TURBINES & AXIAL-FLOW MACHINES. UNIT - 3 Section (12.5)

Size: px
Start display at page:

Download "TURBINES & AXIAL-FLOW MACHINES. UNIT - 3 Section (12.5)"

Transcription

1 TURBINES & AXIAL-FLOW MACHINES UNIT - 3 Section (12.5)

2 HYDEL TURBINES (Dynamic machine to extract energy from fluid) 1. Reaction (Static pressure changes) : Converts both Flow & Kinetic energy (a) - Radial or (Francis turbine) (b) - Axial flow or propeller turbine (Kaplan, Bulb) - Mixed flow (Francis turbine) 2. Impulse: (Static pressure unchanged) Converts only Kinetic energy (a) -Tangential flow on buckets (Pelton)

3 1a.Francis turbine (Radial) Runner

4 1b. Axial flow (Kaplan) Turbine (Reaction)

5 1b. Axial flow (Bulb) Turbine (propeller type) (Reaction) Used for very low head high volume flow Ideal for tidal power plant

6 1c. Francis Turbine (Mixed flow) (Reaction)

7 2. Impulse turbine (PELTON WHEEL) Converts kinetic energy alone

8 IMPULSE TURBINE High velocity jet discharging at atmosphere pressure hit buckets turning the turbine Momentum change is through change in flow direction No Pressure Change As jet velocity is depends on the head (v ~ H 0.5 ). So it is unsuitable for low head. It requires high head Ideal Specific speed is 1-10 rpm

9 Velocity diagram of impulse turbine

10 Power developed (Impulse turbine) Jet velocity V 1 = C v (2gH) 0.5 Tangential velocity at entry, V t1 =V 1 = v 1 +u at exit V t2 = u v 2 cos β 2; Euler Eq. Energy transfer/mass = (u V t1 -u. V t2 ) Substituting P = (ρq)u[v 1 +u (u v 2 cos β 2 )] = (ρq)u(v 1 u)(1+ k.cos β 2 ) where k = (v 2 /v 1 ). Ideally velocity does not change in impulse turbine blades giving k =1, but some loss may occur Efficiency of runner = Power/Kinetic energy of jet = (ρq)u(v 1 u)(1+cos β 2 )/[(ρq) V 12 /2] = (2u/ V 12 )(V 1 u) (1+cos β 2 )

11 Radial/Mixed flow Turbine (FRANCIS TURBINE) In a reaction turbine (hydraulic, steam, or gas), a part of the head is converted into KE in stationery guide vanes. Static pressure changes in the runner Used for low head high flow application It can be mixed flow or radial type It gives high efficiency but is unsuitable for high head Specific speed for such turbine is

12 AXIAL FLOW MACHINES for air/gas (12.2.2)

13 An axial flow machine

14 Axial Flow Machines Here fluid flows parallel to the machine axis Propeller, air circulator, table fan are examples of axial flow pump/fan It is also used extensively in turbines Axial flow machines gives high flow at low head. For high head series of impellers (blades) are mounted in series. Guide or static vanes are used in-between to guide the flow for optimum efficiency Its impellers are designed to give constant axial velocity at all radius but varying head.

15 Axial flow machines Fluid enters and leaves at the same radial distance giving u 1 = u = u 2 ; V n1 =V n = V n2 Eq.(8) is valid here. So we can write 2 u2( u2 Vn2 cot β2) u uvn cot β2 (14) H = g Eq. 14 suggests that head varies from axis to periphery with u. Axial flow fans are designed to have same velocity at all radius. Can you suggest how to do this? = g g

16 Axial flow turbine Power developed ~ Flow rate x Head available Axial flow turbine allow large flow rate and therefore work with low velocity or low head Guide vanes gives free vortex type whirl to water (V t ~ R -1 ) To handle large flow rate blades are large. Blade velocity (u ~ R) increases with radius. But fluid velocity (V t ~ R -1 ). To cater for this difference the runner blades are twisted making larger angle at the tip For maximum efficiency blades are designed such that tangential component of exit velocity, V t1 is zero P = ρ Q(u 2 V t2 u 1 V t1 ) = ρ Qu 2 V t2 Specific speed is rpm

17 Multi blade Reaction Turbine

18 Turbine selection The BHP output depends on Q, H, n & D Specific speed N sp compares output with Head N sp = N(rpm) (BHP) 0.5 /[{Hft)) 1.25 ] Optimum efficiency of turbine depends on its specific speed

19 Problem on Pelton wheel A pelton wheel driven by two similar jets transmits 3750 kw to the shaft when running at 375 rpm. The head from the reservoir level to the nozzles is 200 m and there 10% loss in head for flow through the pipelines and nozzles. The jets are tangential to a 1.45m diameter circle. The relative velocity decreases by 10% as the water traverses the buckets, which are so shaped that they would, if stationery, deflect the jet through Neglecting windage losses, find: (a) the efficiency of the runner and (b) the diameter of each jet [Ans: 93.3%, 157 mm]

20 Home work An axial flow fan has a hub diameter of 1.5 m and tip diameter of 2 m. It rotates at 18 rad/s and, when handling 5 m 3 /s of air, develops a theoretical head equivalent to 17 mm of water. Determine the blade outlet and inlet angles at the hub and at the tip. Assume that the velocity of flow is independent of radius and that the energy transfer per unit length of blade is constant. Air density = 1.2 kg/m 3 and water density = 1000 kg/m 3 [11.4 0, , , ] (Douglas p-719)

KEYWORDS Micro hydro turbine, Turbine testing, Cross flow turbine

KEYWORDS Micro hydro turbine, Turbine testing, Cross flow turbine DEVELOPMENT OF COST EFFECTIVE TURBINE FOR HILLY AREAS [Blank line 11 pt] A. Tamil Chandran, Senior Research Engineer Fluid Control Research Institute, Kanjikode west, Plalakkad, Kerala, India tamilchandran@fcriindia.com

More information

FLUID MECHANICS. TUTORIAL No.7 FLUID FORCES. When you have completed this tutorial you should be able to. Solve forces due to pressure difference.

FLUID MECHANICS. TUTORIAL No.7 FLUID FORCES. When you have completed this tutorial you should be able to. Solve forces due to pressure difference. FLUID MECHANICS TUTORIAL No.7 FLUID FORCES When you have completed this tutorial you should be able to Solve forces due to pressure difference. Solve problems due to momentum changes. Solve problems involving

More information

CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc.

CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. 1 Centrifugal Pump- Definition Centrifugal Pump can be defined as a mechanical device used to transfer liquid of various types. As

More information

Chapter 3.5: Fans and Blowers

Chapter 3.5: Fans and Blowers Part I: Objective type questions and answers Chapter 3.5: Fans and Blowers 1. The parameter used by ASME to define fans, blowers and compressors is a) Fan ration b) Specific ratio c) Blade ratio d) Twist

More information

FLUID MECHANICS. TUTORIAL No.8A WATER TURBINES. When you have completed this tutorial you should be able to

FLUID MECHANICS. TUTORIAL No.8A WATER TURBINES. When you have completed this tutorial you should be able to FLUID MECHAICS TUTORIAL o.8a WATER TURBIES When you have completed this tutorial you should be able to Explain the significance of specific speed to turbine selection. Explain the general principles of

More information

www.klmtechgroup.com TABLE OF CONTENT

www.klmtechgroup.com TABLE OF CONTENT Page : 1 of 26 Project Engineering Standard www.klmtechgroup.com KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia TABLE OF CONTENT SCOPE 2 REFERENCES

More information

Theory of turbo machinery / Turbomaskinernas teori. Chapter 4

Theory of turbo machinery / Turbomaskinernas teori. Chapter 4 Theory of turbo machinery / Turbomaskinernas teori Chapter 4 Axial-Flow Turbines: Mean-Line Analyses and Design Power is more certainly retained by wary measures than by daring counsels. (Tacitius, Annals)

More information

TURBINE SELECTION RANGE

TURBINE SELECTION RANGE GILKES GILKESTURGO TURGOIMPULSE IMPULSEHYDRO HYDROTURBINE TURBINE TURBINE SELECTION On 17th August 1856 we received our first order for a water turbine. It produced mechanical power to drive agricultural

More information

Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic energy).

Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic energy). HYDRAULIC MACHINES Used to convert between hydraulic and mechanical energies. Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic

More information

UCCS PES/ENSC 2500: Renewable Energy Spring 2014 Test 3 name:

UCCS PES/ENSC 2500: Renewable Energy Spring 2014 Test 3 name: UCCS PES/ENSC 2500: Renewable Energy Spring 2014 Test 3 name: 1. When a wind turbine is positioned between radio, television or microwave transmitter and receiver it can sometime reflect some of the in

More information

CHAPTER 6: ELECTROMECHANICAL EQUIPMENT CONTENTS LIST OF FIGURES. Guide on How to Develop a Small Hydropower Plant ESHA 2004

CHAPTER 6: ELECTROMECHANICAL EQUIPMENT CONTENTS LIST OF FIGURES. Guide on How to Develop a Small Hydropower Plant ESHA 2004 CHAPTER 6: ELECTROMECHANICAL EQUIPMENT CONTENTS 6 Electromechanical equipment... 154 6.1 Powerhouse...154 6.2 Hydraulic turbines...156 6.2.1 Types and configuration...156 6.2.2 Specific speed and similitude...168

More information

UCCS ENSC/PES 2500: Renewable Energy Spring 2011 Test 3 name:

UCCS ENSC/PES 2500: Renewable Energy Spring 2011 Test 3 name: UCCS ENSC/PES 2500: Renewable Energy Spring 2011 Test 3 name: 1. These waves travel through the body of the Earth and are called S waves. a. Transverse b. Longitudinal c. Amplitude d. Trough 2. These waves

More information

Characteristics of Centrifugal Blower and Its Effective Use in High Static Pressure Area

Characteristics of Centrifugal Blower and Its Effective Use in High Static Pressure Area Characteristics of Centrifugal Blower and Its Effective Use in High Static Pressure Area Masayuki TAKAHASHI With small fans, selecting the right fan that most fits the purpose is extremely important from

More information

Performance of Gangrel Hydroelectric Power Plant A Case Study

Performance of Gangrel Hydroelectric Power Plant A Case Study Performance of Gangrel Hydroelectric Power Plant A Case Study Bhoumika Sahu 1, Sanjiv Kumar 2, Dhananjay Kumar Sahu 3,Brijesh patel 4,Kalpit P. Kaurase 5 1 M.Tech scholar (TurboMachinary) & Mats University,

More information

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital

More information

Relevance of Modern Optimization Methods in Turbo Machinery Applications

Relevance of Modern Optimization Methods in Turbo Machinery Applications Relevance of Modern Optimization Methods in Turbo Machinery Applications - From Analytical Models via Three Dimensional Multidisciplinary Approaches to the Optimization of a Wind Turbine - Prof. Dr. Ing.

More information

Dampers. Inlet guide vane. Damper. Louvre damper. Handbook Radial Fans / Chapter 3 - Dampers REITZ List 2010 DO 1. Dampers

Dampers. Inlet guide vane. Damper. Louvre damper. Handbook Radial Fans / Chapter 3 - Dampers REITZ List 2010 DO 1. Dampers Inlet guide vane Damper ouvre damper Handbook Radial Fans / Chapter 3 - REITZ ist 2010 DO 1 Technical description rticle number and order code article number = component size DR D1 0 3-000 031-00 variant

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 3 HYDRAULIC AND PNEUMATIC MOTORS The material needed for outcome 2 is very extensive

More information

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley. Sample Questions REVISED FIRST CLASS PARTS A1, A2, AND A3 (NOTE: these questions are intended as representations of the style of questions that may appear on examinations. They are not intended as study

More information

HYDROPOWER SYSTEMS BY APPOINTMENT TO H.M. THE QUEEN WATER TURBINE ENGINEERS, GILBERT GILKES & GORDON LTD, KENDAL

HYDROPOWER SYSTEMS BY APPOINTMENT TO H.M. THE QUEEN WATER TURBINE ENGINEERS, GILBERT GILKES & GORDON LTD, KENDAL HYDROPOWER SYSTEMS BY APPOINTMENT TO H.M. THE QUEEN WATER TURBINE ENGINEERS, GILBERT GILKES & GORDON LTD, KENDAL 1 WWW.GILKES.COM CONTENTS THE COMPANY 3 GILKES HYDROPOWER 5 GILKES PACKAGE 7 TURBINE SELECTION

More information

HydroHelp 1 AN EXCEL PROGRAM DEVELOPED FOR TURBINE-GENERATOR SELECTION FOR HYDROELECTRIC SITES

HydroHelp 1 AN EXCEL PROGRAM DEVELOPED FOR TURBINE-GENERATOR SELECTION FOR HYDROELECTRIC SITES HydroHelp 1 AN EXCEL PROGRAM DEVELOPED FOR TURBINE-GENERATOR SELECTION FOR HYDROELECTRIC SITES Selecting the correct turbine for a hydro site is difficult, particularly for small low-head sites. Manufacturers

More information

Suitable Selection of Components for the Micro-Hydro-Electric Power Plant

Suitable Selection of Components for the Micro-Hydro-Electric Power Plant Advances in Energy and Power 2(1): 7-12, 2014 DOI: 10.13189/aep.2014.020102 http://www.hrpub.org Suitable Selection of Components for the Micro-Hydro-Electric Power Plant Bilal Abdullah Nasir Hawijah Technical

More information

Minor losses include head losses through/past hydrants, couplers, valves,

Minor losses include head losses through/past hydrants, couplers, valves, Lecture 10 Minor Losses & Pressure Requirements I. Minor Losses Minor (or fitting, or local ) hydraulic losses along pipes can often be estimated as a function of the velocity head of the water within

More information

CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES

CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES 4.0 PUMP CLASSES Pumps may be classified in two general types, dynamic and positive displacement. Positive displacement pumps

More information

STEAM TURBINE 1 CONTENT. Chapter Description Page. V. Steam Process in Steam Turbine 6. VI. Exhaust Steam Conditions, Extraction and Admission 7

STEAM TURBINE 1 CONTENT. Chapter Description Page. V. Steam Process in Steam Turbine 6. VI. Exhaust Steam Conditions, Extraction and Admission 7 STEAM TURBINE 1 CONTENT Chapter Description Page I Purpose 2 II Steam Turbine Types 2 2.1. Impulse Turbine 2 2.2. Reaction Turbine 2 III Steam Turbine Operating Range 2 3.1. Curtis 2 3.2. Rateau 2 3.3.

More information

NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION

NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION Engineering Review Vol. 32, Issue 3, 141-146, 2012. 141 NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION Z. 1* L. 1 V. 2 M. 1 1 Department of Fluid Mechanics and Computational Engineering,

More information

Air Conditioning Clinic

Air Conditioning Clinic Air Conditioning Clinic Air Conditioning Fans One of the Equipment Series February 2012 TRG-TRC013-EN Air Conditioning Fans One of the Equipment Series A publication of Trane Preface Air Conditioning

More information

COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS OF INTERMEDIATE PRESSURE STEAM TURBINE

COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS OF INTERMEDIATE PRESSURE STEAM TURBINE Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 4, October, 2014 2014 IJMERR. All Rights Reserved COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS OF INTERMEDIATE PRESSURE STEAM TURBINE Shivakumar

More information

ENGINEERING DATA. Fan Performance Troubleshooting Guide

ENGINEERING DATA. Fan Performance Troubleshooting Guide Information and Recommendations for the Engineer ENGINEERING DATA Aerovent TC Ventco Fiber-Aire Twin City Fan & Blower TC Axial Clarage Fan Performance Troubleshooting Guide ED- Introduction Trying to

More information

FLUID FLOW ANALYSIS OF CENTRIFUGAL FAN BY USING FEM

FLUID FLOW ANALYSIS OF CENTRIFUGAL FAN BY USING FEM International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 45 51, Article ID: IJMET_07_02_007 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

HYDROPOWER IN NORWAY. Mechanical Equipment

HYDROPOWER IN NORWAY. Mechanical Equipment HYDROPOWER IN NORWAY Mechanical Equipment A survey prepared by Arne Kjølle Professor Emeritus Norwegian University of Science and Technology Trondheim, December 2001 VIII Preface This book was originally

More information

What are the Benefits?

What are the Benefits? Micro hydro power system introduction Not everyone is lucky enough to have a source of running water near their homes. But for those with river-side homes or live-on boats, small water generators (micro-hydro

More information

Chapter 2 Pump Types and Performance Data

Chapter 2 Pump Types and Performance Data Chapter 2 Pump Types and Performance Data Abstract Centrifugal pumps are used for transporting liquids by raising a specified volume flow to a specified pressure level. Pump performance at a given rotor

More information

DESIGN OF SMALL HYDRO ELECTRIC PROJECT USING TAILRACE EXTENSION SCHEME

DESIGN OF SMALL HYDRO ELECTRIC PROJECT USING TAILRACE EXTENSION SCHEME DESIGN OF SMALL HYDRO ELECTRIC PROJECT USING TAILRACE EXTENSION SCHEME Delson Jose 1, Lini Varghese 2, Renjini G. 3 1,2B.Tech Scholars Engineering College, Cheruthuruthy, Thrissur, 3Assistant Professor,

More information

IPS Inboard performance system. Volvo Penta IPS, the future for fast vessels

IPS Inboard performance system. Volvo Penta IPS, the future for fast vessels IPS, the future for fast vessels 1 dec 2010 Save fuel and reduce environmental impact 2 dec 2010 Best efficiency with Contra Rotating propellers Double blade area means smaller prop diameter for same output

More information

FUNDAMENTALS OF GAS TURBINE ENGINES

FUNDAMENTALS OF GAS TURBINE ENGINES FUNDAMENTALS OF GAS TURBINE ENGINES INTRODUCTION The gas turbine is an internal combustion engine that uses air as the working fluid. The engine extracts chemical energy from fuel and converts it to mechanical

More information

Wind Turbine Power Calculations

Wind Turbine Power Calculations Wind Turbine Power Calculations RWE npower renewables Mechanical and Electrical Engineering Power Industry INTRODUCTION RWE npower is a leading integrated UK energy company and is part of the RWE Group,

More information

Electric Motors and Drives

Electric Motors and Drives EML 2322L MAE Design and Manufacturing Laboratory Electric Motors and Drives To calculate the peak power and torque produced by an electric motor, you will need to know the following: Motor supply voltage,

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 1 HYDRAULIC PUMPS The material needed for outcome 2 is very extensive so there

More information

A LAYMAN S GUIDE TO SMALL HYDRO SCHEMES IN SCOTLAND

A LAYMAN S GUIDE TO SMALL HYDRO SCHEMES IN SCOTLAND A LAYMAN S GUIDE TO SMALL HYDRO SCHEMES IN SCOTLAND David J T McKenzie CA March 2007 1 GENERAL INFORMATION ABOUT HYDRO TECHNOLOGY General Hydro electric schemes are the largest contributor of electricity

More information

Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity. We touched on this briefly in chapter 7! x 2 Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

More information

Pump Selection and Sizing (ENGINEERING DESIGN GUIDELINE)

Pump Selection and Sizing (ENGINEERING DESIGN GUIDELINE) Guidelines for Processing Plant Page : 1 of 51 Rev 01 Feb 2007 Rev 02 Feb 2009 Rev 03 KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru. (ENGINEERING DESIGN GUIDELINE)

More information

Design and testing of a high flow coefficient mixed flow impeller

Design and testing of a high flow coefficient mixed flow impeller Design and testing of a high flow coefficient mixed flow impeller H.R. Hazby PCA Engineers Ltd., UK M.V. Casey PCA Engineers Ltd., UK University of Stuttgart (ITSM), Germany R. Numakura and H. Tamaki IHI

More information

Evaporation Technology Using Mechanical Vapour Recompression

Evaporation Technology Using Mechanical Vapour Recompression Evaporation Technology Using Mechanical Vapour Recompression Technology and Applications engineering for a better world GEA Process Engineering Evaporation technology using mechanical vapour recompression

More information

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

More information

= water horsepower WHP brake horsepower QH WHP = (222) ( 33,000 ft-lbs/min-hp)( 7.481 gal/ft ) 1 HP=0.746 kw

= water horsepower WHP brake horsepower QH WHP = (222) ( 33,000 ft-lbs/min-hp)( 7.481 gal/ft ) 1 HP=0.746 kw Lecture 11 Pumps & System Curves I. Pump Efficiency and Power Pump efficiency, E pump E pump = water horsepower WHP brake horsepower = BHP (221) where brake horsepower refers to the input power needed

More information

Mini & Micro Hydro Power Generation. EBARA Hatakeyama Memorial Fund Tokyo, Japan

Mini & Micro Hydro Power Generation. EBARA Hatakeyama Memorial Fund Tokyo, Japan Mini & Micro Hydro Power Generation EBARA Hatakeyama Memorial Fund Tokyo, Japan Definitions Large Scale hydro power generation : Capacity 100(MW) Most of them involve major construction of dams. Small

More information

Mechanical Principles

Mechanical Principles Unit 4: Mechanical Principles Unit code: F/601/1450 QCF level: 5 Credit value: 15 OUTCOME 4 POWER TRANSMISSION TUTORIAL 2 BALANCING 4. Dynamics of rotating systems Single and multi-link mechanisms: slider

More information

Turbine Design for Thermoacoustic

Turbine Design for Thermoacoustic Turbine Design for Thermoacoustic Generator Design of a bi-directional turbine to convert acoustic power into electricity 8/20/2012 Company: FACT-Foundation Author: Tim Kloprogge Student number: 443943

More information

A Swirl Generator Case Study for OpenFOAM

A Swirl Generator Case Study for OpenFOAM A Swirl Generator Case Study for OpenFOAM Olivier Petit Alin I. Bosioc Sebastian Muntean Håkan Nilsson Romeo F. Susan-Resiga Chalmers University Politehnica University of Timisoara Aim of the Timisoara

More information

Manufacturing Equipment Modeling

Manufacturing Equipment Modeling QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,

More information

FAN PROTECTION AGAINST STALLING PHENOMENON

FAN PROTECTION AGAINST STALLING PHENOMENON FAN PROTECTION AGAINST STALLING PHENOMENON Roberto Arias Álvarez 1 Javier Fernández López 2 2 1 ZITRON Technical Director roberto@zitron.com ZITRON Technical Pre Sales Management jfernandez@zitron.com

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

More information

Waterjets. propulsors. courtesy of Austal

Waterjets. propulsors. courtesy of Austal Waterjets The Rolls-Royce Kamewa waterjet range is the broadest in the business. Manufactured in aluminium and stainless steel, they are available in powers from kw to above 36MW. Using the latest design

More information

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness

More information

A Simplified 3d Model Approach in Constructing the Plain Vane Profile of A Radial Type Submersible Pump Impeller

A Simplified 3d Model Approach in Constructing the Plain Vane Profile of A Radial Type Submersible Pump Impeller Research Journal of Engineering Sciences ISSN 2278 9472 A Simplified 3d Model Approach in Constructing the Plain Vane Profile of A Radial Type Submersible Pump Impeller Abstract Gundale V.A. 1, Joshi G.R.

More information

Gear Trains. Introduction:

Gear Trains. Introduction: Gear Trains Introduction: Sometimes, two or more gears are made to mesh with each other to transmit power from one shaft to another. Such a combination is called gear train or train of toothed wheels.

More information

Energy audit methodology of thermal systems Training Programme Energy Conservation in Foundry Industry

Energy audit methodology of thermal systems Training Programme Energy Conservation in Foundry Industry Energy audit methodology of thermal systems Training Programme Energy Conservation in Foundry Industry 11-13 August 2014 Indore Energy audits - TERI s experience Pioneered energy audits in India Highly

More information

Pico Power: A Boon for Rural Electrification

Pico Power: A Boon for Rural Electrification Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 7 (2013), pp. 865-872 Research India Publications http://www.ripublication.com/aeee.htm Pico Power: A Boon for Rural Electrification

More information

Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

More information

Hydro Power. Chapter 4. Mohammed Taih Gatte and Rasim Azeez Kadhim. 1. Introduction

Hydro Power. Chapter 4. Mohammed Taih Gatte and Rasim Azeez Kadhim. 1. Introduction Chapter 4 Hydro Power Mohammed Taih Gatte and Rasim Azeez Kadhim Additional information is available at the end of the chapter http://dx.doi.org/10.5772/52269 1. Introduction Humans have used the power

More information

Mechanical Principles

Mechanical Principles Unit 4: Mechanical Principles Unit code: F/60/450 QCF level: 5 Credit value: 5 OUTCOME 3 POWER TRANSMISSION TUTORIAL BELT DRIVES 3 Power Transmission Belt drives: flat and v-section belts; limiting coefficient

More information

MICRO HYDRO POWER GENERATING EQUIPMENT

MICRO HYDRO POWER GENERATING EQUIPMENT MICRO HYDRO POWER GENERATING EQUIPMENT TOSHIBA TOSHIBA ENGINEERING In general, specifications of hydroelectric power system vary depending upon the installation location. The hydro turbine and generator

More information

CO 2 41.2 MPa (abs) 20 C

CO 2 41.2 MPa (abs) 20 C comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle

More information

Practice Problems on Pumps. Answer(s): Q 2 = 1850 gpm H 2 = 41.7 ft W = 24.1 hp. C. Wassgren, Purdue University Page 1 of 16 Last Updated: 2010 Oct 29

Practice Problems on Pumps. Answer(s): Q 2 = 1850 gpm H 2 = 41.7 ft W = 24.1 hp. C. Wassgren, Purdue University Page 1 of 16 Last Updated: 2010 Oct 29 _02 A centrifugal with a 12 in. diameter impeller requires a power input of 60 hp when the flowrate is 3200 gpm against a 60 ft head. The impeller is changed to one with a 10 in. diameter. Determine the

More information

FAN ENGINEERING. ( ) ρ N. Fan Performance Troubleshooting Guide

FAN ENGINEERING. ( ) ρ N. Fan Performance Troubleshooting Guide FN ENGINEERING Information and Recommendations for the Engineer FE- Fan Performance Troubleshooting Guide Introduction Trying to determine why a fan is not working the way you want it to can sometimes

More information

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to

More information

Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics

Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 10) Granada (Spain), 23rd

More information

RECYCLED MICRO HYDROPOWER GENERATION USING HYDRAULIC RAM PUMP (HYDRAM)

RECYCLED MICRO HYDROPOWER GENERATION USING HYDRAULIC RAM PUMP (HYDRAM) IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) Vol., Issue 3, Aug 23, - Impact Journals RECYCLED MICRO HYDROPOWER GENERATION USING HYDRAULIC RAM PUMP (HYDRAM) C.

More information

Turbine Generator Sets 101 Skinner Power Systems LLC September 2006 Rev 1 May 2009

Turbine Generator Sets 101 Skinner Power Systems LLC September 2006 Rev 1 May 2009 SKINNER POWER SYSTEMS L.L.C. 8214 EDINBORO ROAD ERIE, PA 16509 USA Phone: 814-868-8500 Fax: 814-868-5299 email: jeff@skinnerpowersystems.net web: www.skinnerpowersystems.net Basic turbine generator set

More information

The Cross Flow Turbine Behavior towards the Turbine Rotation Quality, Efficiency, and Generated Power

The Cross Flow Turbine Behavior towards the Turbine Rotation Quality, Efficiency, and Generated Power The Cross Flow Turbine Behavior towards the Turbine Rotation Quality, Efficiency, and Generated Power Jusuf Haurissa, Slamet Wahyudi, Yudy Surya Irawan, Rudy Soenoko To cite this version: Jusuf Haurissa,

More information

Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process.

Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process. Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN-978-0-07-352932-5, 2008 Sheet 5:Chapter 5 5 1C Name four physical

More information

Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS

Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright

More information

AXIAL TURBINE FOR DOUBLE EFFECT TIDAL POWER PLANTS: A CFD ANALYSIS.

AXIAL TURBINE FOR DOUBLE EFFECT TIDAL POWER PLANTS: A CFD ANALYSIS. AXIAL TURBINE FOR DOUBLE EFFECT TIDAL POWER PLANTS: A CFD ANALYSIS. ANTONIO CARLOS BARKETT BOTAN 1,a, GERALDO LUCIO TIAGO FILHO 2,b, HELCIO FRANCISCO VILLA NOVA 3,c, THIAGO SOARES CORREA 4,d, OSVALDO R.

More information

Application Example: Quality Control. Turbines: 3D Measurement of Water Turbines

Application Example: Quality Control. Turbines: 3D Measurement of Water Turbines Application Example: Quality Control Turbines: 3D Measurement of Water Turbines Measuring Systems: ATOS, TRITOP Keywords: Kaplan, Francis, Pelton, angles 3D scanning of turbines was performed successfully

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 2 HYDRAULIC AND PNEUMATIC CYLINDERS The material needed for outcome 2 is very extensive

More information

Design and manufacturing of Crossflow, Pelton, Kaplan and Francis turbines

Design and manufacturing of Crossflow, Pelton, Kaplan and Francis turbines Design and manufacturing of Crossflow, Pelton, Kaplan and Francis turbines Founded in 1990 as a manufacturer of hydro power plant equipment In 2005, the company underwent complete modernization and extended

More information

SIGMA PUMPY HRANICE CENTRIFUGAL MULTISTAGE HORIZONTAL PUMPS 426 2.98 12.06

SIGMA PUMPY HRANICE CENTRIFUGAL MULTISTAGE HORIZONTAL PUMPS 426 2.98 12.06 SIGMA PUMPY HRANICE CENTRIFUGAL MULTISTAGE HORIZONTAL PUMPS LV SIGMA PUMPY HRANICE, s.r.o. Tovární 605, 753 01 Hranice, Czech Republic tel.: +420 581 661 111, fax: +420 581 602 587 Email: sigmahra@sigmahra.cz

More information

Generate Your Own Hydropower

Generate Your Own Hydropower Generate Your Own Hydropower Objectives The student will do the following: 1 Build a water wheel. 2 Build a simple galvanometer. 3. Build a simple hydropower generator 4. Detect the electricity generated

More information

AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE

AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE HITENDRA KURMI Research scholar, School of Energy and Environmental Managment,UTD, RGPV Bhopal,MP,INDIA htr.ptl@gmail.com

More information

Understanding Plastics Engineering Calculations

Understanding Plastics Engineering Calculations Natti S. Rao Nick R. Schott Understanding Plastics Engineering Calculations Hands-on Examples and Case Studies Sample Pages from Chapters 4 and 6 ISBNs 978--56990-509-8-56990-509-6 HANSER Hanser Publishers,

More information

OPERATING FANS IN PARALLEL IN VIEW OF VARIABLE FLOW RATE OUTPUT

OPERATING FANS IN PARALLEL IN VIEW OF VARIABLE FLOW RATE OUTPUT OPERATING FANS IN PARALLEL IN VIEW OF VARIABLE FLOW RATE OUTPUT Eddy J. Jacques & Pierre J. Wauters Department of Mechanical Engineering, Unité TERM, Université Catholique de Louvain, Belgium ABSTRACT

More information

Centrifugal Fans and Pumps are sized to meet the maximum

Centrifugal Fans and Pumps are sized to meet the maximum Fans and Pumps are sized to meet the maximum flow rate required by the system. System conditions frequently require reducing the flow rate. Throttling and bypass devices dampers and valves are installed

More information

Extremely compact in size to allow direct flange-mounting on vehicle engine or gearbox PTOs.

Extremely compact in size to allow direct flange-mounting on vehicle engine or gearbox PTOs. TXV - Presentation pumps with Load Sensing control variable displacement piston pumps ADVANTAGES pumps are variable displacement with pressure-flow control called Load Sensing. They self-regulate to give

More information

THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS

THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS Dr Andrew Pollard Principal Engineer GKN Technology UK INTRODUCTION There is a wide choice of flexible couplings for power transmission applications,

More information

SAMPLE CHAPTERS UNESCO EOLSS

SAMPLE CHAPTERS UNESCO EOLSS STEAM TURBINE OPERATIONAL ASPECTS R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada Keywords: Steam Turbines, Operation, Supersaturation, Moisture, Back Pressure, Governing

More information

with engineered reliability

with engineered reliability Pelton turbines Cover picture Machined bucket backside, Workshop, St. Pölten, Austria Model test set up for dynamic measurements Akköy, Turkey Harnessing the power of water Pelton nozzle with engineered

More information

ME 239: Rocket Propulsion. Over- and Under-expanded Nozzles and Nozzle Configurations. J. M. Meyers, PhD

ME 239: Rocket Propulsion. Over- and Under-expanded Nozzles and Nozzle Configurations. J. M. Meyers, PhD ME 239: Rocket Propulsion Over- and Under-expanded Nozzles and Nozzle Configurations J. M. Meyers, PhD 1 Over- and Underexpanded Nozzles Underexpanded Nozzle Discharges fluid at an exit pressure greater

More information

SMALL HYDRO PROJECT ANALYSIS

SMALL HYDRO PROJECT ANALYSIS Training Module SPEAKER S NOTES SMALL HYDRO PROJECT ANALYSIS CLEAN ENERGY PROJECT ANALYSIS COURSE This document provides a transcription of the oral presentation (Voice & Slides) for this training module

More information

Transient Performance Prediction for Turbocharging Systems Incorporating Variable-geometry Turbochargers

Transient Performance Prediction for Turbocharging Systems Incorporating Variable-geometry Turbochargers 22 Special Issue Turbocharging Technologies Research Report Transient Performance Prediction for Turbocharging Systems Incorporating Variable-geometry Turbochargers Hiroshi Uchida Abstract Turbocharging

More information

This chapter deals with three equations commonly used in fluid mechanics:

This chapter deals with three equations commonly used in fluid mechanics: MASS, BERNOULLI, AND ENERGY EQUATIONS CHAPTER 5 This chapter deals with three equations commonly used in fluid mechanics: the mass, Bernoulli, and energy equations. The mass equation is an expression of

More information

Fig 1 Power Transmission system of Tractor

Fig 1 Power Transmission system of Tractor POWER TRANSMISSION SYSTEM Transmission is a speed reducing mechanism, equipped with several gears (Fig. 1). It may be called a sequence of gears and shafts, through which the engine power is transmitted

More information

5. FANS AND BLOWERS. 5.1 Introduction. 5.2 Fan Types

5. FANS AND BLOWERS. 5.1 Introduction. 5.2 Fan Types 5. FANS AND BLOWERS 5. Fans and Blowers Syllabus Fans and blowers: Types, Performance evaluation, Efficient system operation, Flow control strategies and energy conservation opportunities 5.1 Introduction

More information

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc. Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

More information

DET SIGMA PUMPY HRANICE PUMP TURBINES 426 2.98 81.01

DET SIGMA PUMPY HRANICE PUMP TURBINES 426 2.98 81.01 SIGMA PUMPY HRANICE PUMP TURBINES DET SIGMA PUMPY HRANICE, s.r.o. Tovární 605, 753 01 Hranice, Czech Republic tel.: +420 581 661 111, fax: +420 581 602 587 Email: sigmahra@sigmahra.cz 426 2.98 81.01 Applications

More information

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES Simple machines: lifting devices e.g. lever systems, inclined plane, screw jack, pulley blocks, Weston differential

More information

INTERNATIONAL FIRE TRAINING CENTRE FIREFIGHTER INITIAL PUMPS AND PRIMERS. Throughout this note he means he/she and his means his/hers.

INTERNATIONAL FIRE TRAINING CENTRE FIREFIGHTER INITIAL PUMPS AND PRIMERS. Throughout this note he means he/she and his means his/hers. INTERNATIONAL FIRE TRAINING CENTRE FIREFIGHTER INITIAL PUMPS AND PRIMERS Throughout this note he means he/she and his means his/hers. Areas of bold type are considered to be of prime importance. INTRODUCTION

More information

EXPERIMENTAL AND THEORETICAL ANALYSIS OF SURGE IN THE CENTRIFUGAL COMPRESSOR

EXPERIMENTAL AND THEORETICAL ANALYSIS OF SURGE IN THE CENTRIFUGAL COMPRESSOR The Iraqi Journal For Mechanical And Material Engineering, Vol.14, No2, 2014 EXPERIMENTAL AND THEORETICAL ANALYSIS OF SURGE IN THE CENTRIFUGAL COMPRESSOR Dr.abdulkareem a. wahab albehigi Email: abdulkareemwahab78@yahoo.com

More information

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

More information