# The Monty Hall Problem

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Gateway to Exploring Mathematical Sciences (GEMS) 9 November, 2013 Lecture Notes The Monty Hall Problem Mark Huber Fletcher Jones Foundation Associate Professor of Mathematics and Statistics and George R. Roberts Fellow

2 1 The Monty Hall Problem Problem created by Steve Selvin Letter to American Statistician in 1975 Inspired by game show Let s Make a Deal Host of the show was Monty Hall. The Problem A contestant is chosen from the studio audience. The contestant is shown one of three doors. Behind one door is a prize, the other two have nothing (Traditionally: prize is a car, other doors have a goat.) Monty then always opens one of the doors that does not contain the prize. Monty then always offers the contestant a chance to switch their door. Then the constestant opens the door. Should the contestant switch when the offer is made? Problem became much more famous when asked to Marilyn Vos Savant s column as a brainteaser. Very easy problem to get wrong! Probability is about information Today you ll be working with a six sided die Probability measures how much information you have Sides of the die symmetric (talk about Platonic solids, show other dice) 2

3 Principle of Insufficient Reason Unless you have a reason otherwise, all outcomes equally likely California weather: rain or not rain not equally likely Sides of a die: symmetric, no reason why one more likely than another Prob(1) = Prob(2) = Prob(3) = Prob(4) = Prob(5) = Prob(6) = x They must add up to 1 x + x + x + x + x + x = 1 6x = 1 x = 1/6. Probability of an outcome 1 over number of outcomes. Extra information can change the probabilities. outcome Prob Info: not 6 1 1/6 1/5 2 1/6 1/5 3 1/6 1/5 4 1/6 1/5 5 1/6 1/5 6 1/6 0 Learning the the die roll is not 6 changes the probabilities! Monty Hall info changes the probabilities as well! Let s see if we can figure out how the probabilities change with the extra information. Build a probability tree. First branch tells if contestant first picked the right door or first picked the wrong door. 3

4 Key insight: if the contestant picks the right door and switches they lose, but if they pick the wrong door and switch, they win! Picked wrong door 1/3 switch = lose Picked right door 2/3 switch = win That means if you always switch, you have a 2/3 chance of winning! The extra information helps! Does more information help more? Suppose you know that when Monty opens a door, he always opens the door with the lowest number Does this information allow the player to do better than 2/3? Let P = # of the door chosen initially by player L = lower numbered door that remains H = higher numbered door that remains For example, if the player chooses door 3, P = 3, L = 1, and H = 2. If the player chooses door 2, P = 2, L = 1, and H = 3. So now let s look at the outcomes. 4

5 Let p stand for prize and n for no prize. So the outcomes are P LH {pnn, npn, nnp}. (For instance, P LH = npn means the prize was behind door L.) In case npn, Monty opens the higher door H. In cases pnn and nnp, Monty opens the lower door L. Hence P LH Probability Opens door L Opens door H pnn 1/3 1/2 0 npn 1/3 0 1 nnp 1/3 1/2 0 In other words, when Monty opens door H, the player knows with certainty that the prize is behind the lower number door L. So Monty opens H means player should switch. When Monty opens L, player has a 50/50 chance of having prize. Player can switch or not switch, won t change chances! Overall chance of player winning: ( ) ( ) ( ) (1) }{{}}{{} chance of H chance of L = 1/3 + 1/3 = 2/3. So (perhaps surpringly), this extra information does not help! 5

6 Gateway to Exploring Mathematical Sciences (GEMS) Prof. Mark Huber Break into small groups so that each group has an even number of people. Each person should have a six-sided die. The warmup 1. Try rolling your die 10 times, and record the number of times the die showed a 1 or 2. What percentage of the time did a 1 or 2 come up in your individual rolls? 2. Compare your number to the others in your group. Add up over your whole group the number of times you rolled a 1 or 2. What percentage of the time did a 1 or 2 come up in your group? The Monty Hall problem 1. Now break up your group into pairs of two people. One of each pair will play the host Monty Hall while the other person will be the player. Have the host roll a die to determine which door gets the prize: on a 1 or 2 it is door number 1, for 3 or 4 it is door number 2, and for 5 or 6 it is door number 3. (Do not show the player which door has the prize!) Next have player choose a door, either 1, 2, or 3. The host then rolls the die. If the player chose the door with the prize, then if the number is 1,2,3, the host tells the player the lower numbered door that does not have a prize. If the number is 4,5,6, the host tells the player the higher numbered door that does not have a prize. For example: the prize is behind door number 2 and the player chose door number 2. The host rolls the die and if it is 3, tells the player the prize is not behind door number 1. Note: it is important that the host roll the die every time, even if the host does not have a choice as to which door to open. Otherwise the player could figure out if they had the right door by seeing if the host needed to roll a die or not! The player then has the option to switch your door or not. (Remember, for this version of the problem, you should always switch!) Finally, the host tells you whether or not you won the prize. 2. Repeat this game 10 times, and record how many times you got the prize. 3. Now switch roles: the player is now Monty Hall, and Monty Hall is now the player. Again play a total of 10 games and see how many are won. 4. When you are done, compare with the results from the other pairs in your group. What was the total winning percentage when you switched every time?. 1

7 The Monty Hall problem variation By using the always switch strategy with the original rules, the chance of the player getting the prize is 2/3, or %. If the rules Monty follows changes, then the player should change their strategy as well! 1. Now repeat the simulated game that you tried before, except now the rule for Monty is a little different. Instead of rolling a die to determine which door to reveal to the player, now Monty will always select the lower numbered door. For example, if the player picked 2, and the prize was behind door number 2, then Monty would always reveal the lower numbered door to the player. It turns out that in this case, if If you have time... Now it s your turn! Can you come up with a new set of rules for Monty to follow? With your rules, what should the player do in order to maximize their chance of winning the prize? 2

8 Gateway to Exploring Mathematical Sciences (GEMS) Prof. Mark Huber Break into small groups so that each group has an even number of people. Each person should have a six-sided die. The warmup 1. Try rolling your die 10 times, and record the number of times the die showed a 1 or 2. What percentage of the time did a 1 or 2 come up in your individual rolls? 2. Compare your number to the others in your group. Add up over your whole group the number of times you rolled a 1 or 2. What percentage of the time did a 1 or 2 come up in your group? The Monty Hall problem 1. Now break up your group into pairs of two people. One of each pair will play the host Monty Hall while the other person will be the player. Have the host roll a die to determine which door gets the prize: on a 1 or 2 it is door number 1, for 3 or 4 it is door number 2, and for 5 or 6 it is door number 3. (Do not show the player which door has the prize!) Next have player choose a door, either 1, 2, or 3. The host then opens a door for the player by telling the player the lowest numbered door that does not contain a prize. The player then has the option to switch your door or not. (Remember, for this version of the problem, you should always switch!) Finally, the host tells you whether or not you won the prize. 2. Repeat this game 10 times, and record how many times you got the prize. 3. Now switch roles: the player is now Monty Hall, and Monty Hall is now the player. Again play a total of 10 games and see how many are won. 4. When you are done, compare with the results from the other pairs in your group. What was the total winning percentage when you switched every time?. The Monty Hall problem variation By using the always switch strategy with the original rules, the chance of the player getting the prize is 2/3, or %. If the rules Monty follows changes, then the player should change their strategy as well! 1. Now repeat the simulated game that you tried before, except now the rule for Monty is a little different. 1

9 Now after the player chooses a door, Monty rolls a die and does the following If the die is 1,2,3, or 4 and the player has chosen the correct door, Monty reveals the lowest numbered door without a prize. If the die is 5 or 6 and the player has chosen an incorrect door, Monty also reveals the lowest numbered door without a prize. Otherwise Monty does not reveal any door. 2. The player then gets a chance to switch doors if they wish. Have the player always switch doors. If there is more than one door to switch to, have them choose randomly (die roll: 1,2,3 choose lower number door, with die roll 4,5,6 choose higher number door.) Try playing this game 10 times as the host and the player, with the always switching strategy. Combine your data with the others from your group. From your data, what is your guess for the chance that the player wins with the always switch strategy? Can you calculate the chance exactly? Is there a better strategy that you could use? 2

### LET S MAKE A DEAL! ACTIVITY

LET S MAKE A DEAL! ACTIVITY NAME: DATE: SCENARIO: Suppose you are on the game show Let s Make A Deal where Monty Hall (the host) gives you a choice of three doors. Behind one door is a valuable prize.

### The Casino Lab STATION 1: CRAPS

The Casino Lab Casinos rely on the laws of probability and expected values of random variables to guarantee them profits on a daily basis. Some individuals will walk away very wealthy, while others will

### 8. You have three six-sided dice (one red, one green, and one blue.) The numbers of the dice are

Probability Warm up problem. Alice and Bob each pick, at random, a real number between 0 and 10. Call Alice s number A and Bob s number B. The is the probability that A B? What is the probability that

### Introduction and Overview

Introduction and Overview Probability and Statistics is a topic that is quickly growing, has become a major part of our educational program, and has a substantial role in the NCTM Standards. While covering

### Book Review of Rosenhouse, The Monty Hall Problem. Leslie Burkholder 1

Book Review of Rosenhouse, The Monty Hall Problem Leslie Burkholder 1 The Monty Hall Problem, Jason Rosenhouse, New York, Oxford University Press, 2009, xii, 195 pp, US \$24.95, ISBN 978-0-19-5#6789-8 (Source

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice,

### Discrete Mathematics for CS Fall 2006 Papadimitriou & Vazirani Lecture 22

CS 70 Discrete Mathematics for CS Fall 2006 Papadimitriou & Vazirani Lecture 22 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice, roulette

### Monty Hall, Monty Fall, Monty Crawl

Monty Hall, Monty Fall, Monty Crawl Jeffrey S. Rosenthal (June, 2005; appeared in Math Horizons, September 2008, pages 5 7.) (Dr. Rosenthal is a professor in the Department of Statistics at the University

### R Simulations: Monty Hall problem

R Simulations: Monty Hall problem Monte Carlo Simulations Monty Hall Problem Statistical Analysis Simulation in R Exercise 1: A Gift Giving Puzzle Exercise 2: Gambling Problem R Simulations: Monty Hall

### PROBABILITY C A S I N O L A B

A P S T A T S A Fabulous PROBABILITY C A S I N O L A B AP Statistics Casino Lab 1 AP STATISTICS CASINO LAB: INSTRUCTIONS The purpose of this lab is to allow you to explore the rules of probability in the

### Lecture 13. Understanding Probability and Long-Term Expectations

Lecture 13 Understanding Probability and Long-Term Expectations Thinking Challenge What s the probability of getting a head on the toss of a single fair coin? Use a scale from 0 (no way) to 1 (sure thing).

### Introduction to Discrete Probability. Terminology. Probability definition. 22c:19, section 6.x Hantao Zhang

Introduction to Discrete Probability 22c:19, section 6.x Hantao Zhang 1 Terminology Experiment A repeatable procedure that yields one of a given set of outcomes Rolling a die, for example Sample space

### Week 2: Conditional Probability and Bayes formula

Week 2: Conditional Probability and Bayes formula We ask the following question: suppose we know that a certain event B has occurred. How does this impact the probability of some other A. This question

### Mathematical goals. Starting points. Materials required. Time needed

Level S2 of challenge: B/C S2 Mathematical goals Starting points Materials required Time needed Evaluating probability statements To help learners to: discuss and clarify some common misconceptions about

### Avoiding the Consolation Prize: The Mathematics of Game Shows

Avoiding the Consolation Prize: The Mathematics of Game Shows STUART GLUCK, Ph.D. CENTER FOR TALENTED YOUTH JOHNS HOPKINS UNIVERSITY STU@JHU.EDU CARLOS RODRIGUEZ CENTER FOR TALENTED YOUTH JOHNS HOPKINS

### Using games to support. Win-Win Math Games. by Marilyn Burns

4 Win-Win Math Games by Marilyn Burns photos: bob adler Games can motivate students, capture their interest, and are a great way to get in that paperand-pencil practice. Using games to support students

### Ch. 13.2: Mathematical Expectation

Ch. 13.2: Mathematical Expectation Random Variables Very often, we are interested in sample spaces in which the outcomes are distinct real numbers. For example, in the experiment of rolling two dice, we

### MAT 1000. Mathematics in Today's World

MAT 1000 Mathematics in Today's World We talked about Cryptography Last Time We will talk about probability. Today There are four rules that govern probabilities. One good way to analyze simple probabilities

### Appendix D: The Monty Hall Controversy

Appendix D: The Monty Hall Controversy Appendix D: The Monty Hall Controversy - Page 1 Let's Make a Deal Prepared by Rich Williams, Spring 1991 Last Modified Fall, 2004 You are playing Let's Make a Deal

### That s Not Fair! ASSESSMENT #HSMA20. Benchmark Grades: 9-12

That s Not Fair! ASSESSMENT # Benchmark Grades: 9-12 Summary: Students consider the difference between fair and unfair games, using probability to analyze games. The probability will be used to find ways

### Minimax Strategies. Minimax Strategies. Zero Sum Games. Why Zero Sum Games? An Example. An Example

Everyone who has studied a game like poker knows the importance of mixing strategies With a bad hand, you often fold But you must bluff sometimes Lectures in Microeconomics-Charles W Upton Zero Sum Games

### Hooray for the Hundreds Chart!!

Hooray for the Hundreds Chart!! The hundreds chart consists of a grid of numbers from 1 to 100, with each row containing a group of 10 numbers. As a result, children using this chart can count across rows

### 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.

Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are

### Probability. a number between 0 and 1 that indicates how likely it is that a specific event or set of events will occur.

Probability Probability Simple experiment Sample space Sample point, or elementary event Event, or event class Mutually exclusive outcomes Independent events a number between 0 and 1 that indicates how

### Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

### Targets for Pupils in Year 4. Maths

Targets for Pupils in Year 4 Maths A Booklet For Parents Help Your Child With Mathematics Targets - Year 4 By the end of this year most children should be able to Know the 2, 3, 4, 5, 6, 7, 8, 9 and 10

### Lab 11. Simulations. The Concept

Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that

### Introduction to Probability

Massachusetts Institute of Technology Course Notes 0 6.04J/8.06J, Fall 0: Mathematics for Computer Science November 4 Professor Albert Meyer and Dr. Radhika Nagpal revised November 6, 00, 57 minutes Introduction

### Prime Time: Homework Examples from ACE

Prime Time: Homework Examples from ACE Investigation 1: Building on Factors and Multiples, ACE #8, 28 Investigation 2: Common Multiples and Common Factors, ACE #11, 16, 17, 28 Investigation 3: Factorizations:

### Probability and Statistics is one of the strands tested on the California Standards Test.

Grades 3-4 Probability and Statistics is one of the strands tested on the California Standards Test. Probability is introduced in 3 rd grade. Many students do not work on probability concepts in 5 th grade.

### 6th Grade Lesson Plan: Probably Probability

6th Grade Lesson Plan: Probably Probability Overview This series of lessons was designed to meet the needs of gifted children for extension beyond the standard curriculum with the greatest ease of use

### Practical Probability:

Practical Probability: Casino Odds and Sucker Bets Tom Davis tomrdavis@earthlink.net April 2, 2011 Abstract Gambling casinos are there to make money, so in almost every instance, the games you can bet

### Unit 19: Probability Models

Unit 19: Probability Models Summary of Video Probability is the language of uncertainty. Using statistics, we can better predict the outcomes of random phenomena over the long term from the very complex,

### Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80)

Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80) CS 30, Winter 2016 by Prasad Jayanti 1. (10 points) Here is the famous Monty Hall Puzzle. Suppose you are on a game show, and you

FUN + GAMES = MATHS Sue Fine Linn Maskell Teachers are often concerned that there isn t enough time to play games in maths classes. But actually there is time to play games and we need to make sure that

### Find an expected value involving two events. Find an expected value involving multiple events. Use expected value to make investment decisions.

374 Chapter 8 The Mathematics of Likelihood 8.3 Expected Value Find an expected value involving two events. Find an expected value involving multiple events. Use expected value to make investment decisions.

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According

### Expected Value and the Game of Craps

Expected Value and the Game of Craps Blake Thornton Craps is a gambling game found in most casinos based on rolling two six sided dice. Most players who walk into a casino and try to play craps for the

### Mathematical Expectation

Mathematical Expectation Properties of Mathematical Expectation I The concept of mathematical expectation arose in connection with games of chance. In its simplest form, mathematical expectation is the

### Question 1 Formatted: Formatted: Formatted: Formatted:

In many situations in life, we are presented with opportunities to evaluate probabilities of events occurring and make judgments and decisions from this information. In this paper, we will explore four

### 6.042/18.062J Mathematics for Computer Science. Expected Value I

6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you

### Probabilities. Probability of a event. From Random Variables to Events. From Random Variables to Events. Probability Theory I

Victor Adamchi Danny Sleator Great Theoretical Ideas In Computer Science Probability Theory I CS 5-25 Spring 200 Lecture Feb. 6, 200 Carnegie Mellon University We will consider chance experiments with

### The mathematical branch of probability has its

ACTIVITIES for students Matthew A. Carlton and Mary V. Mortlock Teaching Probability and Statistics through Game Shows The mathematical branch of probability has its origins in games and gambling. And

### Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.

Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers

### PROBABILITY SECOND EDITION

PROBABILITY SECOND EDITION Table of Contents How to Use This Series........................................... v Foreword..................................................... vi Basics 1. Probability All

### ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015

ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2015 These notes have been used before. If you can still spot any errors or have any suggestions for improvement, please let me know. 1

### Board Game Book Report

Board Game Book Report As you are reading, create at least 25 questions (cannot be yes or no answers) to be used with your board game and that relate to your book. Using a manila folder, markers, and colored

### One pile, two pile, three piles

CHAPTER 4 One pile, two pile, three piles 1. One pile Rules: One pile is a two-player game. Place a small handful of stones in the middle. At every turn, the player decided whether to take one, two, or

### Stat 20: Intro to Probability and Statistics

Stat 20: Intro to Probability and Statistics Lecture 16: More Box Models Tessa L. Childers-Day UC Berkeley 22 July 2014 By the end of this lecture... You will be able to: Determine what we expect the sum

### Probability And Odds Examples

Probability And Odds Examples. Will the Cubs or the Giants be more likely to win the game? What is the chance of drawing an ace from a deck of cards? What are the possibilities of rain today? What are

### 6.3 Probabilities with Large Numbers

6.3 Probabilities with Large Numbers In general, we can t perfectly predict any single outcome when there are numerous things that could happen. But, when we repeatedly observe many observations, we expect

### PROBABILITY. Thabisa Tikolo STATISTICS SOUTH AFRICA

PROBABILITY Thabisa Tikolo STATISTICS SOUTH AFRICA Probability is a topic that some educators tend to struggle with and thus avoid teaching it to learners. This is an indication that teachers are not yet

### CONDITIONAL PROBABILITY AND TWO-WAY TABLES

CONDITIONAL PROBABILITY AND 7.2. 7.2.3 TWO-WAY TABLES The probability of one event occurring, knowing that another event has already occurred is called a conditional probability. Two-way tables are useful

### Models for Discrete Variables

Probability Models for Discrete Variables Our study of probability begins much as any data analysis does: What is the distribution of the data? Histograms, boxplots, percentiles, means, standard deviations

### Definition and Calculus of Probability

In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the

### The Story. Probability - I. Plan. Example. A Probability Tree. Draw a probability tree.

Great Theoretical Ideas In Computer Science Victor Adamchi CS 5-5 Carnegie Mellon University Probability - I The Story The theory of probability was originally developed by a French mathematician Blaise

### Session 8 Probability

Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome

### Exam 2 Study Guide and Review Problems

Exam 2 Study Guide and Review Problems Exam 2 covers chapters 4, 5, and 6. You are allowed to bring one 3x5 note card, front and back, and your graphing calculator. Study tips: Do the review problems below.

### Gaming the Law of Large Numbers

Gaming the Law of Large Numbers Thomas Hoffman and Bart Snapp July 3, 2012 Many of us view mathematics as a rich and wonderfully elaborate game. In turn, games can be used to illustrate mathematical ideas.

### The practice test follows this cover sheet. It is very similar to the real Chapter Test.

AP Stats Unit IV (Chapters 14-17) Take-Home Test Info The practice test follows this cover sheet. It is very similar to the real Chapter 14-17 Test. The real test will consist of 20 multiple-choice questions

### Introduction. Math Bingo Rules. Math Bingo Notes

Game Information 1 Introduction Math is an activity that is perfect for reviewing key mathematics vocabulary in a unit of study. It can also be used to review any type of mathematics problem. Math provides

### Optimization in ICT and Physical Systems

27. OKTOBER 2010 in ICT and Physical Systems @ Aarhus University, Course outline, formal stuff Prerequisite Lectures Homework Textbook, Homepage and CampusNet, http://kurser.iha.dk/ee-ict-master/tiopti/

### A Few Basics of Probability

A Few Basics of Probability Philosophy 57 Spring, 2004 1 Introduction This handout distinguishes between inductive and deductive logic, and then introduces probability, a concept essential to the study

### Chapter 5 - Practice Problems 1

Chapter 5 - Practice Problems 1 Identify the given random variable as being discrete or continuous. 1) The number of oil spills occurring off the Alaskan coast 1) A) Continuous B) Discrete 2) The ph level

### Section 7C: The Law of Large Numbers

Section 7C: The Law of Large Numbers Example. You flip a coin 00 times. Suppose the coin is fair. How many times would you expect to get heads? tails? One would expect a fair coin to come up heads half

### Problem sets for BUEC 333 Part 1: Probability and Statistics

Problem sets for BUEC 333 Part 1: Probability and Statistics I will indicate the relevant exercises for each week at the end of the Wednesday lecture. Numbered exercises are back-of-chapter exercises from

### 14.4. Expected Value Objectives. Expected Value

. Expected Value Objectives. Understand the meaning of expected value. 2. Calculate the expected value of lotteries and games of chance.. Use expected value to solve applied problems. Life and Health Insurers

### Colored Hats and Logic Puzzles

Colored Hats and Logic Puzzles Alex Zorn January 21, 2013 1 Introduction In this talk we ll discuss a collection of logic puzzles/games in which a number of people are given colored hats, and they try

### SCRATCHING THE SURFACE OF PROBABILITY. Robert J. Russell, University of Paisley, UK

SCRATCHING THE SURFACE OF PROBABILITY Robert J. Russell, University of Paisley, UK Scratch cards are widely used to promote the interests of charities and commercial concerns. They provide a useful mechanism

### A-Level Maths. in a week. Core Maths - Co-ordinate Geometry of Circles. Generating and manipulating graph equations of circles.

A-Level Maths in a week Core Maths - Co-ordinate Geometry of Circles Generating and manipulating graph equations of circles. Statistics - Binomial Distribution Developing a key tool for calculating probability

### Probability. A random sample is selected in such a way that every different sample of size n has an equal chance of selection.

1 3.1 Sample Spaces and Tree Diagrams Probability This section introduces terminology and some techniques which will eventually lead us to the basic concept of the probability of an event. The Rare Event

### Math 728 Lesson Plan

Math 728 Lesson Plan Tatsiana Maskalevich January 27, 2011 Topic: Probability involving sampling without replacement and dependent trials. Grade Level: 8-12 Objective: Compute the probability of winning

### Ready, Set, Go! Math Games for Serious Minds

Math Games with Cards and Dice presented at NAGC November, 2013 Ready, Set, Go! Math Games for Serious Minds Rande McCreight Lincoln Public Schools Lincoln, Nebraska Math Games with Cards Close to 20 -

### PROBABILITY 14.3. section. The Probability of an Event

4.3 Probability (4-3) 727 4.3 PROBABILITY In this section In the two preceding sections we were concerned with counting the number of different outcomes to an experiment. We now use those counting techniques

### Statistics 100 Binomial and Normal Random Variables

Statistics 100 Binomial and Normal Random Variables Three different random variables with common characteristics: 1. Flip a fair coin 10 times. Let X = number of heads out of 10 flips. 2. Poll a random

### This is a game for two players and one referee. You will need a deck of cards (Ace 10).

PLAYER SALUTE This is a game for two players and one referee. You will need a deck of cards (Ace 10). Each player draws a card and, without looking, holds the card on his/her forehead facing outward. The

### Probabilistic Strategies: Solutions

Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1

### Intro to Simulation (using Excel)

Intro to Simulation (using Excel) DSC340 Mike Pangburn Generating random numbers in Excel Excel has a RAND() function for generating random numbers The numbers are really coming from a formula and hence

### The Art of Asking Thought Provoking Questions in a Problem Solving Mathematics Classroom. Math Teacher Leader Meeting December 2007

The Art of Asking Thought Provoking Questions in a Problem Solving Mathematics Classroom Math Teacher Leader Meeting December 2007 Presenters: Pandora Bedford- Math Teaching Specialist Mary Mooney- Teacher-in-Residence

### The Ultimate Guide to Creating Successful Sports Betting Systems from SportsBettingChamp.com

The Ultimate Guide to Creating Successful Sports Betting Systems from SportsBettingChamp.com Here s my definitive guide on how YOU can create your own successful sports betting systems! What sport? Before

### MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

### Targets for pupils in Year 2

How heavy? You will need some kitchen scales that can weigh things in kilograms. Targets for pupils in Year 2 Ask your child to find something that weighs close to 1 kilogram. Can he / she find something

### Baseball Multiplication Objective To practice multiplication facts.

Baseball Multiplication Objective To practice multiplication facts. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family Letters Assessment Management Common

### Unit 18: Introduction to Probability

Unit 18: Introduction to Probability Summary of Video There are lots of times in everyday life when we want to predict something in the future. Rather than just guessing, probability is the mathematical

### We never talked directly about the next two questions, but THINK about them they are related to everything we ve talked about during the past week:

ECO 220 Intermediate Microeconomics Professor Mike Rizzo Third COLLECTED Problem Set SOLUTIONS This is an assignment that WILL be collected and graded. Please feel free to talk about the assignment with

### Using Probability Language

-NEM-WBAns-CH 7/0/0 :8 PM Page 7 CHAPTER Using Probability Language Use probability language to describe predictions.. Make a check mark under the probability word that would apply for each sentence. For

### OBJECTIVES. The BIG Idea. How will taking notes improve my performance in school and on the job? Taking Notes

Taking Notes 2 Study Skills The BIG Idea How will taking notes improve my performance in school and on the job? AGENDA Approx. 45 minutes I. Warm Up: Scavenger Hunt (5 minutes) II. What s My Line? (10

### Quiz CHAPTER 16 NAME: UNDERSTANDING PROBABILITY AND LONG- TERM EXPECTATIONS

Quiz CHAPTER 16 NAME: UNDERSTANDING PROBABILITY AND LONG- TERM EXPECTATIONS 1. Give two examples of ways that we speak about probability in our every day lives. NY REASONABLE ANSWER OK. EXAMPLES: 1) WHAT

### Section 6.1 Discrete Random variables Probability Distribution

Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values

### Probability, statistics and football Franka Miriam Bru ckler Paris, 2015.

Probability, statistics and football Franka Miriam Bru ckler Paris, 2015 Please read this before starting! Although each activity can be performed by one person only, it is suggested that you work in groups

### The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES

INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number

### Lesson 13: Games of Chance and Expected Value

Student Outcomes Students analyze simple games of chance. Students calculate expected payoff for simple games of chance. Students interpret expected payoff in context. esson Notes When students are presented

### Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Week 7 Lecture Notes Discrete Probability Continued Note Binomial coefficients are written horizontally. The symbol ~ is used to mean approximately equal. The Bernoulli

### Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

### WRITING PROOFS. Christopher Heil Georgia Institute of Technology

WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this

### AP Stats - Probability Review

AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose

### Name Total Listening / 100 Total Grammar Part 2 / 50 Total Grammar Part 1 / 50 Grand total / 200

OXFORD PLACEMENT TEST 2 GRAMMAR TEST PART 1 Name Total Listening / 100 Total Grammar Part 2 / 50 Total Grammar Part 1 / 50 Grand total / 200 Look at these examples. The correct answer is indicated in bold.