Fluorescence Workshop UMN Physics June 8-10, Fluorescence Microscopy and Fluorescence Correlation Spectroscopy Joachim Mueller

Size: px
Start display at page:

Download "Fluorescence Workshop UMN Physics June 8-10, Fluorescence Microscopy and Fluorescence Correlation Spectroscopy Joachim Mueller"

Transcription

1 Fluorescence Workshop UMN Physics June 8-10, 2006 Fluorescence Microscopy and Fluorescence Correlation Spectroscopy Joachim Mueller

2 Fluorescence Microscopy Use a microscope as a fluorometer Advantages: superb optics very high collection efficiency imaging allows single cell measurements single molecule experiments

3 The microscope as a filter fluorometer with focusing optics

4 Basic design of a fluorescent microscope red fluorescence objective

5 Filters

6 Selecting Filters

7

8 Anatomy of a Fluorescence Microscope

9 Widefield-fluorescence microscope image Widefield fluorescence image of a 16 micron thick section of fluorescently-labeled mouse kidney. Copyright, J. Waters, 2004

10 Principle of Confocal Microscopy Pinhole only passes light that emanates from a thin section of the sample (indicated in red) Note confocal microscopy only observes a point (a tiny subvolume to be more precise) z

11 Laser Scanning Confocal Microscopy (LSCM): Observed volume Need to perform a raster scan to build up an image point by point Two electronically driven scan mirrors move the laser spot on the sample in a raster-like fashion.

12 Widefield Image Confocal Image Widefield fluorescence image of a 16 micron thick section of fluorescently-labeled mouse kidney. The same specimen show on the left, taken with a confocal microscope. Copyright, J. Waters, 2004

13 Photobleaching The average number of excitation and emission cycles that occur for a particular fluorophore before photobleaching is dependent upon the molecular structure and the local environment. Some fluorophores bleach quickly after emitting only a few photons, while others that are more robust can undergo thousands or millions of cycles before bleaching.

14 Photobleaching original image Photobleached image s

15 Two-Photon Microscopy: Principle Now consider two-photon absorption Energy Diagram: S 1 Internal Conversion ~10-12 s Absorption ~10-15 s Radiationless Decay <10-9 s Fluorescence ~10-9 s S 0 Two-photon absorption is an optical nonlinear process

16 Two-Photon Fluorescence Simultaneous absorption of two-photons is a rare process: Maximize two-photon effect by increasing the photon flux - spatially by focusing the light - temporally (ultrafast laser pulses) One photon beam two photon spot (volume: 1 fl) objective Inherent 3 - dimensional optical sectioning effect!

17 Two-photon spectroscopy One-photon two-photon Intensit y 1γ emission 2γ wavelength Two-photon absorption is spectrally well separated from the fluorescence! Note that Raman of the solvent will not occur within the fluorescence emission spectrum.

18 Two-photon Instrumentation Sample Objective Steering mirror Dichroic Mirror Beam Expander Short Pass Filter Ti-Sapphire laser APD Photon Counting Acquisition Card Data Analysis

19 Two-photon Imaging Purkinje neurone in a living brain slice filled with fluorescein dextran imaged with two-photon excitation laser scanning microscopy (Svoboda, Cold spring Harbor Laboratories) Two-photon image resolution is essentially the same as that of confocal microscopy. However, imaging in the presence of significant scatter (such as in thick tissue) requires two-photon excitation. Also note that photobleaching in twophoton microscopy is strictly restricted to the excitation volume! Denk, Nature Methods 2, (2005)

20 Fluorescence Fluctuation Spectroscopy Q: How many fluorescent molecules are (on average) in the two-photon (or confocal) volume of the microscope? A: That depends on the concentration. At a high concentration there are more molecules in the volume than at low concentrations. Q: Ok, many proteins in cells have nanomolar concentrations. How many proteins ( assuming c = 1 nm ) are now in the volume? A: Let me calculate (Volume is 1 femtoliter, Avogadro s number is 6x10 23, c = 1 nm). The number I get is a single molecule per observation volume. Well that s ok, fluorescence is very sensitive and can detect single molecules. Q: Proteins in a solution (and in a cell) are typically mobile. They diffuse around. What will happen if the single molecule moves around? Also a single molecule is in the volume on average. Is there a chance that sometimes there will be two or no molecules in the volume? A: Yes, the number of molecules will fluctuate as they diffuse in and out of the observation volume. Because two molecules produce more fluorescence than a single molecule there will be fluctuations in the fluorescence intensity.

21 Fluorescence Fluctuation Spectroscopy Fluorescence intensity: F fluctuation time Raw data: Photon Counts Coverslip objective

22 50 Statistical Analysis of the Fluctuations required Photon counts 0.04 Fluorescence Correlation Spectroscopy (FCS) Counts Auto Correlation Parameters: G(0) & k kinetics Fit Data Autocorrelation Time Time (ms) Autocorrelation Function: Number of Occurances Photon Counting Histogram (PCH) PCH Parameters: <N> & ε G( τ ) = df() t df( t + τ ) F Counts per Bin

23 F(t) in photon counts Calculating the Autocorrelation Function Fluorescence Fluctuation df() t = F() t F time τ Average Fluorescence F t t + τ G( τ ) = df() t df( t + τ ) F 2

24 The Autocorrelation Function t 2 t 3 t 4 t 1 t 5 Detected Intensity (kcps) Time (s) G(0) 1/N as time t approaches 0 G(τ) Diffusion G( τ ) = df() t df( t + τ ) F Time(s)

25 The Effects of Particle Concentration on the Autocorrelation Curve <N> = G(t) <N> = Time (s)

26 What about the excitation (or observation) volume shape?

27 Correlation function of diffusing molecules For a 3-dimensional Gaussian excitation volume: Dτ 8Dτ G( τ ) = N w0 z0 N: average number of particles inside volume D: Diffusion coefficient w o : radial beam waist of two-photon laser spot z o : axial beam waist of two-photon laser spot photon equation contains a 4, instead of 8

28 The Effects of Particle Size on the Autocorrelation Curve Diffusion Constants um 2 /s 90 um 2 /s 71 um 2 /s Stokes-Einstein Equation: D = and k T 6 π η r G(t) Slow Diffusion Fast Diffusion Time (s) MW Volume 3 r Monomer --> Dimer Only a change in D by a factor of 2 1/3, or 1.26

29 FCS inside living cells Correlation Analysis D solution D nucleus = 3.3 inside nucleus g(τ) 0.4 in solution E-5 1E-4 1E τ (sec) Measure the diffusion coefficient of Green Fluorescent Protein (GFP) in aqueous solution in inside the nucleus of a cell.

30 Statistical Analysis: Brightness Brightness ε is the average fluorescence intensity of a single particle Illustration: EGFP Protein Sample Fluorescence F Brightness ε time

31 Brightness Encodes Stoichiometry Sample Fluorescence Brightness EGFP Protein F time ε N 1 F 2ε time N 2 + F 2ε ε time N 1 N 2

32 Photon Counting Histogram (PCH) Aim: To resolve species from differences in their molecular brightness Molecular brightness ε : The average photon count rate of a single fluorophore PCH: probability distribution function p(k) where p(k) is the probability of observing k photon counts ε = 16000cpsm N = 0.3 Single Species: p(k) = PCH(ε, N ) Note: PCH is Non-Poissonian! Sources of Non-Poissonian Noise Detector Noise Diffusing Particles in an Inhomogeneous Excitation Beam* Particle Number Fluctuations* Multiple Species*

33 PCH in cells: Brightness of EGFP Chen Y, Mueller JD, Ruan Q, Gratton E (2002) Biophysical Journal, 82, 133. Molecular Brightness (cpsm) 3x10 4 2x10 4 1x autofluorescence cytoplasm Excitation=895nm autofluorescence nucleus EGFP cytoplasm EGFP solution EGFP nucleus The molecular brightness of EGFP is a factor ten higher than that of the autofluorescence in HeLa cells

34 Brightness and Stoichiometry Intensity (cps) x EGFP Brightness ε app (cpsm) EGFP 2 EGFP EGFP Brightness Concentration [nm] EGFP EGFP 2 Brightness of EGFP 2 is twice the brightness of EGFP Chen Y, Wei LN, Mueller JD, PNAS (2003) 100,

35 The End

Two-photon FCS Tutorial. Berland Lab Department of Physics Emory University

Two-photon FCS Tutorial. Berland Lab Department of Physics Emory University Two-photon FCS Tutorial Berland Lab Department of Physics Emory University What is FCS? FCS : Fluorescence Correlation Spectroscopy FCS is a technique for acquiring dynamical information from spontaneous

More information

Zeiss 780 Training Notes

Zeiss 780 Training Notes Zeiss 780 Training Notes 780 Start Up Sequence Do you need the argon laser, 458,488,514nm lines? No Turn on the Systems PC Switch Turn on Main Power Switch Yes Turn on the laser main power switch and turn

More information

Applications of confocal fluorescence microscopy in biological sciences

Applications of confocal fluorescence microscopy in biological sciences Applications of confocal fluorescence microscopy in biological sciences B R Boruah Department of Physics IIT Guwahati Email: brboruah@iitg.ac.in Page 1 Contents Introduction Optical resolution Optical

More information

Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM.

Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM. Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM. Some limitations (disadvantages) of NSOM A trade-off

More information

Confocal Microscopy and Atomic Force Microscopy (AFM) A very brief primer...

Confocal Microscopy and Atomic Force Microscopy (AFM) A very brief primer... Confocal Microscopy and Atomic Force Microscopy (AFM) of biofilms A very brief primer... Fundamentals of Confocal Microscopy Based on a conventional fluorescence microscope Fluorescent Microscope Confocal

More information

Fluorescence Microscopy for an NMR- Biosensor Project

Fluorescence Microscopy for an NMR- Biosensor Project Fluorescence Microscopy for an NMR- Biosensor Project Ole Hirsch Physikalisch-Technische Bundesanstalt Medical Optics Abbestr. -1, 10587 Berlin, Germany Overview NMR Sensor Project Dimensions in biological

More information

Observing a nanomachine at work: Single-molecule imaging or spectroscopy (SMI or SMS)

Observing a nanomachine at work: Single-molecule imaging or spectroscopy (SMI or SMS) Observing a nanomachine at work: Single-molecule imaging or spectroscopy (SMI or SMS) Principle: SMS allows one to observe the function and the motion of nano-objects in realtime in living systems. Usually,

More information

Recording the Instrument Response Function of a Multiphoton FLIM System

Recording the Instrument Response Function of a Multiphoton FLIM System Recording the Instrument Response Function of a Multiphoton FLIM System Abstract. FLIM data analysis in presence of SHG signals or extremely fast decay components requires the correct instrument response

More information

A Brief History of the Microscope and its Significance in the Advancement of Biology and Medicine

A Brief History of the Microscope and its Significance in the Advancement of Biology and Medicine Chapter 1 A Brief History of the Microscope and its Significance in the Advancement of Biology and Medicine This chapter provides a historical foundation of the field of microscopy and outlines the significant

More information

Neuro imaging: looking with lasers in the brain

Neuro imaging: looking with lasers in the brain Neuro imaging: looking with lasers in the brain Aim: To image life cells, label free, with cellular resolution in deep tissue Marloes Groot Vrije Universiteit Amsterdam Faculteit Exacte Wetenschappen Natuurkunde

More information

Two-photon Fluorescence Light Microscopy

Two-photon Fluorescence Light Microscopy Two- Fluorescence Light Peter TC So, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Two- fluorescence microscopy allows three-dimensional imaging of biological specimens in vivo.

More information

Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service

Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service Introduction into Flow Cytometry Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service How does a FACS look like? FACSCalibur FACScan What is Flow Cytometry?

More information

Taking the Confusion out of Confocal Microscopy

Taking the Confusion out of Confocal Microscopy KEYWORDS: confocal microscopy, fluorescence imaging, three dimensional Special section on techniques: Taking the Confusion out of Confocal Microscopy Nana Rezai Pathology, University of British Columbia

More information

CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL

CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL Robert Bagnell 2006 This tutorial covers the following CLSM topics: 1) What is the optical principal behind CLSM? 2) What is the spatial resolution in X, Y,

More information

A pretty picture, or a measurement? Retinal Imaging

A pretty picture, or a measurement? Retinal Imaging Big Data Challenges A pretty picture, or a measurement? Organelles Dynamics Cells Retinal Imaging Physiology Pathology Fundus Camera Optical coherence tomography Fluorescence Histology High Content Screening

More information

ZEISS Microscopy Course Catalog

ZEISS Microscopy Course Catalog ZEISS Microscopy Course Catalog ZEISS Training and Education Expand Your Possibilities Practical microscopy training has a long tradition at ZEISS. The first courses were held in Jena as early as 1907,

More information

Confocal Fluorescence Microscopy

Confocal Fluorescence Microscopy Chapter 1 Confocal Fluorescence Microscopy 1.1 The principle Confocal fluorescence microscopy is a microscopic technique that provides true three-dimensional (3D) optical resolution. In microscopy, 3D

More information

Lecture 1: Basic Concepts on Absorption and Fluorescence

Lecture 1: Basic Concepts on Absorption and Fluorescence Lecture 1: Basic Concepts on Absorption and Fluorescence Nicholas G. James Cell and Molecular Biology University of Hawaii at Manoa, Honolulu The Goal The emission of light after absorption of an outside

More information

Introduction to flow cytometry

Introduction to flow cytometry Introduction to flow cytometry Flow cytometry is a popular laser-based technology. Discover more with our introduction to flow cytometry. Flow cytometry is now a widely used method for analyzing the expression

More information

Zecotek S Light Projection Network Marketing

Zecotek S Light Projection Network Marketing White Paper Zecotek Visible Fiber Laser Platform Enabling the future of laser technology Zecotek Photonics Inc. (TSX- V: ZMS; Frankfurt: W1I) www.zecotek.com is a Canadian photonics technology company

More information

Experiment 5. Lasers and laser mode structure

Experiment 5. Lasers and laser mode structure Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

More information

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM. Lecture 16: Near-field Scanning Optical Microscopy (NSOM) Background of NSOM; Basic principles and mechanisms of NSOM; Basic components of a NSOM; Different scanning modes and systems of NSOM; General

More information

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Fundamentals of modern UV-visible spectroscopy. Presentation Materials Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms

More information

MEASURABLE PARAMETERS: Flow cytometers are capable of measuring a variety of cellular characteristics such as:

MEASURABLE PARAMETERS: Flow cytometers are capable of measuring a variety of cellular characteristics such as: INTRODUCTION Flow Cytometry involves the use of a beam of laser light projected through a liquid stream that contains cells, or other particles, which when struck by the focused light give out signals

More information

Leica TCS SP5 Confocal Laser Scanning Microscope User Guide 1. BASIC IMAGE ACQUISITION

Leica TCS SP5 Confocal Laser Scanning Microscope User Guide 1. BASIC IMAGE ACQUISITION Leica TCS SP5 Confocal Laser Scanning Microscope User Guide 1. BASIC IMAGE ACQUISITION This manual is the FIRST section of a THREE part Leica TCS - SP5 User Guide edited by Donald Pottle Leica True Confocal

More information

A VERYbrief history of the confocal microscope 1950s

A VERYbrief history of the confocal microscope 1950s Confocal Microscopy Confocal Microscopy Why do we use confocal microscopy? A brief history of the confocal microscope Advantages/disadvantages of a confocal microscope Types of confocal microscopes The

More information

Raman spectroscopy Lecture

Raman spectroscopy Lecture Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy

More information

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. IV Femtosecond Measurements Combined With Near-Field Optical Microscopy - Artyom A.

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. IV Femtosecond Measurements Combined With Near-Field Optical Microscopy - Artyom A. FEMTOSECOND MEASUREMENTS COMBINED WITH NEAR FIELD OPTICAL MICROSCOPY Artyom A. Astafiev, Semyonov Institute of Chemical Physics, Moscow, Russian Federation. Keywords: diffraction limit nearfield scanning

More information

TWO-PHOTON EXCITATION FLUORESCENCE MICROSCOPY

TWO-PHOTON EXCITATION FLUORESCENCE MICROSCOPY TWO-PHOTON EXCITATION FLUORESCENCE MICROSCOPY PeterT.C.So 1,ChenY.Dong 1, Barry R. Masters 2, and Keith M. Berland 3 1 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,

More information

Collagen I Self-Assembly: Revealing the Developing Structures that Generate Turbidity. Supporting Material

Collagen I Self-Assembly: Revealing the Developing Structures that Generate Turbidity. Supporting Material Collagen I Self-Assembly: Revealing the Developing Structures that Generate Turbidity Supporting Material Jieling Zhu and Laura J. Kaufman* Department of Chemistry, Columbia University, New York, NY 10027

More information

Flow Cytometry A Basic Overview

Flow Cytometry A Basic Overview Flow Cytometry A Basic Overview Overview Flow cytometry is a powerful technology for investigating many aspects of cell biology and for isolating cells of interest. Flow cytometry utilizes highly focused,

More information

Advances in scmos Camera Technology Benefit Bio Research

Advances in scmos Camera Technology Benefit Bio Research Advances in scmos Camera Technology Benefit Bio Research scmos camera technology is gaining in popularity - Why? In recent years, cell biology has emphasized live cell dynamics, mechanisms and electrochemical

More information

DYNAMIC LIGHT SCATTERING COMMON TERMS DEFINED

DYNAMIC LIGHT SCATTERING COMMON TERMS DEFINED DYNAMIC LIGHT SCATTERING COMMON TERMS DEFINED Abstract: There are a number of sources of information that give a mathematical description of the terms used in light scattering. However, these will not

More information

Application Note #503 Comparing 3D Optical Microscopy Techniques for Metrology Applications

Application Note #503 Comparing 3D Optical Microscopy Techniques for Metrology Applications Screw thread image generated by WLI Steep PSS angles WLI color imaging Application Note #503 Comparing 3D Optical Microscopy Techniques for Metrology Applications 3D optical microscopy is a mainstay metrology

More information

FIBER-OPTIC MULTIPHOTON FLUORESCENCE SPECTROSCOPY FOR BIOSENSING AND IN VIVO FLOW CYTOMETRY

FIBER-OPTIC MULTIPHOTON FLUORESCENCE SPECTROSCOPY FOR BIOSENSING AND IN VIVO FLOW CYTOMETRY FIBER-OPTIC MULTIPHOTON FLUORESCENCE SPECTROSCOPY FOR BIOSENSING AND IN VIVO FLOW CYTOMETRY by Yu-Chung Chang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

More information

Flow cytometry basics fluidics, optics, electronics...

Flow cytometry basics fluidics, optics, electronics... Title Flow cytometry basics fluidics, optics, electronics... RNDr. Jan Svoboda, Ph.D. Cytometry and Microscopy Core Facility IMB, CAS, v.v.i Vídeňská 1083 Fluorescence Fluorescence occurs when a valence

More information

http://dx.doi.org/10.1117/12.906346

http://dx.doi.org/10.1117/12.906346 Stephanie Fullerton ; Keith Bennett ; Eiji Toda and Teruo Takahashi "Camera simulation engine enables efficient system optimization for super-resolution imaging", Proc. SPIE 8228, Single Molecule Spectroscopy

More information

Molecular Spectroscopy

Molecular Spectroscopy Molecular Spectroscopy UV-Vis Spectroscopy Absorption Characteristics of Some Common Chromophores UV-Vis Spectroscopy Absorption Characteristics of Aromatic Compounds UV-Vis Spectroscopy Effect of extended

More information

Fluorescent dyes for use with the

Fluorescent dyes for use with the Detection of Multiple Reporter Dyes in Real-time, On-line PCR Analysis with the LightCycler System Gregor Sagner, Cornelia Goldstein, and Rob van Miltenburg Roche Molecular Biochemicals, Penzberg, Germany

More information

Optical laser beam scanner lens relay system

Optical laser beam scanner lens relay system 1. Introduction Optical laser beam scanner lens relay system Laser beam scanning is used most often by far in confocal microscopes. There are many ways by which a laser beam can be scanned across the back

More information

Fluorescence Lifetime Imaging and Fluorescence Correlation for Laser Scanning Microscopes

Fluorescence Lifetime Imaging and Fluorescence Correlation for Laser Scanning Microscopes Fluorescence Lifetime Imaging and Fluorescence Correlation for Laser Scanning Microscopes Direct approach to fluorescence resonance energy transfer (FRET) Probing cell parameters by environment-dependent

More information

ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems

ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems Page 1 of 6 ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems Free electron lasers support unique time-resolved experiments over a wide range of x-ray wavelengths,

More information

Introduction to Fourier Transform Infrared Spectrometry

Introduction to Fourier Transform Infrared Spectrometry Introduction to Fourier Transform Infrared Spectrometry What is FT-IR? I N T R O D U C T I O N FT-IR stands for Fourier Transform InfraRed, the preferred method of infrared spectroscopy. In infrared spectroscopy,

More information

Characterizing Quantum Dots and Color Centers in Nanodiamonds as Single Emitters

Characterizing Quantum Dots and Color Centers in Nanodiamonds as Single Emitters University of Rochester OPT253 Lab 3-4 Report Characterizing Quantum Dots and Color Centers in Nanodiamonds as Single Emitters Author: Nicholas Cothard Peter Heuer Professor: Dr. Svetlana Lukishova November

More information

Application Note: Absorbance

Application Note: Absorbance Units Units Theory of absorbance Light absorption occurs when atoms or molecules take up the energy of a photon of light, thereby reducing the transmission of light as it is passed through a sample. Light

More information

Zeiss Axioimager M2 microscope for stereoscopic analysis.

Zeiss Axioimager M2 microscope for stereoscopic analysis. Zeiss Axioimager M2 microscope for stereoscopic analysis. This system is fully motorized and configured with bright field and multi-channel fluorescent. It works with Stereo Investigator, Neurolucida,

More information

Chapter 12 Filters for FISH Imaging

Chapter 12 Filters for FISH Imaging Chapter 12 Filters for FISH Imaging Dan Osborn The application of in situ hybridization (ISH) has advanced from short lived, non-specific isotopic methods, to very specific, long lived, multiple color

More information

MULTI PHOTON LASER SCANNING MICROSCOPE FV1000MPE FLUOVIEW NEW

MULTI PHOTON LASER SCANNING MICROSCOPE FV1000MPE FLUOVIEW NEW MULTI PHOTON LASER SCANNING MICROSCOPE FV1000MPE FLUOVIEW NEW Multi photon laser scanning microscope for deep imaging The Olympus Fluoview FV1000MPE, a multi photon laser scanning microscope, allows deeper

More information

Optics and Spectroscopy at Surfaces and Interfaces

Optics and Spectroscopy at Surfaces and Interfaces Vladimir G. Bordo and Horst-Gunter Rubahn Optics and Spectroscopy at Surfaces and Interfaces WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface IX 1 Introduction 1 2 Surfaces and Interfaces 5

More information

Functional Data Analysis of MALDI TOF Protein Spectra

Functional Data Analysis of MALDI TOF Protein Spectra Functional Data Analysis of MALDI TOF Protein Spectra Dean Billheimer dean.billheimer@vanderbilt.edu. Department of Biostatistics Vanderbilt University Vanderbilt Ingram Cancer Center FDA for MALDI TOF

More information

Introduction to Flow Cytometry

Introduction to Flow Cytometry Introduction to Flow Cytometry presented by: Flow Cytometry y Core Facility Biomedical Instrumentation Center Uniformed Services University Topics Covered in this Lecture What is flow cytometry? Flow cytometer

More information

Optical mesoscopy with a new giant lens. Gail McConnell, Johanna Tragardh, John Dempster & Brad Amos

Optical mesoscopy with a new giant lens. Gail McConnell, Johanna Tragardh, John Dempster & Brad Amos Optical mesoscopy with a new giant lens Gail McConnell, Johanna Tragardh, John Dempster & Brad Amos The spot on specimen, source and detector aperture are at conjugate optical foci detector Advantage:

More information

Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff

Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff December 2012 Specifying Advanced Plasma Deposited Hard Coated Optical Bandpass and Dichroic Filters. Introduction

More information

Physics 441/2: Transmission Electron Microscope

Physics 441/2: Transmission Electron Microscope Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This

More information

Biomedical Optics Theory

Biomedical Optics Theory Introduction Biomedical Optics Theory Diffuse reflectance spectroscopy (DRS) and Laser Doppler Flowmetry (LDF) are booth optical techniques that can quantify a number of microcirculatory parameters. Prof

More information

FRET Basics and Applications an EAMNET teaching module

FRET Basics and Applications an EAMNET teaching module FRET Basics and Applications an EAMNET teaching module Timo Zimmermann + Stefan Terjung Advanced Light Microscopy Facility European Molecular Biology Laboratory, Heidelberg http://www.embl.de/almf/ http://www.embl.de/eamnet/

More information

Chapter 13 Confocal Laser Scanning Microscopy C. Robert Bagnell, Jr., Ph.D., 2012

Chapter 13 Confocal Laser Scanning Microscopy C. Robert Bagnell, Jr., Ph.D., 2012 Chapter 13 Confocal Laser Scanning Microscopy C. Robert Bagnell, Jr., Ph.D., 2012 You are sitting at your microscope working at high magnification trying to sort out the three-dimensional compartmentalization

More information

Understanding Laser Beam Parameters Leads to Better System Performance and Can Save Money

Understanding Laser Beam Parameters Leads to Better System Performance and Can Save Money Understanding Laser Beam Parameters Leads to Better System Performance and Can Save Money Lasers became the first choice of energy source for a steadily increasing number of applications in science, medicine

More information

Principles of Flowcytometry

Principles of Flowcytometry Objectives Introduction to Cell Markers: Principles of Flowcytometry Michelle Petrasich NZIMLS Scientific Meeting August 24, 2010, Paihia What are cell markers How do we detect them Production of Monoclonal

More information

Biomedical & X-ray Physics Kjell Carlsson. Light Microscopy. Compendium compiled for course SK2500, Physics of Biomedical Microscopy.

Biomedical & X-ray Physics Kjell Carlsson. Light Microscopy. Compendium compiled for course SK2500, Physics of Biomedical Microscopy. Biomedical & X-ray Physics Kjell Carlsson Light Microscopy Compendium compiled for course SK2500, Physics of Biomedical Microscopy by Kjell Carlsson Applied Physics Dept., KTH, Stockholm, 2007 No part

More information

These particles have something in common

These particles have something in common These particles have something in common Blood cells Chromosomes Algae Protozoa Certain parameters of these particles can be measured with a flow cytometer Which parameters can be measured? the relative

More information

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine

More information

Chapter 10 Immunofluorescence

Chapter 10 Immunofluorescence Chapter 10 Immunofluorescence J. Paul Robinson PhD, Jennifer Sturgis BS and George L. Kumar PhD Immunofluorescence (IF) is a common laboratory technique used in almost all aspects of biology. This technique

More information

University of Cyprus Biomedical Imaging and Applied Optics Laboratory Light-Tissue Interaction

University of Cyprus Biomedical Imaging and Applied Optics Laboratory Light-Tissue Interaction University of Cyprus Biomedical Imaging and Applied Optics Laboratory Light-Tissue Interaction Costas Pitris, MD, PhD KIOS Research Center Department of Electrical and Computer Engineering University of

More information

Functional neuroimaging. Imaging brain function in real time (not just the structure of the brain).

Functional neuroimaging. Imaging brain function in real time (not just the structure of the brain). Functional neuroimaging Imaging brain function in real time (not just the structure of the brain). The brain is bloody & electric Blood increase in neuronal activity increase in metabolic demand for glucose

More information

CELL CYCLE BASICS. G0/1 = 1X S Phase G2/M = 2X DYE FLUORESCENCE

CELL CYCLE BASICS. G0/1 = 1X S Phase G2/M = 2X DYE FLUORESCENCE CELL CYCLE BASICS Analysis of a population of cells replication state can be achieved by fluorescence labeling of the nuclei of cells in suspension and then analyzing the fluorescence properties of each

More information

Spectral Measurement Solutions for Industry and Research

Spectral Measurement Solutions for Industry and Research Spectral Measurement Solutions for Industry and Research Hamamatsu Photonics offers a comprehensive range of products for spectroscopic applications, covering the, Visible and Infrared regions for Industrial,

More information

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier Tunnel Effect: - particle with kinetic energy E strikes a barrier with height U 0 > E and width L - classically the particle cannot overcome the barrier - quantum mechanically the particle can penetrated

More information

March 2010 No. 36. Fluorescence Correlation Spectroscopy : The Femtoliter Test Tube System Calibration and In Vitro Applications

March 2010 No. 36. Fluorescence Correlation Spectroscopy : The Femtoliter Test Tube System Calibration and In Vitro Applications CONFOCAL APPLICATION LETTER March 2010 No. 36 resolution Fluorescence Correlation Spectroscopy : The Femtoliter Test Tube System Calibration and In Vitro Applications This application letter explains The

More information

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies (Ci), where 1 Ci = 3.7x10 10 disintegrations per second.

More information

Z-Stacking and Z-Projection using a Scaffold-based 3D Cell Culture Model

Z-Stacking and Z-Projection using a Scaffold-based 3D Cell Culture Model A p p l i c a t i o n N o t e Z-Stacking and Z-Projection using a Scaffold-based 3D Cell Culture Model Brad Larson and Peter Banks, BioTek Instruments, Inc., Winooski, VT Grant Cameron, TAP Biosystems

More information

Copyright 1999 2010 by Mark Brandt, Ph.D. 12

Copyright 1999 2010 by Mark Brandt, Ph.D. 12 Introduction to Absorbance Spectroscopy A single beam spectrophotometer is comprised of a light source, a monochromator, a sample holder, and a detector. An ideal instrument has a light source that emits

More information

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab

More information

App. Note # FTMS-47+MT-113 MALDI Imaging with Single Cell Resolution at 10 µm Pixel Size

App. Note # FTMS-47+MT-113 MALDI Imaging with Single Cell Resolution at 10 µm Pixel Size pp. Note # FTMS-47+MT-113 MLDI Imaging with Single Cell Resolution at 10 µm Pixel Size bstract Key parameters for MLDI imaging are spatial resolution and mass spectral quality. In this application note,

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

The Measurement of Sensitivity in Fluorescence Spectroscopy

The Measurement of Sensitivity in Fluorescence Spectroscopy The Measurement of Sensitivity in Fluorescence Spectroscopy Among instrumental techniques, fluorescence spectroscopy is recognized as one of the more sensitive. In fluorescence, the intensity of the emission

More information

Electromagnetic Radiation (EMR) and Remote Sensing

Electromagnetic Radiation (EMR) and Remote Sensing Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through

More information

h e l p s y o u C O N T R O L

h e l p s y o u C O N T R O L contamination analysis for compound semiconductors ANALYTICAL SERVICES B u r i e d d e f e c t s, E v a n s A n a l y t i c a l g r o u p h e l p s y o u C O N T R O L C O N T A M I N A T I O N Contamination

More information

Measuring the Point Spread Function of a Fluorescence Microscope

Measuring the Point Spread Function of a Fluorescence Microscope Frederick National Laboratory Measuring the Point Spread Function of a Fluorescence Microscope Stephen J Lockett, PhD Principal Scientist, Optical Microscopy and Analysis Laboratory Frederick National

More information

Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008.

Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008. Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008. X-Ray Fluorescence (XRF) is a very simple analytical technique: X-rays excite atoms

More information

Confocal Microscopy. Denis Semwogerere Eric R. Weeks Emory University, Atlanta, Georgia, U.S.A. INTRODUCTION

Confocal Microscopy. Denis Semwogerere Eric R. Weeks Emory University, Atlanta, Georgia, U.S.A. INTRODUCTION Confocal Microscopy Denis Semwogerere Eric R. Weeks Emory University, Atlanta, Georgia, U.S.A. C INTRODUCTION A confocal microscope creates sharp images of a specimen that would otherwise appear blurred

More information

Nano-Spectroscopy. Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale

Nano-Spectroscopy. Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale Nano-Spectroscopy Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale Since its introduction in the early 80 s, Scanning Probe Microscopy (SPM) has quickly made nanoscale imaging an affordable

More information

Pump-probe experiments with ultra-short temporal resolution

Pump-probe experiments with ultra-short temporal resolution Pump-probe experiments with ultra-short temporal resolution PhD candidate: Ferrante Carino Advisor:Tullio Scopigno Università di Roma ƒla Sapienza 22 February 2012 1 Pump-probe experiments: generalities

More information

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or

More information

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance:

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance: Problem Set 6 UV-Vis Absorption Spectroscopy 13-1. Express the following absorbances in terms of percent transmittance: a 0.051 b 0.918 c 0.379 d 0.261 e 0.485 f 0.072 A = log P o /P = log1/t = - log T

More information

Optical Design Tools for Backlight Displays

Optical Design Tools for Backlight Displays Optical Design Tools for Backlight Displays Introduction Backlights are used for compact, portable, electronic devices with flat panel Liquid Crystal Displays (LCDs) that require illumination from behind.

More information

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function. 7. DYNAMIC LIGHT SCATTERING 7. First order temporal autocorrelation function. Dynamic light scattering (DLS) studies the properties of inhomogeneous and dynamic media. A generic situation is illustrated

More information

INSIDE THE BLACK BOX

INSIDE THE BLACK BOX FLOW CYTOMETRY ESSENTIALS INSIDE THE BLACK BOX Alice L. Givan Englert Cell Analysis Laboratory of the Norris Cotton Cancer Center Dartmouth Medical School HOW NOT TO BE A FLOW CYTOMETRIST Drawing by Ben

More information

Microsecond Decay FLIM: Combined Fluorescence and Phosphorescence Lifetime Imaging

Microsecond Decay FLIM: Combined Fluorescence and Phosphorescence Lifetime Imaging Microsecond Decay FLIM: Combined Fluorescence and Phosphorescence Lifetime Imaging Abstract. We present a lifetime imaging technique that simultaneously records fluorescence and phosphorescence lifetime

More information

LIDAR Bathymetry in very shallow waters. Shachak Pe eri CCOM, UNH William Philpot Cornell University

LIDAR Bathymetry in very shallow waters. Shachak Pe eri CCOM, UNH William Philpot Cornell University LIDAR Bathymetry in very shallow waters Shachak Pe eri CCOM, UNH William Philpot Cornell University Nd:YAG laser generates pulses in the infrared (164 nm) and green (532 nm) simultaneously IR radiation

More information

Zeiss Laser Scanning Microscope 510. Zuidhorst 178. For more information contact. Tom Groothuis. ZH153, t.a.m.groothuis@utwente.nl

Zeiss Laser Scanning Microscope 510. Zuidhorst 178. For more information contact. Tom Groothuis. ZH153, t.a.m.groothuis@utwente.nl Zeiss Laser Scanning Microscope 510 Zuidhorst 178 For more information contact Tom Groothuis ZH153, t.a.m.groothuis@utwente.nl Start Hardware Remove the blue dust cap from the microscope. If needed, turn

More information

Reactive Fusion Cutting When gas used reacts with gas (usually oxygen) burn reaction adds energy to effect Steel typically 60% added energy Titanium

Reactive Fusion Cutting When gas used reacts with gas (usually oxygen) burn reaction adds energy to effect Steel typically 60% added energy Titanium Reactive Fusion Cutting When gas used reacts with gas (usually oxygen) burn reaction adds energy to effect Steel typically 60% added energy Titanium 90% added energy However can reaction can chemically

More information

Tandem Scanner. Leica TCS SP5 II: The Broadband Confocal High Speed and High Resolution All in One

Tandem Scanner. Leica TCS SP5 II: The Broadband Confocal High Speed and High Resolution All in One Tandem Scanner Leica TCS SP5 II: The Broadband Confocal High Speed and High Resolution All in One Modern microscopy comes in two versions. On the one hand, the goal is to record brilliant images to clearly

More information

Over view of the presentation History Processes for creating written data Processes for reading data Media design Drive design Commercial development HISTORY Back to the 1950s, Yehuda Hirsh berg developed

More information

INTRACELLULAR CHEMICAL MEASUREMENTS:A GENERALIZED APPROACH WITH HIGH-SPATIAL RESOLUTION USING FUNCTIONALIZED NANOPARTICLES

INTRACELLULAR CHEMICAL MEASUREMENTS:A GENERALIZED APPROACH WITH HIGH-SPATIAL RESOLUTION USING FUNCTIONALIZED NANOPARTICLES UCRL-TR-228796 INTRACELLULAR CHEMICAL MEASUREMENTS:A GENERALIZED APPROACH WITH HIGH-SPATIAL RESOLUTION USING FUNCTIONALIZED NANOPARTICLES T. Laurence March 8, 2007 Disclaimer This document was prepared

More information

Lecture forum InnovationPoint

Lecture forum InnovationPoint InnovationPoint Opto-Mechanical Design Software Applications and Features, an Overview... Christoph GERHARD Product Manager Business Unit Catalog LINOS Photonics GmbH & Co. KG Christoph GERHARD, Product

More information

Preface Light Microscopy X-ray Diffraction Methods

Preface Light Microscopy X-ray Diffraction Methods Preface xi 1 Light Microscopy 1 1.1 Optical Principles 1 1.1.1 Image Formation 1 1.1.2 Resolution 3 1.1.3 Depth of Field 5 1.1.4 Aberrations 6 1.2 Instrumentation 8 1.2.1 Illumination System 9 1.2.2 Objective

More information

Single Photon Counting Module COUNT -Series

Single Photon Counting Module COUNT -Series Description Laser Components COUNT series of s has been developed to offer a unique combination of high photon detection efficiency, wide dynamic range and ease of use for photon counting applications.

More information

Distinguishing GFP from Cellular Autofluorescence

Distinguishing GFP from Cellular Autofluorescence Distinguishing GFP from Cellular Autofluorescence by Andrew W. Knight and Nicholas Billinton SUMMARY Endogenous autofluorescence is a common nuisance that plagues many a researcher using green fluorescent

More information

Raman Spectroscopy Basics

Raman Spectroscopy Basics Raman Spectroscopy Basics Introduction Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light, usually from a laser source. Inelastic scattering means that

More information