1.3 Applications of Systems of Linear Equations

Size: px
Start display at page:

Download "1.3 Applications of Systems of Linear Equations"

Transcription

1 .3 Applications of Sstems of Linear Equations 5.3 Applications of Sstems of Linear Equations ( n, n ) ( 3, 3 ) (, ) (, ) Polnomial Curve Fitting Figure. Set up and solve a sstem of equations to fit a polnomial function to a set of data points. Set up and solve a sstem of equations to represent a network. Sstems of linear equations arise in a wide variet of applications. In this section ou will look at two applications, and ou will see more in subsequent chapters. The first application shows how to fit a polnomial function to a set of data points in the plane. The second application focuses on networks and Kirchhoff s Laws for electricit. POLYNOMIAL CURVE FITTING Suppose n points in the -plane,,,,..., n, n represent a collection of data and ou are asked to find a polnomial function of degree n p a a a... a n n whose graph passes through the specified points. This procedure is called polnomial curve fitting. If all -coordinates of the points are distinct, then there is precisel one polnomial function of degree n (or less) that fits the n points, as shown in Figure.. To solve for the n coefficients of p, substitute each of the n points into the polnomial function and obtain n linear equations in n variables a, a, a,..., a. n a a a... n a n a a a... n a n. 8 6 Figure.5 (, ) (, ) (3, ) p() 3 Simulation Eplore this concept further with an electronic simulation available at a a n a n... a n n n n Eample demonstrates this procedure with a second-degree polnomial. Polnomial Curve Fitting Determine the polnomial p a a a whose graph passes through the points,,,, and 3,. Substituting,, and 3 into p and equating the results to the respective -values produces the sstem of linear equations in the variables a, a, and a shown below. p a a a a a a p a a a a a a p3 a a 3 a 3 a 3a 9a The solution of this sstem is a, a 8, and a 8 so the polnomial function is p 8 8. Figure.5 shows the graph of p.

2 6 Chapter Sstems of Linear Equations (, ) p() 8 (, 5) (, 3) (, ) (, ) 3 Figure.6 Find a polnomial that fits the points Polnomial Curve Fitting, 3,, 5,,,,, and,. Because ou are given five points, choose a fourth-degree polnomial function p a a a a 3 3 a. Substituting the given points into p equations. a a a 8a 3 6a 3 a a a a 3 a 5 a a a a a 3 a a a a 8a 3 6a The solution of these equations is a, a 3, a, which means the polnomial function is p Figure.6 shows the graph of p. produces the following sstem of linear a 3 8, a 7 The sstem of linear equations in Eample is relativel eas to solve because the -values are small. For a set of points with large -values, it is usuall best to translate the values before attempting the curve-fitting procedure. The net eample demonstrates this approach. Translating Large -Values Before Curve Fitting Find a polnomial that fits the points,, 3, 3, 5, 5 6, 3, Because the given -values are large, use the translation z 8 to obtain z, z, z 3, 3 z, z 5, 5, 3, 7, 5,, 5, This is the same set of points as in Eample. So, the polnomial that fits these points is pz 3z z 8z 3 7z z 5 z 3 z 3 7 z. Letting z 8, ou have 8,,,, 9,,,,,.,. p

3 .3 Applications of Sstems of Linear Equations 7 An Application of Curve Fitting Find a polnomial that relates the periods of the three planets that are closest to the Sun to their mean distances from the Sun, as shown in the table. Then test the accurac of the fit b using the polnomial to calculate the period of Mars. (In the table, the mean distance is given in astronomical units, and the period is given in ears.) Planet Mercur Venus Earth Mars Mean Distance Period Begin b fitting a quadratic polnomial function p a a a to the points.387,.,.73,.65, and,. The sstem of linear equations obtained b substituting these points into p is a.387a.387 a. a.73a.73 a.65 a a a. The approimate solution of the sstem is a.63, which means that an approimation of the polnomial function is p Using p to evaluate the period of Mars produces p.5.98 ears. Note that the actual period of Mars is.88 ears. Figure.7 compares the estimate with the actual period graphicall. a.69, a.55 Period (in ears) Mercur (.387,.) Mean distance from the Sun (in astronomical units) Figure.7 (.5,.88) = p() Venus Earth Mars (.,.) (.73,.65)

4 8 Chapter Sstems of Linear Equations As illustrated in Eample, a polnomial that fits some of the points in a data set is not necessaril an accurate model for other points in the data set. Generall, the farther the other points are from those used to fit the polnomial, the worse the fit. For instance, the mean distance of Jupiter from the Sun is 5.3 astronomical units. Using p in Eample to approimate the period gives 5.33 ears a poor estimate of Jupiter s actual period of.86 ears. The problem of curve fitting can be difficult. Tpes of functions other than polnomial functions ma provide better fits. For instance, look again at the curve-fitting problem in Eample. Taking the natural logarithms of the given distances and periods produces the following results. Planet Mercur Venus Earth Mars Mean Distance ln Period ln Now, fitting a polnomial to the logarithms of the distances and periods produces the linear relationship ln 3 ln shown in Figure.8. ln Earth Venus Mars ln = 3 ln ln Mercur Figure.8 From ln 3 ln, it follows that 3, or 3. In other words, the square of the period (in ears) of each planet is equal to the cube of its mean distance (in astronomical units) from the Sun. Johannes Kepler first discovered this relationship in 69. LINEAR ALGEBRA APPLIED Researchers in Ital studing the acoustical noise levels from vehicular traffic at a bus three-wa intersection on a college campus used a sstem of linear equations to model the traffic flow at the intersection. To help formulate the sstem of equations, operators stationed themselves at various locations along the intersection and counted the numbers of vehicles going b. (Source: Acoustical Noise Analsis in Road Intersections: A Case Stud, Guarnaccia, Claudio, Recent Advances in Acoustics & Music, Proceedings of the th WSEAS International Conference on Acoustics & Music: Theor & Applications, June, ) gemphotograph/shutterstock.com

5 NETWORK ANALYSIS Networks composed of branches and junctions are used as models in such fields as economics, traffic analsis, and electrical engineering. In a network model, ou assume that the total flow into a junction is equal to the total flow out of the junction. For instance, the junction shown in Figure.9 has 5 units flowing into it, so there must be 5 units flowing out of it. You can represent this with the linear equation 5..3 Applications of Sstems of Linear Equations 9 5 Figure.9 Because each junction in a network gives rise to a linear equation, ou can analze the flow through a network composed of several junctions b solving a sstem of linear equations. Eample 5 illustrates this procedure. Analsis of a Network 3 Figure Set up a sstem of linear equations to represent the network shown in Figure.. Then solve the sstem. Each of the network s five junctions gives rise to a linear equation, as follows. The augmented matri for this sstem is Gauss-Jordan elimination produces the matri From the matri above, ou can see that 5, Letting t 5, ou have t, , t 3,. 3. Junction Junction Junction 3 Junction Junction 5 3 5, 3 t, where t is an real number, so this sstem has infinitel man solutions. and t, 5. 5 t

6 3 Chapter Sstems of Linear Equations REMARK A closed path is a sequence of branches such that the beginning point of the first branch coincides with the end point of the last branch. In Eample 5, suppose ou could control the amount of flow along the branch labeled 5. Using the solution of Eample 5, ou could then control the flow represented b each of the other variables. For instance, letting t would reduce the flow of and 3 to zero, as shown in Figure.. You ma be able to see how the tpe of network analsis demonstrated in Eample 5 could be used in problems dealing with the flow of traffic through the streets of a cit or the flow of water through an irrigation sstem. An electrical network is another tpe of network where analsis is commonl applied. An analsis of such a sstem uses two properties of electrical networks known as Kirchhoff s Laws.. All the current flowing into a junction must flow out of it.. The sum of the products IR ( I is current and R is resistance) around a closed path is equal to the total voltage in the path. In an electrical network, current is measured in amperes, or amps A, resistance is measured in ohms, and the product of current and resistance is measured in volts V. The smbol represents a batter. The larger vertical bar denotes where the current flows out of the terminal. The smbol denotes resistance. An arrow in the branch indicates the direction of the current. 3 Figure. 5 Analsis of an Electrical Network I R = 3Ω I R = Ω Path 7 V Path R 3 = Ω 8 V Figure. Determine the currents I, I, and for the electrical network shown in Figure.. Appling Kirchhoff s first law to either junction produces I I Junction or Junction and appling Kirchhoff s second law to the two paths produces R I R I 3I I 7 R I R 3 I 8. Path Path So, ou have the following sstem of three linear equations in the variables I, I, and. I I 3I I 7 I 8 Appling Gauss-Jordan elimination to the augmented matri produces the reduced row-echelon form which means I amp, I amps, and amp.

7 .3 Applications of Sstems of Linear Equations 3 Analsis of an Electrical Network Determine the currents I, I,, I, I 5, and I 6 for the electrical network shown in Figure.3. 7 V R = Ω I V V I Figure.3 Path Path Path 3 I R = Ω I 5 I 6 R = Ω R R 3 = 5 = Ω Ω 3 R 6 = Ω Appling Kirchhoff s first law to the four junctions produces I I I I I I 6 I 5 I I 6 I 5 Junction Junction Junction 3 Junction and appling Kirchhoff s second law to the three paths produces I I I I I 5 7 I 5 I 6. Path Path Path 3 You now have the following sstem of seven linear equations in the variables I, I,, I, I 5, and. I I The augmented matri for this sstem is I 6 Using Gauss-Jordan elimination, a graphing utilit, or a software program, solve this sstem to obtain I, I I I I I I, I I I, I 5 I 5 I 5 I 5 I 6 I 6 I 6 I, 7. 7 I 5 3, meaning I amp, I amps, amp, I amp, I 5 3 amps, and I 6 amps. and I 6

Example 1: Model A Model B Total Available. Gizmos. Dodads. System:

Example 1: Model A Model B Total Available. Gizmos. Dodads. System: Lesson : Sstems of Equations and Matrices Outline Objectives: I can solve sstems of three linear equations in three variables. I can solve sstems of linear inequalities I can model and solve real-world

More information

SYSTEMS OF LINEAR EQUATIONS

SYSTEMS OF LINEAR EQUATIONS SYSTEMS OF LINEAR EQUATIONS Sstems of linear equations refer to a set of two or more linear equations used to find the value of the unknown variables. If the set of linear equations consist of two equations

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

More information

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,

More information

Solving Systems of Equations

Solving Systems of Equations Solving Sstems of Equations When we have or more equations and or more unknowns, we use a sstem of equations to find the solution. Definition: A solution of a sstem of equations is an ordered pair that

More information

Systems of Linear Equations

Systems of Linear Equations Chapter 1 Systems of Linear Equations 1.1 Intro. to systems of linear equations Homework: [Textbook, Ex. 13, 15, 41, 47, 49, 51, 65, 73; page 11-]. Main points in this section: 1. Definition of Linear

More information

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its

More information

Zeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system.

Zeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system. _.qd /7/ 9:6 AM Page 69 Section. Zeros of Polnomial Functions 69. Zeros of Polnomial Functions What ou should learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polnomial

More information

{ } Sec 3.1 Systems of Linear Equations in Two Variables

{ } Sec 3.1 Systems of Linear Equations in Two Variables Sec.1 Sstems of Linear Equations in Two Variables Learning Objectives: 1. Deciding whether an ordered pair is a solution.. Solve a sstem of linear equations using the graphing, substitution, and elimination

More information

FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether or not the relationship shown in the table is a function. 1) -

More information

x y The matrix form, the vector form, and the augmented matrix form, respectively, for the system of equations are

x y The matrix form, the vector form, and the augmented matrix form, respectively, for the system of equations are Solving Sstems of Linear Equations in Matri Form with rref Learning Goals Determine the solution of a sstem of equations from the augmented matri Determine the reduced row echelon form of the augmented

More information

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study Functions and Graphs CHAPTER 2 INTRODUCTION The function concept is one of the most important ideas in mathematics. The stud 2-1 Functions 2-2 Elementar Functions: Graphs and Transformations 2-3 Quadratic

More information

Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science

Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science Colorado College has two all college requirements (QR and SI) which can be satisfied in full, or part, b taking

More information

LESSON EIII.E EXPONENTS AND LOGARITHMS

LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential

More information

SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION 2.2. Distance and Midpoint Formulas; Circles SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

More information

SECTION 5-1 Exponential Functions

SECTION 5-1 Exponential Functions 354 5 Eponential and Logarithmic Functions Most of the functions we have considered so far have been polnomial and rational functions, with a few others involving roots or powers of polnomial or rational

More information

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X Rotation of Aes ROTATION OF AES Rotation of Aes For a discussion of conic sections, see Calculus, Fourth Edition, Section 11.6 Calculus, Earl Transcendentals, Fourth Edition, Section 1.6 In precalculus

More information

When I was 3.1 POLYNOMIAL FUNCTIONS

When I was 3.1 POLYNOMIAL FUNCTIONS 146 Chapter 3 Polnomial and Rational Functions Section 3.1 begins with basic definitions and graphical concepts and gives an overview of ke properties of polnomial functions. In Sections 3.2 and 3.3 we

More information

Graphing Quadratic Equations

Graphing Quadratic Equations .4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

More information

Arithmetic and Algebra of Matrices

Arithmetic and Algebra of Matrices Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational

More information

Systems of Equations and Matrices

Systems of Equations and Matrices Sstems of Equations and Matrices A sstem of equations is a collection of two or more variables In this chapter, ou should learn the following How to use the methods of substitution and elimination to solve

More information

More Equations and Inequalities

More Equations and Inequalities Section. Sets of Numbers and Interval Notation 9 More Equations and Inequalities 9 9. Compound Inequalities 9. Polnomial and Rational Inequalities 9. Absolute Value Equations 9. Absolute Value Inequalities

More information

ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 )

ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 ) SECTION 1. The Circle 1. OBJECTIVES The second conic section we look at is the circle. The circle can be described b using the standard form for a conic section, 1. Identif the graph of an equation as

More information

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 A Summar of Concepts Needed to be Successful in Mathematics The following sheets list the ke concepts which are taught in the specified math course. The sheets

More information

3 Optimizing Functions of Two Variables. Chapter 7 Section 3 Optimizing Functions of Two Variables 533

3 Optimizing Functions of Two Variables. Chapter 7 Section 3 Optimizing Functions of Two Variables 533 Chapter 7 Section 3 Optimizing Functions of Two Variables 533 (b) Read about the principle of diminishing returns in an economics tet. Then write a paragraph discussing the economic factors that might

More information

2.7 Applications of Derivatives to Business

2.7 Applications of Derivatives to Business 80 CHAPTER 2 Applications of the Derivative 2.7 Applications of Derivatives to Business and Economics Cost = C() In recent ears, economic decision making has become more and more mathematicall oriented.

More information

North Carolina Community College System Diagnostic and Placement Test Sample Questions

North Carolina Community College System Diagnostic and Placement Test Sample Questions North Carolina Communit College Sstem Diagnostic and Placement Test Sample Questions 0 The College Board. College Board, ACCUPLACER, WritePlacer and the acorn logo are registered trademarks of the College

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A7 of challenge: C A7 Interpreting functions, graphs and tables tables Mathematical goals Starting points Materials required Time needed To enable learners to understand: the relationship between

More information

Student Exploration: Circuits

Student Exploration: Circuits Name: Date: Student Exploration: Circuits Vocabulary: ammeter, circuit, current, ohmmeter, Ohm s law, parallel circuit, resistance, resistor, series circuit, voltage Prior Knowledge Questions (Do these

More information

6.3 PARTIAL FRACTIONS AND LOGISTIC GROWTH

6.3 PARTIAL FRACTIONS AND LOGISTIC GROWTH 6 CHAPTER 6 Techniques of Integration 6. PARTIAL FRACTIONS AND LOGISTIC GROWTH Use partial fractions to find indefinite integrals. Use logistic growth functions to model real-life situations. Partial Fractions

More information

The Distance Formula and the Circle

The Distance Formula and the Circle 10.2 The Distance Formula and the Circle 10.2 OBJECTIVES 1. Given a center and radius, find the equation of a circle 2. Given an equation for a circle, find the center and radius 3. Given an equation,

More information

5.3 Graphing Cubic Functions

5.3 Graphing Cubic Functions Name Class Date 5.3 Graphing Cubic Functions Essential Question: How are the graphs of f () = a ( - h) 3 + k and f () = ( 1_ related to the graph of f () = 3? b ( - h) 3 ) + k Resource Locker Eplore 1

More information

Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

More information

Quadratic Equations and Functions

Quadratic Equations and Functions Quadratic Equations and Functions. Square Root Propert and Completing the Square. Quadratic Formula. Equations in Quadratic Form. Graphs of Quadratic Functions. Verte of a Parabola and Applications In

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

THE POWER RULES. Raising an Exponential Expression to a Power

THE POWER RULES. Raising an Exponential Expression to a Power 8 (5-) Chapter 5 Eponents and Polnomials 5. THE POWER RULES In this section Raising an Eponential Epression to a Power Raising a Product to a Power Raising a Quotient to a Power Variable Eponents Summar

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

Connecting Transformational Geometry and Transformations of Functions

Connecting Transformational Geometry and Transformations of Functions Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.

More information

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model . Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses

More information

Partial Fractions. and Logistic Growth. Section 6.2. Partial Fractions

Partial Fractions. and Logistic Growth. Section 6.2. Partial Fractions SECTION 6. Partial Fractions and Logistic Growth 9 Section 6. Partial Fractions and Logistic Growth Use partial fractions to find indefinite integrals. Use logistic growth functions to model real-life

More information

Chapter 8. Lines and Planes. By the end of this chapter, you will

Chapter 8. Lines and Planes. By the end of this chapter, you will Chapter 8 Lines and Planes In this chapter, ou will revisit our knowledge of intersecting lines in two dimensions and etend those ideas into three dimensions. You will investigate the nature of planes

More information

Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.

Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4. _.qd /7/5 9: AM Page 5 Section.. Polynomial and Synthetic Division 5 Polynomial and Synthetic Division What you should learn Use long division to divide polynomials by other polynomials. Use synthetic

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

Complex Numbers. (x 1) (4x 8) n 2 4 x 1 2 23 No real-number solutions. From the definition, it follows that i 2 1.

Complex Numbers. (x 1) (4x 8) n 2 4 x 1 2 23 No real-number solutions. From the definition, it follows that i 2 1. 7_Ch09_online 7// 0:7 AM Page 9-9. Comple Numbers 9- SECTION 9. OBJECTIVES Epress square roots of negative numbers in terms of i. Write comple numbers in a bi form. Add and subtract comple numbers. Multipl

More information

PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS

PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS A ver important set of curves which has received considerabl attention in recent ears in connection with the factoring of large numbers

More information

Core Maths C2. Revision Notes

Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

More information

THIS CHAPTER INTRODUCES the Cartesian coordinate

THIS CHAPTER INTRODUCES the Cartesian coordinate 87533_01_ch1_p001-066 1/30/08 9:36 AM Page 1 STRAIGHT LINES AND LINEAR FUNCTIONS 1 THIS CHAPTER INTRODUCES the Cartesian coordinate sstem, a sstem that allows us to represent points in the plane in terms

More information

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving

More information

Systems of Linear Equations: Solving by Substitution

Systems of Linear Equations: Solving by Substitution 8.3 Sstems of Linear Equations: Solving b Substitution 8.3 OBJECTIVES 1. Solve sstems using the substitution method 2. Solve applications of sstems of equations In Sections 8.1 and 8.2, we looked at graphing

More information

Solving Systems of Linear Equations With Row Reductions to Echelon Form On Augmented Matrices. Paul A. Trogdon Cary High School Cary, North Carolina

Solving Systems of Linear Equations With Row Reductions to Echelon Form On Augmented Matrices. Paul A. Trogdon Cary High School Cary, North Carolina Solving Sstems of Linear Equations With Ro Reductions to Echelon Form On Augmented Matrices Paul A. Trogdon Car High School Car, North Carolina There is no more efficient a to solve a sstem of linear equations

More information

Students Currently in Algebra 2 Maine East Math Placement Exam Review Problems

Students Currently in Algebra 2 Maine East Math Placement Exam Review Problems Students Currently in Algebra Maine East Math Placement Eam Review Problems The actual placement eam has 100 questions 3 hours. The placement eam is free response students must solve questions and write

More information

To Be or Not To Be a Linear Equation: That Is the Question

To Be or Not To Be a Linear Equation: That Is the Question To Be or Not To Be a Linear Equation: That Is the Question Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form A + B C where A and B are not

More information

Some Tools for Teaching Mathematical Literacy

Some Tools for Teaching Mathematical Literacy Some Tools for Teaching Mathematical Literac Julie Learned, Universit of Michigan Januar 200. Reading Mathematical Word Problems 2. Fraer Model of Concept Development 3. Building Mathematical Vocabular

More information

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1 Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

More information

South Carolina College- and Career-Ready (SCCCR) Algebra 1

South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR) Mathematical Process

More information

Integrating algebraic fractions

Integrating algebraic fractions Integrating algebraic fractions Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fraction as the sum of its partial fractions. In this unit we will illustrate

More information

Solving Special Systems of Linear Equations

Solving Special Systems of Linear Equations 5. Solving Special Sstems of Linear Equations Essential Question Can a sstem of linear equations have no solution or infinitel man solutions? Using a Table to Solve a Sstem Work with a partner. You invest

More information

f x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y

f x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y Fourier Series When the French mathematician Joseph Fourier (768 83) was tring to solve a problem in heat conduction, he needed to epress a function f as an infinite series of sine and cosine functions:

More information

Polynomial Degree and Finite Differences

Polynomial Degree and Finite Differences CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

More information

Classifying Solutions to Systems of Equations

Classifying Solutions to Systems of Equations CONCEPT DEVELOPMENT Mathematics Assessment Project CLASSROOM CHALLENGES A Formative Assessment Lesson Classifing Solutions to Sstems of Equations Mathematics Assessment Resource Service Universit of Nottingham

More information

SAMPLE. Polynomial functions

SAMPLE. Polynomial functions Objectives C H A P T E R 4 Polnomial functions To be able to use the technique of equating coefficients. To introduce the functions of the form f () = a( + h) n + k and to sketch graphs of this form through

More information

Higher. Polynomials and Quadratics 64

Higher. Polynomials and Quadratics 64 hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining

More information

Linear Equations in Two Variables

Linear Equations in Two Variables Section. Sets of Numbers and Interval Notation 0 Linear Equations in Two Variables. The Rectangular Coordinate Sstem and Midpoint Formula. Linear Equations in Two Variables. Slope of a Line. Equations

More information

sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj

sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj Math, Trigonometr and Vectors Geometr 33º What is the angle equal to? a) α = 7 b) α = 57 c) α = 33 d) α = 90 e) α cannot be determined α Trig Definitions Here's a familiar image. To make predictive models

More information

Solving Absolute Value Equations and Inequalities Graphically

Solving Absolute Value Equations and Inequalities Graphically 4.5 Solving Absolute Value Equations and Inequalities Graphicall 4.5 OBJECTIVES 1. Draw the graph of an absolute value function 2. Solve an absolute value equation graphicall 3. Solve an absolute value

More information

Solution of the System of Linear Equations: any ordered pair in a system that makes all equations true.

Solution of the System of Linear Equations: any ordered pair in a system that makes all equations true. Definitions: Sstem of Linear Equations: or more linear equations Sstem of Linear Inequalities: or more linear inequalities Solution of the Sstem of Linear Equations: an ordered pair in a sstem that makes

More information

Linear Equations ! 25 30 35$ & " 350 150% & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development

Linear Equations ! 25 30 35$ &  350 150% &  11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Topic 4 Module 9 Introduction Systems of to Matrices Linear Equations Income = Tickets!

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS HOMOGENEOUS LINEAR SYSTEMS A system of linear equations is said to be homogeneous if it can be written in the form A 0, where A

More information

Algebra 2 Unit 10 Tentative Syllabus Cubics & Factoring

Algebra 2 Unit 10 Tentative Syllabus Cubics & Factoring Name Algebra Unit 10 Tentative Sllabus Cubics & Factoring DATE CLASS ASSIGNMENT Tuesda Da 1: S.1 Eponent s P: -1, -7 Jan Wednesda Da : S.1 More Eponent s P: 9- Jan Thursda Da : Graphing the cubic parent

More information

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors SECTION 5. Eact First-Order Equations 09 SECTION 5. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential

More information

SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property

SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property 498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1

More information

Chapter 5. Parallel Circuits ISU EE. C.Y. Lee

Chapter 5. Parallel Circuits ISU EE. C.Y. Lee Chapter 5 Parallel Circuits Objectives Identify a parallel circuit Determine the voltage across each parallel branch Apply Kirchhoff s current law Determine total parallel resistance Apply Ohm s law in

More information

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

More information

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image. Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical

More information

EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM

EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM . Equations of Lines in Slope-Intercept and Standard Form ( ) 8 In this Slope-Intercept Form Standard Form section Using Slope-Intercept Form for Graphing Writing the Equation for a Line Applications (0,

More information

2 3 Histograms, Frequency Polygons, and Ogives

2 3 Histograms, Frequency Polygons, and Ogives 48 Chapter 2 Frequenc Distributions and Graphs 4. In Data Analsis, select Histogram and click the [OK] button. 5. In the Histogram dialog bo, tpe A1:A5 as the Input Range. 6. Select New Worksheet Pl, and

More information

Sect. 1.3: Factoring

Sect. 1.3: Factoring Sect. 1.3: Factoring MAT 109, Fall 2015 Tuesday, 1 September 2015 Algebraic epression review Epanding algebraic epressions Distributive property a(b + c) = a b + a c (b + c) a = b a + c a Special epansion

More information

7.3 Parabolas. 7.3 Parabolas 505

7.3 Parabolas. 7.3 Parabolas 505 7. Parabolas 0 7. Parabolas We have alread learned that the graph of a quadratic function f() = a + b + c (a 0) is called a parabola. To our surprise and delight, we ma also define parabolas in terms of

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

The Mathematics of Engineering Surveying (3)

The Mathematics of Engineering Surveying (3) The Mathematics of Engineering Surveing (3) Scenario s a new graduate ou have gained emploment as a graduate engineer working for a major contractor that emplos 2000 staff and has an annual turnover of

More information

The Slope-Intercept Form

The Slope-Intercept Form 7.1 The Slope-Intercept Form 7.1 OBJECTIVES 1. Find the slope and intercept from the equation of a line. Given the slope and intercept, write the equation of a line. Use the slope and intercept to graph

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level C1 of challenge: D C1 Linking the properties and forms of quadratic of quadratic functions functions Mathematical goals Starting points Materials required Time needed To enable learners to: identif

More information

How To Understand And Solve Algebraic Equations

How To Understand And Solve Algebraic Equations College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides

More information

Algebra II. Administered May 2013 RELEASED

Algebra II. Administered May 2013 RELEASED STAAR State of Teas Assessments of Academic Readiness Algebra II Administered Ma 0 RELEASED Copright 0, Teas Education Agenc. All rights reserved. Reproduction of all or portions of this work is prohibited

More information

Section V.2: Magnitudes, Directions, and Components of Vectors

Section V.2: Magnitudes, Directions, and Components of Vectors Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions

More information

7.7 Solving Rational Equations

7.7 Solving Rational Equations Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polnomial and Rational Functions 3 A LOOK BACK In Chapter, we began our discussion of functions. We defined domain and range and independent and dependent variables; we found the value of a function and

More information

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions. Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

More information

Graphing Linear Equations

Graphing Linear Equations 6.3 Graphing Linear Equations 6.3 OBJECTIVES 1. Graph a linear equation b plotting points 2. Graph a linear equation b the intercept method 3. Graph a linear equation b solving the equation for We are

More information

C3: Functions. Learning objectives

C3: Functions. Learning objectives CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the

More information

Name Class Date. Additional Vocabulary Support

Name Class Date. Additional Vocabulary Support - Additional Vocabular Support Rate of Change and Slope Concept List negative slope positive slope rate of change rise run slope slope formula slope of horizontal line slope of vertical line Choose the

More information

Series and Parallel Resistive Circuits

Series and Parallel Resistive Circuits Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act

More information

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.

More information

Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS

Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS ORDER OF OPERATIONS In the following order: 1) Work inside the grouping smbols such as parenthesis and brackets. ) Evaluate the powers. 3) Do the multiplication and/or division in order from left to right.

More information

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Clustering Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Clustering Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining Data Mining Cluster Analsis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining b Tan, Steinbach, Kumar Clustering Algorithms K-means and its variants Hierarchical clustering

More information

Constrained Optimization: The Method of Lagrange Multipliers:

Constrained Optimization: The Method of Lagrange Multipliers: Constrained Optimization: The Method of Lagrange Multipliers: Suppose the equation p(x,) x 60x 7 00 models profit when x represents the number of handmade chairs and is the number of handmade rockers produced

More information

Slope-Intercept Form and Point-Slope Form

Slope-Intercept Form and Point-Slope Form Slope-Intercept Form and Point-Slope Form In this section we will be discussing Slope-Intercept Form and the Point-Slope Form of a line. We will also discuss how to graph using the Slope-Intercept Form.

More information

Addition and Subtraction of Vectors

Addition and Subtraction of Vectors ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b

More information