding Rods in a Complicated Soil Layer

Size: px
Start display at page:

Download "An Effective Design of Grounding Rods in a Complicated Soil Layer"

Transcription

1 An Effective Design of Grounding Rods in a Complicated Soil Layer Ju-Hong Eom, Sung-Chul Cho, Jae-Jun Kim * 1 and Bok-Hee Lee * 2 KESRI, 130 Dong, Seoul National University, 56-1, Shilim-dong, Kwanak-gu, Seoul, Korea * 1 KEPCO, 167, Samseong-dong, Gangnam-gu, Seoul, Korea * 2 HIERC, 253, Yonghyun-dong, Nam-gu, Inchon, Korea Abstract Soil resistivity measurement must be made at the construction site of a grounding system in order to analyze the soil structure because the performance of grounding system is influenced mainly by the resistivity of the soil surrounding the grounding electrode. Wenner 4-probe arrangement is used most widely by the method to measure soil resistivity and the measured data with the Wenner method are apparent resistivities of the soil. Therefore, the soil structure can be analyzed easily from the measured apparent resistivity, but the real soil resistivity is difficult to know correctly at a particular depth or at a specific location on earth surface, and it is very puzzling problem to decide the scale or the location of an electrode being provided vertically in the subsurface layer. This paper introduces a method that can be used to decide the suitable burial depth and the electrode scale of a grounding rod effectively using the soil structure analysis equipment based on the new dipole-dipole method. Keywords: Soil resistivity, Grounding system, Grounding system impedance, dipole-dipole method, Apparent resistivity 1 INTRODUCTION It is necessary to have knowledge of how various parameters affect the performance of the grounding system in order to efficiently design a safe grounding system. Some of these parameters include conductor arrangement, number of grounding rods, location and length, and soil resistivity. Among the parameters of grounding system, soil resistivity is very important for the estimation of grounding system performance in multi-layered soil structure.[1] Because of the wide variations in the structure and properties of soil materials, there are numerous methods and technicques for determining true resistivity of soil. Most resitivity measurement techniques are variations of the four equally-spaced probe arrangement originally described by Frank Wenner. The Wenner arrangement is shown in Fig. 1. Four probes are driven in the earth along a straight line. The spaces between probes are uniform and the burial depth of the probe is usually less than 10 percent of the space between probes. The ratio of V/I with dimension of resistance is propotional to the apparent resistivity at spacing a. However, the measured resitivity value is not the true resistivity of the subsurface, and the relationship between the apparent resistivity and the true resistivity is very complicated except homogeneous soil structure. This complexity interacts by errors to determine the ground impedance in design of grounding system. I V C1 P1 P2 C2 a a a Figure 1. Wenner 4-probe method Therefore, real resistivity was measured using dipole-dipole method widely used in geology field to analyze the soil structure, and a new method to decide

2 the installation location of grounding rod was proposed efficiently. 2 MEASUREMENT METHOD 2.1 Impedance measurement method The fall-of-potential method is one of the most used method for measuring the grounding system impedance. In classical fall-of-potential method, the direction of the potential probe is the same with the direction of the grounding electrodes under test-the return current electrode, the potential probe is located between the grounding electrode under test and the return current electrode. Therefore, significant measurement errors can be caused by the inductive coupling between the potential probe and return current probe leads at high frequency. The test circuit for measuring the grounding system impedance using the revised fall-of-potential method employed in this work was shown in Fig. 2. The potential probe is installed at the opposite side of the return current electrode to avoid any inductive coupling between the two leads of voltage and current probes system at high frequency.[2] PC V EP Ground Impedance Calculation Program Isolator Digital Filter A/D Converter V-F F Conversion Controller Inverter displayed on a monitor of the computer. 2.2 Soil resistivity measurement The measurement methods of soil resistivity used in this investigation are Wenner method and dipole-dipole method. The Wenner method has been used widely for quantitative interpretation of soil structure. The measured apparent resistivity values are normally plotted on a log-log scale graph, and the soil structure consisting of horizontal layers can be derived from the result. The center point between the inner probes remains fixed in this method, but the spacing between the outer probes is increased to obtain resistivity values at the deeper soil. Therefore, the surveying line becomes overlong for the investigation of deeper subsurface and the increase of surveying line acts on a limitation in detailed earth structure analysis. Another difficult procedure of the Wenner method is to convert the true resistivity values from the apparent resistivity. To obtain the true resistivity, it is assumed that the subsurface consist of homogeneous horizontal layers, and the resistivity of the soil changes only with the depth. However, the horizontal changes in the soil resistivity are commonly found at a construction site, and the effect of such horizontal changes can results in error during the resistivity conversion procedure and the layer thickness determination. The lateral changes also must be taken into account in the analysis of soil structure.[3] I T P 100 m E 100 m C Figure 2. Grounding system impedance measurement Frequency of the test current was linearly controlled during the established time in the range of khz. The waveforms of the test current and grounding electrode potential rise were directly recorded by a data acquisition system controlled by a personal computer. The magnitude, phase, resistive and reactive components of grounding impedance are analyzed by the specially installed program and the graphs of the measured results as a function of frequency are Figure 3. Dipole-dipole method Figure 3 shows the field surveying method of soil resistivity using the dipole-dipole method and a possible sequence of measurement for the dipole-dipole method. First time, measured values from 40 electrodes are stored to a measuring instrument with coordinates

3 of measuring point respectively. About 1000 measurements gathered along the surveying line are stored sequentially at the storage memory. The measured results are transmitted to PC and converted to true resistivity two-dimensional (2-D) sections using the RES2DINV conversion software. 3 RESULTS AND DISCUSSION Wenner method usually involve about several tens of readings and the converted result is apparent resistivity curve according to the electrode space. Figure 4 shows the apparent resistivities and soil type computed using the CDEGS software. between 4 m and 10 m according to the surveying lines. It looks like easy work to design grounding rod using this results, but it is very difficult to calculate ground resistance actually because the interpretation of measured data can vary considerably where soil with nonuniform resistivities are encountered in the soil layer.[1] 30m Rod 10m Rod Figure 5. Inverted 2-D map of soil resistivity The 2-D imaging survey using the dipole-dipole method is shown in figure 5. The dipole-dipole method involves about 100 to 1000 measurements and displays the results by a 2-D map of the soil structure. The result also shows two heterogeneous resistivity areas. The localized low resistivity area of around 20 Ω m in the top layer is located at a distance between 130 m and 170 m from the origin of the surveying line. The soil resistivity also reaches 1000 Ω m at the bottom layer where the 30 m rod was driven. However, as we can see from the result in figure 4, the localized high or low resistivity area cannot be detected by conventional Wenner 4-probe method.[4] Table 1. Interpretation model of subsurface and calculated resistances using simulation software Figure 4. Apparent resistivity The above measurements were carried out using the Wenner method along the two surveying lines. The soil structure was construed by horizontal two-layer from both of two survey lines. Soil resistivity was analyzed about 80 to 100 Ω m in top layer and 15 to 30 Ω m in bottom layer. Thickness of top layer shows difference Table 1 shows the interpretation models of subsurface and calculated resistances using CDEGS software. Two

4 grounding rods for obtaining a low ground impedance were developed at the position of 100 m and 150 m apart from the measurement origin. Apparent resistivity curve from the computation result #1 shows the two-layer soil type. Calculated ground resistance of 10 m rod using this soil model was 1.89 Ω and this value was lower markedly than the calculated ground resistance of 8.71 Ω using the three-layer model in table 1. two-layer soil structure. However, selected soil resistivities correspond to measurement methods at a bottom layer show significant difference each other. Therefore, calculated ground resistances of the 30 m rod were 6.49 Ω and Ω. (a) Ground impedance (a) Ground impedance (b) Phase (b) Phase (c) Resistive component (c) Resistive component (d) Reactive component Figure 7. Ground impedance of 30 m rod (d) Reactive component Figure 6. Ground impedance of 10 m rod The grounding rod of 30 m long was driven at a distance of 100 m, and both of the two interpretation models of subsurface using computation results #2 in figure 4 and inverted 2-D result in figure 5 show Figure 6 and 7 show the measurement results of the two grounding rods. The ground impedance was measured and analyzed with the magnitude of the impedance, phase, resistive component, and reactive component using the variable frequency inverter system.[5] The measured resistive component is the ground resistance of the rod at low frequency. The ground resistances of

5 10 m and 30 m rods are 11.9 Ω and 13.0 Ω respectively. Measured ground resistance values are much higher than calculated values using the soil models originated Wenner 4-probe method. On the other hand, calculated resistance valus using the model of dipole-dipole were approximated slightly to the measured values. The serious error of ground resistance calculation using Wenner method was caused by the exclusion of possibility of lateral changes in subsurface soil. And also, there is a singular result that the ground resistance of 10 m rod is much lower than the value of 30 m rod. Because the 10 m rod was driven in the localized low resistivity area, the especially low resistivity caused the ground resistance to be low for the 10 m rod. From these results, we can design the electrode scale of a grounding rod and decide the suitable burial depth effectively using the soil structure analysis method based on the new dipole-dipole method. 4 CONCLUSION Field measurement of soil resistivity and calculation method of grounding rods was carried out and the results could be summarized as follows. The conventional Wenner method cannot detect the localized lateral changes of soil resistivity and produce an error for calculating the grounding rod resistance. The 2-D survey introduced in this paper is effective to analyze a more accurate model of the subsurface and can give useful results taking into account horizontal changes in the soil. And effective design of the grounding rod and suitable burial depth can be carry out using the soil structure analysis method based on the dipole-dipole method. REFERENCES [1] IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System, IEEE Std , [2] IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System, IEEE Std , [3] M. H. Loke, 2-D and 3-D electrical imaging surveys, Instrument Tutorial, [4] N. Harid, H. Griffiths, A. Haddad and K. Walker, "Soil resistivity mapping of non-homogeneous soils," proc. of ISH 2003, Rotterdam, Netherlands, [5] Bok-Hee Lee and Ju-Hong Eom, "A New Measurement Method of Grounding Impedance Using a Variable Frequency Inverter," Proc. of of ISH 2003, Rotterdam, Netherlands, 2003, pp.390~393. Author : Ju-Hong Eom Senior Researcher High Voltage and Material Lab. of KESRI eommas@snu.ac.kr

Assessment of Soil Resistivity on Grounding of Electrical Systems: A Case Study of North-East Zone, Nigeria

Assessment of Soil Resistivity on Grounding of Electrical Systems: A Case Study of North-East Zone, Nigeria Assessment of Soil Resistivity on Grounding of Electrical Systems: A Case Study of North-East Zone, Nigeria Abstract Gabriel A. Adegboyega and Kehinde O. Odeyemi Department of Electrical and Electronic

More information

Coupling Effect in Substation Ground Measurements

Coupling Effect in Substation Ground Measurements SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 9, No. 3, October 2012, 315-324 UDK: 621.316.13.011.2 DOI: 10.2298/SJEE1203315F Coupling Effect in Substation Ground Measurements Alex Farber 1, Boris Katz

More information

FEASIBILITY OF ELECTRICAL SEPARATION OF PROXIMATE GROUNDING SYSTEMS AS A FUNCTION OF SOIL STRUCTURE

FEASIBILITY OF ELECTRICAL SEPARATION OF PROXIMATE GROUNDING SYSTEMS AS A FUNCTION OF SOIL STRUCTURE FEASIBILITY OF ELECTRICAL SEPARATION OF PROXIMATE GROUNDING SYSTEMS AS A FUNCTION OF SOIL STRUCTURE Sharon Tee and Farid P. Dawalibi Safe Engineering Services & technologies ltd. 1544 Viel, Montreal, Quebec,

More information

12 Appendix 12 Earth Electrodes And Earth Electrode

12 Appendix 12 Earth Electrodes And Earth Electrode 12 Appendix 12 Earth Electrodes And Earth Electrode Testing 12.1 Introduction This appendix provides guidance and background information an earth electrode testing and some limited information on earth

More information

Substation Grounding Study Specification

Substation Grounding Study Specification Substation Grounding Study Specification Introduction A grounding study is required for name of station, a / / kv substation located in name of location and connected to the following circuits: number

More information

GroundRod AC Substation Earthing Tutorial

GroundRod AC Substation Earthing Tutorial 1 GroundRod AC Substation Earthing Tutorial 1. Functions of an earthing system The two primary functions of a safe earthing system are: To ensure that a person who is in the vicinity of earthed facilities

More information

AC CIRCUITS - CAPACITORS AND INDUCTORS

AC CIRCUITS - CAPACITORS AND INDUCTORS EXPRIMENT#8 AC CIRCUITS - CAPACITORS AND INDUCTORS NOTE: Two weeks are allocated for this experiment. Before performing this experiment, review the Proper Oscilloscope Use section of Experiment #7. Objective

More information

SOIL RESISTIVITY MEASUREMENTS

SOIL RESISTIVITY MEASUREMENTS SOIL RESISTIVITY MEASUREMENTS APPENDIX B B Soil resistivity directly affects the design of a grounding (earthing) electrode system and is the prime factor that determines the resistance to earth of a grounding

More information

EARTHING SYSTEM CALCULATION

EARTHING SYSTEM CALCULATION BAZIAN STEAL FACTORY S/S 132/11kV, 1x30/40MVA EARTHING SYSTEM CALCULATION Kurdistan Region Sulaimani May 2011 Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA Contents: 1. Introduction... 3 2. List of references

More information

Electrical Resonance

Electrical Resonance Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

More information

1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal.

1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal. CHAPTER 3: OSCILLOSCOPE AND SIGNAL GENERATOR 3.1 Introduction to oscilloscope 1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal. 2. The graph show signal change

More information

Earthing Techniques 1. SOIL RESISTIVITY TESTING... 1.2 THEORY OF SOIL RESISTIVITY... 2. INTERPRETATION AND MODELLING OF RESULT...

Earthing Techniques 1. SOIL RESISTIVITY TESTING... 1.2 THEORY OF SOIL RESISTIVITY... 2. INTERPRETATION AND MODELLING OF RESULT... Earthing Techniques 1. SOIL RESISTIVITY TESTING... 1.1 INTRODUCTION... 1.2 THEORY OF SOIL RESISTIVITY... 1.3 MAKING A MEASUREMENT... 1.3.1 PRINCIPLES...4 1.3.2 SOIL RESISTIVITY TESTING PROCEDURE GUIDELINES...

More information

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

CHAPTER4 GENERAL ASPECTS OF MUTUAL

CHAPTER4 GENERAL ASPECTS OF MUTUAL CHAPTER4 GENERAL ASPECTS OF MUTUAL ADMITTANCE OF CPW-FED TWIN SLOTS ON CONDUCTOR-BACKED TWO-LAYER SUBSTRATES 4.1 INTRODUCTORY REMARKS The present chapter is concerned with an exploratory investigation

More information

The Next Generation of Cable Technology. A technology primer from NORDX/CDT By, Eric d Allmen

The Next Generation of Cable Technology. A technology primer from NORDX/CDT By, Eric d Allmen A technology primer from NORDX/CDT By, Eric d Allmen Foreword The Telecommunications Industry Association (TIA) and the International Standards Organization (ISO/IEC) are actively engaged in the development

More information

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law. 260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

More information

Output Ripple and Noise Measurement Methods for Ericsson Power Modules

Output Ripple and Noise Measurement Methods for Ericsson Power Modules Output Ripple and Noise Measurement Methods for Ericsson Power Modules Design Note 022 Ericsson Power Modules Ripple and Noise Abstract There is no industry-wide standard for measuring output ripple and

More information

A Design of DC/DC Converter of Photovoltaic Generation System for Streetcars

A Design of DC/DC Converter of Photovoltaic Generation System for Streetcars Journal of International Council on Electrical Engineering Vol. 3, No. 2, pp.164~168, 2013 http://dx.doi.org/10.5370/jicee.2013.3.2.164 A Design of DC/DC Converter of Photovoltaic Generation System for

More information

PCB ROUTERS AND ROUTING METHODS

PCB ROUTERS AND ROUTING METHODS PCB ROUTERS AND ROUTING METHODS BY: LEE W. RITCHEY, SPEEDING EDGE, COPYRIGHT SPEEDING EDGE DECEMBER 1999 FOR PUBLICATION IN FEBRUARY ISSUE OF PC DESIGN MAGAZINE INTRODUCTION Routing of printed circuit

More information

Ultra Low Profile Silicon Capacitors (down to 80 µm) applied to Decoupling Applications. Results on ESR/ESL.

Ultra Low Profile Silicon Capacitors (down to 80 µm) applied to Decoupling Applications. Results on ESR/ESL. Ultra Low Profile Silicon Capacitors (down to 80 µm) applied to Decoupling Applications. Results on ESR/ESL. Laurent Lengignon, Laëtitia Omnès, Frédéric Voiron IPDiA, 2 rue de la girafe, 14000 Caen, France

More information

Case Studies in On-Line Measurement of PD in Motors Fed by Voltage Source PWM Drives

Case Studies in On-Line Measurement of PD in Motors Fed by Voltage Source PWM Drives Case Studies in On-Line Measurement of PD in Motors Fed by Voltage Source PWM Drives G.C. Stone, I. Culbert, H.G. Sedding Qualitrol-Iris Power Mississauga, Ontario, Canada Abstract On-line partial discharge

More information

Sound absorption and acoustic surface impedance

Sound absorption and acoustic surface impedance Sound absorption and acoustic surface impedance CHRISTER HEED SD2165 Stockholm October 2008 Marcus Wallenberg Laboratoriet för Ljud- och Vibrationsforskning Sound absorption and acoustic surface impedance

More information

Understanding Soil Resistivity Testing

Understanding Soil Resistivity Testing Technical Hotline: (00) -9 Technical Hotline: (00) -9 www.aemc.com www.aemc.com Understanding Testing Effects of on Ground Electrode Resistance Factors Affecting APPLICATION NOTES JULY rev.0 Understanding

More information

978-1-4673-1965-2/12/$31.00 2012 IEEE 1488

978-1-4673-1965-2/12/$31.00 2012 IEEE 1488 Generic Thermal Analysis for Phone and Tablet Systems Siva P. Gurrum, Darvin R. Edwards, Thomas Marchand-Golder, Jotaro Akiyama, Satoshi Yokoya, Jean-Francois Drouard, Franck Dahan Texas Instruments, Inc.,

More information

Germanium Diode AM Radio

Germanium Diode AM Radio Germanium Diode AM Radio LAB 3 3.1 Introduction In this laboratory exercise you will build a germanium diode based AM (Medium Wave) radio. Earliest radios used simple diode detector circuits. The diodes

More information

Modeling of Transmission Lines

Modeling of Transmission Lines Modeling of Transmission Lines Electric Power Transmission The electric energy produced at generating stations is transported over high-voltage transmission lines to utilization points. The trend toward

More information

6/14/02 Chapter 14: Use of Electrical Test Equipment 1/20

6/14/02 Chapter 14: Use of Electrical Test Equipment 1/20 USE OF ELECTRICAL TEST EQUIPMENT Test equipment is necessary for determining proper set-up, adjustment, operation, and maintenance of electrical systems and control panels. The following is a general procedure

More information

Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory

Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared

More information

Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.

Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Lesson 3 DIRECT AND ALTERNATING CURRENTS Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Objectives. When you have completed this lesson, you should be able

More information

ARES II ADVANCED MULTI - CHANNEL AUTOMATIC RESISTIVITY & IP SYSTEM

ARES II ADVANCED MULTI - CHANNEL AUTOMATIC RESISTIVITY & IP SYSTEM ARES II ADVANCED MULTI - CHANNEL AUTOMATIC RESISTIVITY & IP SYSTEM 850 W - 2000 Vp-p - 5 A Transmitter with Parallel Power Booster Capability for all Multi-Electrode and Manual Modes 10-channel Receiver

More information

Improved PFC Boost Choke using a Quasi-Planar Winding Configuration Dave Shonts Schott Corporation 1000 Parkers Lake Road Wayzata, MN 55391

Improved PFC Boost Choke using a Quasi-Planar Winding Configuration Dave Shonts Schott Corporation 1000 Parkers Lake Road Wayzata, MN 55391 Improved PFC Boost Choke using a Quasi-Planar Winding Configuration Dave Shonts Schott Corporation 1000 Parkers Lake Road Wayzata, MN 55391 Abstract- A novel approach to boost inductor design using a quasi-planar

More information

Mitigating Power Bus Noise with Embedded Capacitance in PCB Designs

Mitigating Power Bus Noise with Embedded Capacitance in PCB Designs Mitigating Power Bus Noise with Embedded Capacitance in PCB Designs Minjia Xu, Todd H. Hubing, Juan Chen*, James L. Drewniak, Thomas P. Van Doren, and Richard E. DuBroff Electromagnetic Compatibility Laboratory

More information

EMI in Electric Vehicles

EMI in Electric Vehicles EMI in Electric Vehicles S. Guttowski, S. Weber, E. Hoene, W. John, H. Reichl Fraunhofer Institute for Reliability and Microintegration Gustav-Meyer-Allee 25, 13355 Berlin, Germany Phone: ++49(0)3046403144,

More information

Numerical Parameters Analysis of Boonton 4540 Peak Power Meter

Numerical Parameters Analysis of Boonton 4540 Peak Power Meter Application Note Numerical Parameters Analysis of Boonton 4540 Peak Power Meter Mazumder Alam Product Marketing Manager, Boonton Electronics Introduction The Boonton 4540 series RF peak power meters consisting

More information

Module 1, Lesson 3 Temperature vs. resistance characteristics of a thermistor. Teacher. 45 minutes

Module 1, Lesson 3 Temperature vs. resistance characteristics of a thermistor. Teacher. 45 minutes Module 1, Lesson 3 Temperature vs. resistance characteristics of a thermistor 45 minutes Teacher Purpose of this lesson How thermistors are used to measure temperature. Using a multimeter to measure the

More information

Current and Temperature Ratings

Current and Temperature Ratings Document 361-1 Current and Temperature Ratings Introduction This application note describes: How to interpret Coilcraft inductor current and temperature ratings Our current ratings measurement method and

More information

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

ARES AUTOMATIC RESISTIVITY & IP SYSTEM. 850 W - 2000 V p-p - 5 A Transmitter for all Multi-Electrode and Manual Modes Up to 10 Adjustable IP Windows

ARES AUTOMATIC RESISTIVITY & IP SYSTEM. 850 W - 2000 V p-p - 5 A Transmitter for all Multi-Electrode and Manual Modes Up to 10 Adjustable IP Windows ARES AUTOMATIC RESISTIVITY & IP SYSTEM 850 W - 2000 V p-p - 5 A Transmitter for all Multi-Electrode and Manual Modes Up to 10 Adjustable IP Windows 2D/3D Resistivity & IP Tomography VES, RP, SP Measurements

More information

Modeling of electric railway vehicle for harmonic analysis of traction power-supply system using spline interpolation in frequency domain

Modeling of electric railway vehicle for harmonic analysis of traction power-supply system using spline interpolation in frequency domain Title Modeling of electric railway vehicle for harmonic analysis of traction power-supply system using spline interpolation in frequency domain Author(s) Yuen, KH; Pong, MH; Lo, WC; Ye, ZM Citation Proceedings

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

A Study of a MV Cable Joint

A Study of a MV Cable Joint SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 7, No. 1, May 2010, 1-11 UDK: 621.315.35:537.212 A Study of a MV Cable Joint Radiša Dimitrijević 1, Neda Pekarić-Nađ 2, Miodrag Milutinov 3 Abstract: Construction

More information

Software for Design NMR Probes Using the Shielded Split Ring and the Shielded Symmetrical Band Resonators

Software for Design NMR Probes Using the Shielded Split Ring and the Shielded Symmetrical Band Resonators Software for Design NMR Probes Using the Shielded Split Ring and the Shielded Symmetrical Band Resonators Nasreddine Benahmed University of Tlemcen, Algeria ABSTRACT This article presents a software (NMR

More information

Beamforming and hardware design for a multichannel front-end integrated circuit for real-time 3D catheter-based ultrasonic imaging.

Beamforming and hardware design for a multichannel front-end integrated circuit for real-time 3D catheter-based ultrasonic imaging. Beamforming and hardware design for a multichannel front-end integrated circuit for real-time 3D catheter-based ultrasonic imaging. Ira O. Wygant a, Mustafa Karaman b, Ömer Oralkana, and Butrus T. Khuri-Yakub

More information

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H). INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes

More information

Implementation of High Step-Up Solar Power Optimizer for DC Micro Grid Application

Implementation of High Step-Up Solar Power Optimizer for DC Micro Grid Application Implementation of High tepup olar Power Optimizer for C Micro Grid Application hihming Chen, KeRen Hu, TsorngJuu Liang, and YiHsun Hsieh Advanced Optoelectronic Technology Center epartment of Electrical

More information

P02 Calibration of Density Driven Flow Model for the Freshwater Lens beneath the North Sea Island Borkum by Geophysical Data

P02 Calibration of Density Driven Flow Model for the Freshwater Lens beneath the North Sea Island Borkum by Geophysical Data P02 Calibration of Density Driven Flow Model for the Freshwater Lens beneath the North Sea Island Borkum by Geophysical Data H. Sulzbacher (LIAG), H. Wiederhold* (LIAG), M. Grinat (LIAG), J. Igel (LIAG),

More information

2. Electrical resistivity methods

2. Electrical resistivity methods 2. Electrical resistivity methods The resistivity method is used in the study of horizontal and vertical discontinuities in the electrical properties of the ground. It utilizes direct currents or low frequency

More information

Positive Feedback and Oscillators

Positive Feedback and Oscillators Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

More information

Lightning Protection Introduction

Lightning Protection Introduction Lightning Protection Introduction Structural lightning protection design considerations BS 6651 (Protection of structures against lightning) clearly advises strict adherence to the provision of a conventional

More information

Subject: Glenair MIL-PRF 24758 Conduit Surface Transfer Impedance Test

Subject: Glenair MIL-PRF 24758 Conduit Surface Transfer Impedance Test Lothar O. Hoeft, Ph.D. Consultant, Electromagnetic Effects 5012 San Pedro Ct., NE Albuquerque, New Mexico 87109-2515 Phone: (505)-889-9705 E-mail: bud.hoeft@ieee.org 1 February 24, 2006 Subject: Glenair

More information

Earth Ground Resistance

Earth Ground Resistance Principles, testing methods and applications Diagnose intermittent electrical problems Avoid unnecessary downtime Learn earth ground safety principles Earth Ground Resistance Why Ground, Why Test? Why

More information

Measurement, Modeling and Simulation of Power Line Channel for Indoor High-speed Data Communications

Measurement, Modeling and Simulation of Power Line Channel for Indoor High-speed Data Communications Measurement, Modeling and Simulation of Power Line Channel for Indoor High-speed Data Communications Jong-ho Lee, Ji-hoon Park', Hyun-Suk Lee, Gi-Won Leett and Seong-cheol Kim School of Electrical and

More information

Crosstalk effects of shielded twisted pairs

Crosstalk effects of shielded twisted pairs This article deals with the modeling and simulation of shielded twisted pairs with CST CABLE STUDIO. The quality of braided shields is investigated with respect to perfect solid shields. Crosstalk effects

More information

Chapter 24. Three-Phase Voltage Generation

Chapter 24. Three-Phase Voltage Generation Chapter 24 Three-Phase Systems Three-Phase Voltage Generation Three-phase generators Three sets of windings and produce three ac voltages Windings are placed 120 apart Voltages are three identical sinusoidal

More information

Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt.

Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt. Lab 13: Wound rotor induction motor. Objective: to examine the construction of a 3-phase wound rotor induction motor; to understand exciting current, synchronous speed and slip in this motor; to determine

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Introduction The design and construction of foundations require a good knowledge of the mechanical behaviour of soils and of their spatial variability. Such information can be

More information

5. Measurement of a magnetic field

5. Measurement of a magnetic field H 5. Measurement of a magnetic field 5.1 Introduction Magnetic fields play an important role in physics and engineering. In this experiment, three different methods are examined for the measurement of

More information

Selecting IHLP Composite Inductors for Non-Isolated Converters Utilizing Vishay s Application Sheet

Selecting IHLP Composite Inductors for Non-Isolated Converters Utilizing Vishay s Application Sheet VISHAY DALE www.vishay.com Magnetics Selecting IHLP Composite Inductors for Non-Isolated Converters INTRODUCTION This application note will provide information to assist in the specification of IHLP composite

More information

Avaya WLAN 9100 External Antennas for use with the WAO-9122 Access Point

Avaya WLAN 9100 External Antennas for use with the WAO-9122 Access Point Avaya WLAN 9100 External Antennas for use with the WAO-9122 Access Point Overview To optimize the overall performance of a WLAN in an outdoor deployment it is important to understand how to maximize coverage

More information

RF data receiver super-reactive ASK modulation, low cost and low consumption ideal for Microchip HCS KEELOQ decoder/encoder family. 0.

RF data receiver super-reactive ASK modulation, low cost and low consumption ideal for Microchip HCS KEELOQ decoder/encoder family. 0. Receiver AC-RX2/CS RF data receiver super-reactive ASK modulation, low cost and low consumption ideal for Microchip HCS KEELOQ decoder/encoder family. Pin-out 38.1 3 Component Side 1 2 3 7 11 13 14 15

More information

RC & RL Transient Response

RC & RL Transient Response EE 2006 University of Minnesota Duluth ab 8 1. Introduction R & R Transient Response The student will analyze series R and R circuits. A step input will excite these respective circuits, producing a transient

More information

Impedance Matching of Filters with the MSA Sam Wetterlin 2/11/11

Impedance Matching of Filters with the MSA Sam Wetterlin 2/11/11 Impedance Matching of Filters with the MSA Sam Wetterlin 2/11/11 Introduction The purpose of this document is to illustrate the process for impedance matching of filters using the MSA software. For example,

More information

Multi-Function Ground

Multi-Function Ground Multi-Function Ground Resistance SOIL RESISTIVITY TEster Model 6470-B Now measure ground resistance, soil resistivity and bonding resistance with one instrument! 2- and 4-Wire Bond Resistance/Continuity

More information

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

More information

Which physics for full-wavefield seismic inversion?

Which physics for full-wavefield seismic inversion? Which physics for full-wavefield seismic inversion? M. Warner* (Imperial College London), J. Morgan (Imperial College London), A. Umpleby (Imperial College London), I. Stekl (Imperial College London) &

More information

ANN Based Fault Classifier and Fault Locator for Double Circuit Transmission Line

ANN Based Fault Classifier and Fault Locator for Double Circuit Transmission Line International Journal of Computer Sciences and Engineering Open Access Research Paper Volume-4, Special Issue-2, April 2016 E-ISSN: 2347-2693 ANN Based Fault Classifier and Fault Locator for Double Circuit

More information

4 SENSORS. Example. A force of 1 N is exerted on a PZT5A disc of diameter 10 mm and thickness 1 mm. The resulting mechanical stress is:

4 SENSORS. Example. A force of 1 N is exerted on a PZT5A disc of diameter 10 mm and thickness 1 mm. The resulting mechanical stress is: 4 SENSORS The modern technical world demands the availability of sensors to measure and convert a variety of physical quantities into electrical signals. These signals can then be fed into data processing

More information

Video Camera Installation Guide

Video Camera Installation Guide Video Camera Installation Guide The intent of this guide is to provide the information needed to complete or modify a video camera installation to avoid lightning and induced power surge damage. This guide

More information

Tutorial : 2-D and 3-D electrical imaging surveys

Tutorial : 2-D and 3-D electrical imaging surveys Tutorial : 2-D and 3-D electrical imaging surveys By Dr. M.H.Loke Copyright (1996-2001) email : mhloke@pc.jaring.my drmhloke@hotmail.com (All rights reserved) (Revision date : 1 Sept. 2001) ii Copyright

More information

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across? PHYS Practice Problems hapters 8- hapter 8. 45. The peak value of an alternating current in a 5-W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,

More information

Part 2 Designing Combline Filters with Free Software Paul Wade W1GHZ 2014

Part 2 Designing Combline Filters with Free Software Paul Wade W1GHZ 2014 Part 2 Designing Combline Filters with Free Software Paul Wade W1GHZ 2014 Combline filters have more variables than most other filter types, so design software is more complicated. For instance, interdigital

More information

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness

More information

Digital Energy ITI. Instrument Transformer Basic Technical Information and Application

Digital Energy ITI. Instrument Transformer Basic Technical Information and Application g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER

More information

Introduction to Electronic Signals

Introduction to Electronic Signals Introduction to Electronic Signals Oscilloscope An oscilloscope displays voltage changes over time. Use an oscilloscope to view analog and digital signals when required during circuit diagnosis. Fig. 6-01

More information

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those

More information

Application Note: PCB Design By: Wei-Lung Ho

Application Note: PCB Design By: Wei-Lung Ho Application Note: PCB Design By: Wei-Lung Ho Introduction: A printed circuit board (PCB) electrically connects circuit components by routing conductive traces to conductive pads designed for specific components

More information

Analysis on the Balanced Class-E Power Amplifier for the Load Mismatch Condition

Analysis on the Balanced Class-E Power Amplifier for the Load Mismatch Condition Analysis on the Class-E Power Amplifier for the Load Mismatch Condition Inoh Jung 1,1, Mincheol Seo 1, Jeongbae Jeon 1, Hyungchul Kim 1, Minwoo Cho 1, Hwiseob Lee 1 and Youngoo Yang 1 Sungkyunkwan University,

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.

More information

MICRO HYDRO POWER PLANT WITH INDUCTION GENERATOR SUPPLYING SINGLE PHASE LOADS

MICRO HYDRO POWER PLANT WITH INDUCTION GENERATOR SUPPLYING SINGLE PHASE LOADS MICRO HYDRO POWER PLANT WITH INDUCTION GENERATOR SUPPLYING SINGLE PHASE LOADS C.P. ION 1 C. MARINESCU 1 Abstract: This paper presents a new method to supply single-phase loads using a three-phase induction

More information

HIGH VOLTAGE ELECTROSTATIC PENDULUM

HIGH VOLTAGE ELECTROSTATIC PENDULUM HIGH VOLTAGE ELECTROSTATIC PENDULUM Raju Baddi National Center for Radio Astrophysics, TIFR, Ganeshkhind P.O Bag 3, Pune University Campus, PUNE 411007, Maharashtra, INDIA; baddi@ncra.tifr.res.in ABSTRACT

More information

Electronic WorkBench tutorial

Electronic WorkBench tutorial Electronic WorkBench tutorial Introduction Electronic WorkBench (EWB) is a simulation package for electronic circuits. It allows you to design and analyze circuits without using breadboards, real components

More information

A study on the Effect of Distorted Sampler Shoe on Standard Penetration Test Result in Cohesionless soil

A study on the Effect of Distorted Sampler Shoe on Standard Penetration Test Result in Cohesionless soil ISSN: 319-53 (An ISO 39: 00 Certified Organization) A study on the Effect of Distorted Sampler Shoe on Standard Penetration Test Result in Cohesionless soil Utpal Kumar Das Associate Professor, Department

More information

Step Response of RC Circuits

Step Response of RC Circuits Step Response of RC Circuits 1. OBJECTIVES...2 2. REFERENCE...2 3. CIRCUITS...2 4. COMPONENTS AND SPECIFICATIONS...3 QUANTITY...3 DESCRIPTION...3 COMMENTS...3 5. DISCUSSION...3 5.1 SOURCE RESISTANCE...3

More information

Selecting Current Transformers Part 1 By Darrell G. Broussard, P.E.

Selecting Current Transformers Part 1 By Darrell G. Broussard, P.E. By Darrell G. Broussard, P.E. Introduction: As engineers, we are aware that electrical power systems have grown. How much have they grown? When was the last time you specified a 2400-volt system, a 4160-volt

More information

A practical guide to earth resistance testing WWW.MEGGER.COM

A practical guide to earth resistance testing WWW.MEGGER.COM A practical guide to earth resistance testing WWW.MEGGER.COM The word Megger is a registered trademark Introduction Nothing is quite so common or abundantly available throughout the world as the earth

More information

SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

More information

Lab #9: AC Steady State Analysis

Lab #9: AC Steady State Analysis Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.

More information

Determination of source parameters from seismic spectra

Determination of source parameters from seismic spectra Topic Determination of source parameters from seismic spectra Authors Michael Baumbach, and Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany); E-mail: pb65@gmx.net

More information

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved.

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved. Section 5. : Horn Physics Section 5. : Horn Physics By Martin J. King, 6/29/8 Copyright 28 by Martin J. King. All Rights Reserved. Before discussing the design of a horn loaded loudspeaker system, it is

More information

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment Fluid Structure Interaction VI 3 Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment J. Hengstler & J. Dual Department of Mechanical and Process

More information

Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture - 33 3 phase System 4

Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture - 33 3 phase System 4 Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore Lecture - 33 3 phase System 4 Hello everybody. So, in the last class we have been

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

Performance Enhancement of Wound Rotor Induction Motor by VSI with Dynamic Capacitor Controlled Rotor Circuit

Performance Enhancement of Wound Rotor Induction Motor by VSI with Dynamic Capacitor Controlled Rotor Circuit Performance Enhancement of Wound Rotor Induction Motor by VSI with Dynamic Capacitor Controlled Rotor Circuit K.Ranjith kumar kumar, Dr.S.Palaniswami K.Priyadharsini, Senior Senior Lecturer Lecturer Professor

More information

Manufacturing Backend

Manufacturing Backend Manufacturing Backend Anusha Hiremath, Apoorva Dhavale, K V Roopa, Keertee Savadi, Aruna S. Nayak Computer Science and Engineering and Technology BVB College of Engineering and Technology Hubli, Karnataka,

More information

RX-AM4SF Receiver. Pin-out. Connections

RX-AM4SF Receiver. Pin-out. Connections RX-AM4SF Receiver The super-heterodyne receiver RX-AM4SF can provide a RSSI output indicating the amplitude of the received signal: this output can be used to create a field-strength meter capable to indicate

More information

An extended EMC study of an electrical powertrain for transportation systems

An extended EMC study of an electrical powertrain for transportation systems European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 12) Santiago de Compostela

More information

User s Guide DDS-3X25 USB ARBITRARY FUNCTION GENERATOR

User s Guide DDS-3X25 USB ARBITRARY FUNCTION GENERATOR User s Guide DDS-3X25 USB ARBITRARY FUNCTION GENERATOR Content General safety summary...1 Introduction...2 Chapter 1 Getting started...3 System Requirements...4 Installing Hardware...5 Installing Software...8

More information

2012 San Francisco Colloquium

2012 San Francisco Colloquium 2012 San Francisco Colloquium http : //www.cigre.org HVDC and Power Electronic Systems for Overhead Line and Insulated Cable Applications B4-8 Trans Bay Cable A Breakthrough of VSC Multilevel Converters

More information

HARMONIC DISTORTION IN THE ELECTRIC SUPPLY SYSTEM

HARMONIC DISTORTION IN THE ELECTRIC SUPPLY SYSTEM Technical Note No.3 March 2000 HARMONIC DISTORTION IN THE ELECTRIC SUPPLY SYSTEM This Technical Note discusses harmonic distortion, its causes and adverse effects, what levels are unacceptable and how

More information

Frequency Response of Filters

Frequency Response of Filters School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

More information