# 19.2. First Order Differential Equations. Introduction. Prerequisites. Learning Outcomes

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 First Orer Differential Equations 19.2 Introuction Separation of variables is a technique commonly use to solve first orer orinary ifferential equations. It is so-calle because we rearrange the equation to be solve such that all terms involving the epenent variable appear on one sie of the equation, an all terms involving the inepenent variable appear on the other. Integration completes the solution. Not all first orer equations can be rearrange in this way so this technique is not always appropriate. Further, it is not always possible to perform the integration even if the variables are separable. In this Section you will learn how to ecie whether the metho is appropriate, an how to apply it in such cases. An exact first orer ifferential equation is one which can be solve by simply integrating both sies. Only very few first orer ifferential equations are exact. You will learn how to recognise these an solve them. Some others may be converte simply to exact equations an that is also consiere Whilst exact ifferential equations are few an far between an important class of ifferential equations can be converte into exact equations by multiplying through by a function known as the integrating factor for the equation. In the last part of this Section you will learn how to ecie whether an equation is capable of being transforme into an exact equation, how to etermine the integrating factor, an how to obtain the solution of the original equation. Prerequisites Before starting this Section you shoul... Learning Outcomes On completion you shoul be able to... Section 19.2: First Orer Differential Equations unerstan what is meant by a ifferential equation; (Section 19.1) explain what is meant by separating the variables of a first orer ifferential equation etermine whether a first orer ifferential equation is separable solve a variety of equations using the separation of variables technique 11

2 1. Separating the variables in first orer ODEs In this Section we consier ifferential equations which can be written in the form = f(x)g(y) Note that the right-han sie is a prouct of a function of x, an a function of y. Examples of such equations are = x2 y 3, = y2 sin x an = y ln x Not all first orer equations can be written in this form. For example, it is not possible to rewrite the equation = x2 + y 3 in the form = f(x)g(y) Task Determine which of the following ifferential equations can be written in the form = f(x)g(y) If possible, rewrite each equation in this form. (a) = x2 y 2, (b) = 4x2 + 2y 2, (c) y + 3x = 7 (a) ( ) 1 = x2, (b) cannot be written in the state form, y 2 (c) Reformulating gives = (7 3x) 1 y which is in the require form. 12 Workbook 19: Differential Equations

3 The variables involve in ifferential equations nee not be x an y. Any symbols for variables may be use. Other first orer ifferential equations are ( ) z t = θ tez t = θ an v 1 r = v r 2 Given a ifferential equation in the form = f(x)g(y) we can ivie through by g(y) to obtain 1 g(y) = f(x) If we now integrate both sies of this equation with respect to x we obtain 1 g(y) = f(x) that is 1 g(y) = f(x) We have separate the variables because the left-han sie contains only the variable y, an the right-han sie contains only the variable x. We can now try to integrate each sie separately. If we can actually perform the require integrations we will obtain a relationship between y an x. Examples of this process are given in the next subsection. Key Point 1 Metho of Separation of Variables The solution of the equation = f(x)g(y) may be foun from separating the variables an integrating: 1 g(y) = f(x) Section 19.2: First Orer Differential Equations 13

4 2. Applying the metho of separation of variables to ODEs Example 3 Use the metho of separation of variables to solve the ifferential equation = 3x2 y Solution The equation alrea has the form = f(x)g(y) where f(x) = 3x 2 an g(y) = 1/y. Diviing both sies by g(y) we fin y = 3x2 Integrating both sies with respect to x gives y = 3x 2 that is y = 3x 2 Note that the left-han sie is an integral involving just y; the right-han sie is an integral involving just x. After integrating both sies with respect to the state variables we fin 1 2 y2 = x 3 + c where c is a constant of integration. (You might think that there woul be a constant on the left-han sie too. You are quite right but the two constants can be combine into a single constant an so we nee only write one.) We now have a relationship between y an x as require. Often it is sufficient to leave your answer in this form but you may also be require to obtain an explicit relation for y in terms of x. In this particular case so that y 2 = 2x 3 + 2c y = ± 2x 3 + 2c 14 Workbook 19: Differential Equations

5 Task Use the metho of separation of variables to solve the ifferential equation = cos x sin 2y First separate the variables so that terms involving y an x appear on the right: appear on the left, an terms involving You shoul have obtaine sin 2y = cos x Now reformulate both sies as integrals: sin 2y = cos x that is sin 2y = cos x Now integrate both sies: 1 2 cos 2y = sin x + c Finally, rearrange to obtain an expression for y in terms of x: y = 1 2 cos 1 (D 2 sin x) where D = 2c Section 19.2: First Orer Differential Equations 15

6 1. Solve the equation = e x y. Exercises 2. Solve the following equation subject to the conition y(0) = 1: = 3x2 e y 3. Fin the general solution of the following equations: (a) = 3, (b) = 6 sin x y 4. (a) Fin the general solution of the equation = t(x 2). t (b) Fin the particular solution which satisfies the conition x(0) = Some equations which o not appear to be separable can be mae so by means of a suitable substitution. By means of the substitution z = y/x solve the equation = y2 x + y 2 x The equation ir + L i t = E where R, L an E are constants arises in electrical circuit theory. This equation can be solve by separation of variables. Fin the solution which satisfies the conition i(0) = 0. s 1. y = ± D 2e x. 2. y = ln(x 3 + e). 3 (a) y = 3x + C, (b) 1 2 y2 = C 6 cos x. 4. (a) x = 2 + Ae t2 /2, (b) x = 2 + 3e t2 /2. 5. z = tan(ln Dx) so that y = x tan(ln Dx). 6. i = E R (1 e t/τ ) where τ = L/R. 16 Workbook 19: Differential Equations

7 3. Exact equations Consier the ifferential equation = 3x2 By irect integration we fin that the general solution of this equation is y = x 3 + C where C is, as usual, an arbitrary constant of integration. Next, consier the ifferential equation (yx) = 3x2. Again, by irect integration we fin that the general solution is yx = x 3 + C. We now ivie this equation by x to obtain y = x 2 + C x. The ifferential equation (yx) = 3x2 is calle an exact equation. It can effectively be solve by integrating both sies. Task Solve the equations (a) = 5x4 (b) (x3 y) = 5x 4 (a) y = (b) y = (a) y = x 5 + C (b) x 3 y = x 5 + C so that y = x 2 + C x 3. If we consier examples of this kin in a more general setting we obtain the following Key Point: Section 19.2: First Orer Differential Equations 17

8 The solution of the equation is f(x) y = Key Point 2 (f(x) y) = g(x) g(x) or y = 1 f(x) g(x) 4. Solving exact equations As we have seen, the ifferential equation (yx) = 3x2 has solution y = x 2 + C/x. In the solution, x 2 is calle the efinite part an C/x is calle the inefinite part (containing the arbitrary constant of integration). If we take the efinite part of this solution, i.e. y = x 2, then (y x) = (x2 x) = (x3 ) = 3x 2. Hence y = x 2 is a solution of the ifferential equation. Now if we take the inefinite part of the solution i.e. y i = C/x then (y i x) = ( ) C x x = (C) = 0. It is always the case that the general solution of an exact equation is in two parts: a efinite part y (x) which is a solution of the ifferential equation an an inefinite part y i (x) which satisfies a simpler version of the ifferential equation in which the right-han sie is zero. Task (a) Solve the equation (y cos x) = cos x (b) Verify that the inefinite part of the solution satisfies the equation (y cos x) = 0. (a) Integrate both sies of the first ifferential equation: 18 Workbook 19: Differential Equations

9 y cos x = cos x = sin x + C leaing to y = tan x + C sec x (b) Substitute for y in the inefinite part (i.e. the part which contains the arbitrary constant) in the secon ifferential equation: The inefinite part of the solution is y i = C sec x an so y i cos x = C an (y i cos x) = (C) = 0 5. Recognising an exact equation The equation (yx) = 3x2 is exact, as we have seen. equation (i.e. ifferentiate the prouct) we obtain x + y. Hence the equation If we expan the left-han sie of this x + y = 3x2 must be exact, but it is not so obvious that it is exact as in the original form. This leas to the following Key Point: The equation is exact. It can be re-written as Key Point 3 f(x) + y f (x) = g(x) (y f(x)) = g(x) so that y f(x) = g(x) Section 19.2: First Orer Differential Equations 19

10 Example 4 Solve the equation x 3 + 3x2 y = x Solution Comparing this equation with the form in Key Point 3 we see that f(x) = x 3 an g(x) = x. Hence the equation can be written (yx3 ) = x which has solution yx 3 = x = 1 2 x2 + C. Therefore y = 1 2x + C x 3. Task Solve the equation sin x + y cos x = cos x. You shoul obtain y = 1 + Ccosec x since, here f(x) = sin x an g(x) = cos x. Then (y sin x) = cos x an y sin x = cos x = sin x + C Finally y = 1 + C cosec x. 20 Workbook 19: Differential Equations

11 1. Solve the equation (yx2 ) = x 3. Exercises 2. Solve the equation (yex ) = e 2x given the conition y(0) = Solve the equation e + 2e2x y = x Show that the equation x 2 + 2xy = x3 is exact an obtain its solution. 5. Show that the equation x 2 + 3xy = x3 is not exact. Multiply the equation by x an show that the resulting equation is exact an obtain its solution. s 2x 1. y = x2 4 + C x y = 1 2 ex e x. 3. y = ( 1 3 x3 + C ) e 2x. 4. y = 1 4 x2 + C x y = 1 5 x2 + C x The integrating factor The equation x 2 + 3x y = x3 is not exact. However, if we multiply it by x we obtain the equation x 3 + 3x2 y = x 4. This can be re-written as (x3 y) = x 4 which is an exact equation with solution x 3 y = x 4 so x 3 y = 1 5 x5 + C an hence y = 1 5 x2 + C x 3. The function by which we multiplie the given ifferential equation in orer to make it exact is calle an integrating factor. In this example the integrating factor is simply x. Section 19.2: First Orer Differential Equations 21

12 Task Which of the following ifferential equations can be mae exact by multiplying by x 2? (a) + 2 x y = 4 (b) x + 3y = x2 (c) 1 x 1 x y = x 2 () 1 x + 1 x y = 3. 2 Where possible, write the exact equation in the form (f(x) y) = g(x). (a) Yes. x 2 + 2xy = 4x2 becomes (x2 y) = 4x 2. (b) Yes. x 3 + 3x2 y = x 4 becomes (x3 y) = x 4. (c) No. This equation is alrea exact as it can be written in the form () Yes. x + y = 3x2 becomes (xy) = 3x2. ( ) 1 x y = x. 7. Fining the integrating factor for linear ODEs The ifferential equation governing the current i in a circuit with inuctance L an resistance R in series subject to a constant applie electromotive force E cos ωt, where E an ω are constants, is L i + Ri = E cos ωt t (1) This is an example of a linear ifferential equation in which i is the epenent variable an t is the inepenent variable. The general stanar form of a linear first orer ifferential equation is normally written with y as the epenent variable an with x as the inepenent variable an arrange so that the coefficient of is 1. That is, it takes the form: + f(x) y = g(x) (2) in which f(x) an g(x) are functions of x. 22 Workbook 19: Differential Equations

13 Comparing (1) an (2), x is replace by t an y by i to prouce i + f(t) i = g(t). The function t f(t) is the coefficient of the epenent variable in the ifferential equation. We shall escribe the metho of fining the integrating factor for (1) an then generalise it to a linear ifferential equation written in stanar form. Step 1 Write the ifferential equation in stanar form i.e. with the coefficient of the erivative equal to 1. Here we nee to ivie through by L: i t + R L i = E cos ωt. L Step 2 Integrate the coefficient of the epenent variable (that is, f(t) = R/L) with respect to the inepenent variable (that is, t), an ignoring the constant of integration R L t = R L t. Step 3 Take the exponential of the function obtaine in Step 2. This is the integrating factor (I.F.) I.F. = e Rt/L. This leas to the following Key Point on integrating factors: Key Point 4 The linear ifferential equation (written in stanar form): [ + f(x)y = g(x) has an integrating factor I.F. = exp ] f(x) Task Fin the integrating factors for the equations (a) x + 2x y = xe 2x (b) t i + 2t i = te 2t (c) t (tan x)y = 1. Section 19.2: First Orer Differential Equations 23

14 (a) Step 1 Step 2 Divie by x to obtain + 2y = e 2x The coefficient of the inepenent variable is 2 hence 2 = 2x Step 3 I.F. = e 2x (b) The only ifference from (a) is that i replaces y an t replaces x. Hence I.F. = e 2t. (c) Step 1 Step 2 Step 3 This is alrea in the stanar form. sin x tan x = = ln cos x. cos x I.F. = e ln cos x = cos x 8. Solving equations via the integrating factor Having foun the integrating factor for a linear equation we now procee to solve the equation. Returning to the ifferential equation, written in stanar form: i t + R L i = E cos ωt L for which the integrating factor is e Rt/L we multiply the equation by the integrating factor to obtain Rt/L i e t + R L ert/l i = E L ert/l cos ωt At this stage the left-han sie of this equation can always be simplifie as follows: t (ert/l i) = E L ert/l cos ωt. Now this is in the form of an exact ifferential equation an so we can integrate both sies to obtain the solution: e Rt/L i = E e Rt/L cos ωt t. L All that remains is to complete the integral on the right-han sie. Using the metho of integration by parts we fin e Rt/L L cos ωt t = [ωl sin ωt + R cos ωt] L 2 ω 2 ert/l + R2 Hence Finally e Rt/L i = i = E L 2 ω 2 + R 2 [ωl sin ωt + R cos ωt] ert/l + C. E L 2 ω 2 + R 2 [ωl sin ωt + R cos ωt] + C e Rt/L. 24 Workbook 19: Differential Equations

15 is the solution to the original ifferential equation (1). Note that, as we shoul expect for the solution to a first orer ifferential equation, it contains a single arbitrary constant C. Task Using the integrating factors foun earlier in the Task on pages 22-23, fin the general solutions to the ifferential equations (a) x 2 + 2x2 y = x 2 e 2x (b) t 2 i t + 2t2 i = t 2 e 2t (c) (tan x)y = 1. (a) The stanar form is + 2y = e 2x for which the integrating factor is e 2x. 2x e + 2e2x y = 1 i.e. (e2x y) = 1 so that e 2x y = x + C leaing to y = (x + C)e 2x (b) The general solution is i = (t+c)e 2t as this problem is the same as (a) with ifferent variables. (c) The equation is in stanar form an the integrating factor is cos x. then (cos x y) = cos x so that cos x y = cos x = sin x + C giving y = tan x + C sec x Section 19.2: First Orer Differential Equations 25

16 Engineering Example 1 An RC circuit with a single frequency input Introuction The components in RC circuits containing resistance, inuctance an capacitance can be chosen so that the circuit filters out certain frequencies from the input. A particular kin of filter circuit consists of a resistor an capacitor in series an acts as a high cut (or low pass) filter. The high cut frequency is efine to be the frequency at which the magnitue of the voltage across the capacitor (the output voltage) is 1/ 2 of the magnitue of the input voltage. Problem in wors Calculate the high cut frequency for an RC circuit is subjecte to a single frequency input of angular frequency ω an magnitue v i. (a) Fin the stea state solution of the equation R q t + q C = v ie jωt an hence fin the magnitue of (i) the voltage across the capacitor v c = q C (ii) the voltage across the resistor v R = R q t (b) Using the impeance metho of (i) the voltage across the capacitor v c 12.6 confirm your results to part (a) by calculating (ii) the voltage across the resistor v R in response to a single frequency of angular frequency ω an magnitue v i. (c) For the case where R = 1 kω an C = 1 µf, fin the ratio v c v i ω v c v i an complete the table below () Explain why the table results show that a RC circuit acts as a high-cut filter an fin the value of the high-cut frequency, efine as f hc = ω hc /2π, such that v c v i = Workbook 19: Differential Equations

17 Mathematical statement of the problem We nee to fin a particular solution to the ifferential equation R q t + q C = v ie jωt. This will give us the stea state solution for the charge q. Using this we can fin v c = q C an v R = R q. These shoul give the same result as the values calculate by consiering the impeances t in the circuit. Finally we can calculate v c v i high-cut frequency from v c v i = 1 2 an f hc = ω hc /2π. Mathematical solution an fill in the table of values as require an fin the (a) To fin a particular solution, we try a function of the form q = c 0 e jωt which means that q t = jωc 0e jωt. Substituting into R q t + q C = v ie jωt we get Rjωc 0 e jωt + c 0e jωt C = v ie jωt Rjωc 0 + c 0 c 0 = Thus v i Rjω + 1 C (i) v c = q C = = Cv i RCjω + 1 q = C = v i Cv i RCjω + 1 ejωt v i RCjω + 1 ejωt an (ii) v R = q t = RCv ijω RCjω + 1 ejωt (b) We use the impeance to etermine the voltage across each of the elements. The applie voltage is a single frequency of angular frequency ω an magnitue v i such that V = v i e jωt. For an RC circuit, the impeance of the circuit is Z = Z R + Z c where Z R is the impeance of the resistor R an Z c is the impeance of the capacitor Z c = j ωc. Therefore Z = R j ωc. The current ( can be foun using v = Zi giving v i e jωt = R j ) i i = v ie jωt ωc R j ωc We can now use v c = z c i an v R = z R i giving (i) v c = q C = j ωc v i R j ωc e jωt = v i RCjω + 1 ejωt (ii) v R = Rv i R j ωc e jωt = RCv ijω RCjω + 1 ejωt which confirms the result in part (a) foun by solving the ifferential equation. (c) When R = 1000 Ω an C = 10 6 F v i v i v c = RCjω + 1 ejωt = 10 3 jω + 1 ejωt Section 19.2: First Orer Differential Equations 27

18 So v c v i = jω + 1 ejωt = jω + 1 = ω Table 1: Values of v c v i for a range of values of ω ω v c v i () Table 1 shows that a RC circuit can be use as a high-cut filter because for low values of ω, v c v i is approximately 1 an for high values of ω, v c is approximately 0. So the circuit will filter out high v i frequency values. v c v i = 1 2 when ω = ω = ω 2 = 1 ω 2 = As we are consiering ω to be a positive frequency, ω = So f hc = ω hc 2π = π Interpretation 159 Hz. We have shown that for an RC circuit fining the stea state solution of the ifferential equation with a single frequency input voltage yiels the same result for v c v i an v R as foun by working v i with the complex impeances for the circuit. An RC circuit can be use as a high-cut filter an in the case where R = 1 kω, C = 1 µf we foun the high-cut frequency to be at approximately 159 Hz. This means that the circuit will pass frequencies less than this value an remove frequencies greater than this value. 28 Workbook 19: Differential Equations

19 1. Solve the equation x 2 + x y = 1. Exercises 2. Fin the solution of the equation x y = x subject to the conition y(1) = Fin the general solution of the equation + (tan t) y = cos t. t 4. Solve the equation + (cot t) y = sin t. t 5. The temperature θ (measure in egrees) of a bo immerse in an atmosphere of varying temperature is given by θ t + 0.1θ = 5 2.5t. Fin the temperature at time t if θ = 60 C when t = In an LR circuit with applie voltage E = 10(1 e 0.1t ) the current i is given by L i t + Ri = 10(1 e 0.1t ). If the initial current is i 0 fin i subsequently. s 1. y = 1 x ln x + C x 2. y = x ln x + 2x 3. y = (t + C) cos t 4. y = ( 1 2 t 1 4 sin 2t + C) cosec t 5. θ = t 240e 0.1t 6. i = 10 ( 100 R 10R L ) e 0.1t + [ i L R(10R L) ] e Rt/L Section 19.2: First Orer Differential Equations 29

### 19.4. Integrating Factor. Introduction. Prerequisites. Learning Outcomes. Learning Style

Integrating Factor 19.4 Introduction An exact differential equation is one which can be solved by simply integrating both sides. Whilst such equations are few and far between an important class of differential

### CHAPTER 5 : CALCULUS

Dr Roger Ni (Queen Mary, University of Lonon) - 5. CHAPTER 5 : CALCULUS Differentiation Introuction to Differentiation Calculus is a branch of mathematics which concerns itself with change. Irrespective

### 20. Product rule, Quotient rule

20. Prouct rule, 20.1. Prouct rule Prouct rule, Prouct rule We have seen that the erivative of a sum is the sum of the erivatives: [f(x) + g(x)] = x x [f(x)] + x [(g(x)]. One might expect from this that

### 15.2. First-Order Linear Differential Equations. First-Order Linear Differential Equations Bernoulli Equations Applications

00 CHAPTER 5 Differential Equations SECTION 5. First-Orer Linear Differential Equations First-Orer Linear Differential Equations Bernoulli Equations Applications First-Orer Linear Differential Equations

### Lagrangian and Hamiltonian Mechanics

Lagrangian an Hamiltonian Mechanics D.G. Simpson, Ph.D. Department of Physical Sciences an Engineering Prince George s Community College December 5, 007 Introuction In this course we have been stuying

### Answers to the Practice Problems for Test 2

Answers to the Practice Problems for Test 2 Davi Murphy. Fin f (x) if it is known that x [f(2x)] = x2. By the chain rule, x [f(2x)] = f (2x) 2, so 2f (2x) = x 2. Hence f (2x) = x 2 /2, but the lefthan

### f(x) = a x, h(5) = ( 1) 5 1 = 2 2 1

Exponential Functions an their Derivatives Exponential functions are functions of the form f(x) = a x, where a is a positive constant referre to as the base. The functions f(x) = x, g(x) = e x, an h(x)

### Math 230.01, Fall 2012: HW 1 Solutions

Math 3., Fall : HW Solutions Problem (p.9 #). Suppose a wor is picke at ranom from this sentence. Fin: a) the chance the wor has at least letters; SOLUTION: All wors are equally likely to be chosen. The

### INTEGRATING FACTOR METHOD

Differential Equations INTEGRATING FACTOR METHOD Graham S McDonald A Tutorial Module for learning to solve 1st order linear differential equations Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk

### To differentiate logarithmic functions with bases other than e, use

To ifferentiate logarithmic functions with bases other than e, use 1 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b 1 To ifferentiate logarithmic functions with

### Introduction to Integration Part 1: Anti-Differentiation

Mathematics Learning Centre Introuction to Integration Part : Anti-Differentiation Mary Barnes c 999 University of Syney Contents For Reference. Table of erivatives......2 New notation.... 2 Introuction

### 19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Applications of Differential Equations 19.7 Introduction Blocks 19.2 to 19.6 have introduced several techniques for solving commonly-occurring firstorder and second-order ordinary differential equations.

### Alternating Current RL Circuits

Alternating Current RL Circuits Objectives. To understand the voltage/current phase behavior of RL circuits under applied alternating current voltages, and. To understand the current amplitude behavior

### Mathematics Review for Economists

Mathematics Review for Economists by John E. Floy University of Toronto May 9, 2013 This ocument presents a review of very basic mathematics for use by stuents who plan to stuy economics in grauate school

### 18.4. Errors and Percentage Change. Introduction. Prerequisites. Learning Outcomes

Errors and Percentage Change 18.4 Introduction When one variable is related to several others by a functional relationship it is possible to estimate the percentage change in that variable caused by given

### Inverse Trig Functions

Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that

### Topic 2: The Trigonometric Ratios Finding Sides

Topic 2: The Trigonometric Ratios Fining Sies Labelling sies To use the Trigonometric Ratios, commonly calle the Trig Ratios, it is important to learn how to label the right angle triangle. The hypotenuse

### The Quick Calculus Tutorial

The Quick Calculus Tutorial This text is a quick introuction into Calculus ieas an techniques. It is esigne to help you if you take the Calculus base course Physics 211 at the same time with Calculus I,

### Here the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and

Lecture 9 : Derivatives of Trigonometric Functions (Please review Trigonometry uner Algebra/Precalculus Review on the class webpage.) In this section we will look at the erivatives of the trigonometric

### Exponential Functions: Differentiation and Integration. The Natural Exponential Function

46_54.q //4 :59 PM Page 5 5 CHAPTER 5 Logarithmic, Eponential, an Other Transcenental Functions Section 5.4 f () = e f() = ln The inverse function of the natural logarithmic function is the natural eponential

### Purpose of the Experiments. Principles and Error Analysis. ε 0 is the dielectric constant,ε 0. ε r. = 8.854 10 12 F/m is the permittivity of

Experiments with Parallel Plate Capacitors to Evaluate the Capacitance Calculation an Gauss Law in Electricity, an to Measure the Dielectric Constants of a Few Soli an Liqui Samples Table of Contents Purpose

### Rules for Finding Derivatives

3 Rules for Fining Derivatives It is teious to compute a limit every time we nee to know the erivative of a function. Fortunately, we can evelop a small collection of examples an rules that allow us to

### Mathematics. Circles. hsn.uk.net. Higher. Contents. Circles 119 HSN22400

hsn.uk.net Higher Mathematics UNIT OUTCOME 4 Circles Contents Circles 119 1 Representing a Circle 119 Testing a Point 10 3 The General Equation of a Circle 10 4 Intersection of a Line an a Circle 1 5 Tangents

### i( t) L i( t) 56mH 1.1A t = τ ln 1 = ln 1 ln 1 6.67ms

Exam III PHY 49 Summer C July 16, 8 1. In the circuit shown, L = 56 mh, R = 4.6 Ω an V = 1. V. The switch S has been open for a long time then is suenly close at t =. At what value of t (in msec) will

### 2 Integrating Both Sides

2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation

### Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations

Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of

### An Introduction to the Mofied Nodal Analysis

An Introduction to the Mofied Nodal Analysis Michael Hanke May 30, 2006 1 Introduction Gilbert Strang provides an introduction to the analysis of electrical circuits in his book Introduction to Applied

### Lecture L25-3D Rigid Body Kinematics

J. Peraire, S. Winall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L25-3D Rigi Boy Kinematics In this lecture, we consier the motion of a 3D rigi boy. We shall see that in the general three-imensional

### SECOND ORDER (inhomogeneous)

Differential Equations SECOND ORDER (inhomogeneous) Graham S McDonald A Tutorial Module for learning to solve 2nd order (inhomogeneous) differential equations Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk

### AC RL and RC Circuits

AC RL and RC Circuits When a sinusoidal AC voltage is applied to an RL or RC circuit, the relationship between voltage and current is altered. The voltage and current still have the same frequency and

### 1 Derivatives of Piecewise Defined Functions

MATH 1010E University Matematics Lecture Notes (week 4) Martin Li 1 Derivatives of Piecewise Define Functions For piecewise efine functions, we often ave to be very careful in computing te erivatives.

### 19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style

Finding a Particular Integral 19.6 Introduction We stated in Block 19.5 that the general solution of an inhomogeneous equation is the sum of the complementary function and a particular integral. We have

### PHY101 Electricity and Magnetism I Course Summary

TOPIC 1 ELECTROSTTICS PHY11 Electricity an Magnetism I Course Summary Coulomb s Law The magnitue of the force between two point charges is irectly proportional to the prouct of the charges an inversely

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms

### Calculating Viscous Flow: Velocity Profiles in Rivers and Pipes

previous inex next Calculating Viscous Flow: Velocity Profiles in Rivers an Pipes Michael Fowler, UVa 9/8/1 Introuction In this lecture, we ll erive the velocity istribution for two examples of laminar

### 10.2 Systems of Linear Equations: Matrices

SECTION 0.2 Systems of Linear Equations: Matrices 7 0.2 Systems of Linear Equations: Matrices OBJECTIVES Write the Augmente Matrix of a System of Linear Equations 2 Write the System from the Augmente Matrix

### How to Avoid the Inverse Secant (and Even the Secant Itself)

How to Avoi the Inverse Secant (an Even the Secant Itself) S A Fulling Stephen A Fulling (fulling@mathtamue) is Professor of Mathematics an of Physics at Teas A&M University (College Station, TX 7783)

### JON HOLTAN. if P&C Insurance Ltd., Oslo, Norway ABSTRACT

OPTIMAL INSURANCE COVERAGE UNDER BONUS-MALUS CONTRACTS BY JON HOLTAN if P&C Insurance Lt., Oslo, Norway ABSTRACT The paper analyses the questions: Shoul or shoul not an iniviual buy insurance? An if so,

### 9.3. Diffraction and Interference of Water Waves

Diffraction an Interference of Water Waves 9.3 Have you ever notice how people relaxing at the seashore spen so much of their time watching the ocean waves moving over the water, as they break repeately

### Nonhomogeneous Linear Equations

Nonhomogeneous Linear Equations In this section we learn how to solve second-order nonhomogeneous linear differential equations with constant coefficients, that is, equations of the form ay by cy G x where

### 1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

### (We assume that x 2 IR n with n > m f g are twice continuously ierentiable functions with Lipschitz secon erivatives. The Lagrangian function `(x y) i

An Analysis of Newton's Metho for Equivalent Karush{Kuhn{Tucker Systems Lus N. Vicente January 25, 999 Abstract In this paper we analyze the application of Newton's metho to the solution of systems of

### Factoring Dickson polynomials over finite fields

Factoring Dickson polynomials over finite fiels Manjul Bhargava Department of Mathematics, Princeton University. Princeton NJ 08544 manjul@math.princeton.eu Michael Zieve Department of Mathematics, University

### Solving DEs by Separation of Variables.

Solving DEs by Separation of Variables. Introduction and procedure Separation of variables allows us to solve differential equations of the form The steps to solving such DEs are as follows: dx = gx).

### 14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of

### On Adaboost and Optimal Betting Strategies

On Aaboost an Optimal Betting Strategies Pasquale Malacaria 1 an Fabrizio Smerali 1 1 School of Electronic Engineering an Computer Science, Queen Mary University of Lonon, Lonon, UK Abstract We explore

### Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation

Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here

### 4. Important theorems in quantum mechanics

TFY4215 Kjemisk fysikk og kvantemekanikk - Tillegg 4 1 TILLEGG 4 4. Important theorems in quantum mechanics Before attacking three-imensional potentials in the next chapter, we shall in chapter 4 of this

### MSc. Econ: MATHEMATICAL STATISTICS, 1995 MAXIMUM-LIKELIHOOD ESTIMATION

MAXIMUM-LIKELIHOOD ESTIMATION The General Theory of M-L Estimation In orer to erive an M-L estimator, we are boun to make an assumption about the functional form of the istribution which generates the

### f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line.

Derivative of f(z) Dr. E. Jacobs Te erivative of a function is efine as a limit: f (x) 0 f(x + ) f(x) We can visualize te expression f(x+) f(x) as representing te slope of a secant line. As goes to 0,

### Optimal Control Policy of a Production and Inventory System for multi-product in Segmented Market

RATIO MATHEMATICA 25 (2013), 29 46 ISSN:1592-7415 Optimal Control Policy of a Prouction an Inventory System for multi-prouct in Segmente Market Kuleep Chauhary, Yogener Singh, P. C. Jha Department of Operational

### DIFFRACTION AND INTERFERENCE

DIFFRACTION AND INTERFERENCE In this experiment you will emonstrate the wave nature of light by investigating how it bens aroun eges an how it interferes constructively an estructively. You will observe

### Separable First Order Differential Equations

Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously

### RLC Resonant Circuits

C esonant Circuits Andrew McHutchon April 20, 203 Capacitors and Inductors There is a lot of inconsistency when it comes to dealing with reactances of complex components. The format followed in this document

### Measures of distance between samples: Euclidean

4- Chapter 4 Measures of istance between samples: Eucliean We will be talking a lot about istances in this book. The concept of istance between two samples or between two variables is funamental in multivariate

### Integrals of Rational Functions

Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

### A Brief Review of Elementary Ordinary Differential Equations

1 A Brief Review of Elementary Ordinary Differential Equations At various points in the material we will be covering, we will need to recall and use material normally covered in an elementary course on

### 3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or

### APPLICATION OF CALCULUS IN COMMERCE AND ECONOMICS

Application of Calculus in Commerce an Economics 41 APPLICATION OF CALCULUS IN COMMERCE AND ECONOMICS æ We have learnt in calculus that when 'y' is a function of '', the erivative of y w.r.to i.e. y ö

### 3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

### Double Integrals in Polar Coordinates

Double Integrals in Polar Coorinates Part : The Area Di erential in Polar Coorinates We can also aly the change of variable formula to the olar coorinate transformation x = r cos () ; y = r sin () However,

### is identically equal to x 2 +3x +2

Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

### The wave equation is an important tool to study the relation between spectral theory and geometry on manifolds. Let U R n be an open set and let

1. The wave equation The wave equation is an important tool to stuy the relation between spectral theory an geometry on manifols. Let U R n be an open set an let = n j=1 be the Eucliean Laplace operator.

### Recognizing Types of First Order Differential Equations E. L. Lady

Recognizing Types of First Order Differential Equations E. L. Lady Every first order differential equation to be considered here can be written can be written in the form P (x, y)+q(x, y)y =0. This means

### Calculation of overvoltages and interference voltages

Calculation of overvoltages an interference voltages When installing telecom or computer systems close to heavy current equipment or traction power supplies, careful thought has to be given to the possibility

### As customary, choice (a) is the correct answer in all the following problems.

PHY2049 Summer 2012 Instructor: Francisco Rojas Exam 1 As customary, choice (a) is the correct answer in all the following problems. Problem 1 A uniformly charge (thin) non-conucting ro is locate on the

### Data Center Power System Reliability Beyond the 9 s: A Practical Approach

Data Center Power System Reliability Beyon the 9 s: A Practical Approach Bill Brown, P.E., Square D Critical Power Competency Center. Abstract Reliability has always been the focus of mission-critical

### MAT1A01: Differentiation of Polynomials & Exponential Functions + the Product & Quotient Rules

MAT1A01: Differentiation of Polynomials & Exponential Functions + te Prouct & Quotient Rules Dr Craig 17 April 2013 Reminer Mats Learning Centre: C-Ring 512 My office: C-Ring 533A (Stats Dept corrior)

### 3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes

Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same

### 100. In general, we can define this as if b x = a then x = log b

Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,

### PROPERTIES OF MATRICES

PROPERIES OF MARICES ajoint... 4, 5 algebraic multiplicity... augmente matri... basis..., cofactor... 4 coorinate vector... 9 Cramer's rule... eterminant..., 5 iagonal matri... 6 iagonalizable... 8 imension...

### First Order Non-Linear Equations

First Order Non-Linear Equations We will briefly consider non-linear equations. In general, these may be much more difficult to solve than linear equations, but in some cases we will still be able to solve

### MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL 1 BASIC INTEGRATION

MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL 1 ASIC INTEGRATION This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle of learning

### Equations, Inequalities & Partial Fractions

Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

### Detecting Possibly Fraudulent or Error-Prone Survey Data Using Benford s Law

Detecting Possibly Frauulent or Error-Prone Survey Data Using Benfor s Law Davi Swanson, Moon Jung Cho, John Eltinge U.S. Bureau of Labor Statistics 2 Massachusetts Ave., NE, Room 3650, Washington, DC

### Math 432 HW 2.5 Solutions

Math 432 HW 2.5 Solutions Assigned: 1-10, 12, 13, and 14. Selected for Grading: 1 (for five points), 6 (also for five), 9, 12 Solutions: 1. (2y 3 + 2y 2 ) dx + (3y 2 x + 2xy) dy = 0. M/ y = 6y 2 + 4y N/

### Analogue Filter Design

Analogue Filter Design Module: SEA Signals and Telecoms Lecturer: URL: http://www.personal.rdg.ac.uk/~stsgrimb/ email: j.b.grimbleby reading.ac.uk Number of Lectures: 5 Reference text: Design with Operational

### Jitter effects on Analog to Digital and Digital to Analog Converters

Jitter effects on Analog to Digital an Digital to Analog Converters Jitter effects copyright 1999, 2000 Troisi Design Limite Jitter One of the significant problems in igital auio is clock jitter an its

### y or f (x) to determine their nature.

Level C5 of challenge: D C5 Fining stationar points of cubic functions functions Mathematical goals Starting points Materials require Time neee To enable learners to: fin the stationar points of a cubic

### Charge and Discharge of a Capacitor

Charge and Discharge of a Capacitor INTRODUCTION Capacitors 1 are devices that can store electric charge and energy. Capacitors have several uses, such as filters in DC power supplies and as energy storage

### Bharathwaj Muthuswamy EE100 Active Filters

Bharathwaj Muthuswamy EE100 mbharat@cory.eecs.berkeley.edu 1. Introduction Active Filters In this chapter, we will deal with active filter circuits. Why even bother with active filters? Answer: Audio.

### Review for Calculus Rational Functions, Logarithms & Exponentials

Definition and Domain of Rational Functions A rational function is defined as the quotient of two polynomial functions. F(x) = P(x) / Q(x) The domain of F is the set of all real numbers except those for

### Notes on tangents to parabolas

Notes on tangents to parabolas (These are notes for a talk I gave on 2007 March 30.) The point of this talk is not to publicize new results. The most recent material in it is the concept of Bézier curves,

### Elliptic Functions sn, cn, dn, as Trigonometry W. Schwalm, Physics, Univ. N. Dakota

Elliptic Functions sn, cn, n, as Trigonometry W. Schwalm, Physics, Univ. N. Dakota Backgroun: Jacobi iscovere that rather than stuying elliptic integrals themselves, it is simpler to think of them as inverses

### Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration

### First Order Circuits. EENG223 Circuit Theory I

First Order Circuits EENG223 Circuit Theory I First Order Circuits A first-order circuit can only contain one energy storage element (a capacitor or an inductor). The circuit will also contain resistance.

### Part I: Operational Amplifiers & Their Applications

Part I: Operational Amplifiers & Their Applications Contents Opamps fundamentals Opamp Circuits Inverting & Non-inverting Amplifiers Summing & Difference Amplifiers Integrators & Differentiators Opamp

### 1. First-order Ordinary Differential Equations

Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential

### 8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes

Solution by Inverse Matrix Method 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix algebra allows us

### Using a table of derivatives

Using a table of derivatives In this unit we construct a Table of Derivatives of commonly occurring functions. This is done using the knowledge gained in previous units on differentiation from first principles.

### A Constant-current Source

A Constant-current Source Frequently, such as when you want to measure temperature with a silicon diode, it is desirable to have a source of a reproducible, constant current. Many laboratory power supplies

### Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12)

OpenStax-CNX moule: m39313 1 Differential Calculus: Differentiation (First Principles, Rules) an Sketcing Graps (Grae 12) Free Hig Scool Science Texts Project Tis work is prouce by OpenStax-CNX an license

### is identically equal to x 2 +3x +2

Partial fractions.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as + for any

### Lagrange s equations of motion for oscillating central-force field

Theoretical Mathematics & Applications, vol.3, no., 013, 99-115 ISSN: 179-9687 (print), 179-9709 (online) Scienpress Lt, 013 Lagrange s equations of motion for oscillating central-force fiel A.E. Eison

### 12.4 UNDRIVEN, PARALLEL RLC CIRCUIT*

+ v C C R L - v i L FIGURE 12.24 The parallel second-order RLC circuit shown in Figure 2.14a. 12.4 UNDRIVEN, PARALLEL RLC CIRCUIT* We will now analyze the undriven parallel RLC circuit shown in Figure

### Pythagorean Triples Over Gaussian Integers

International Journal of Algebra, Vol. 6, 01, no., 55-64 Pythagorean Triples Over Gaussian Integers Cheranoot Somboonkulavui 1 Department of Mathematics, Faculty of Science Chulalongkorn University Bangkok

### Parameterized Algorithms for d-hitting Set: the Weighted Case Henning Fernau. Univ. Trier, FB 4 Abteilung Informatik 54286 Trier, Germany

Parameterize Algorithms for -Hitting Set: the Weighte Case Henning Fernau Trierer Forschungsberichte; Trier: Technical Reports Informatik / Mathematik No. 08-6, July 2008 Univ. Trier, FB 4 Abteilung Informatik

### Introduction to Complex Numbers in Physics/Engineering

Introduction to Complex Numbers in Physics/Engineering ference: Mary L. Boas, Mathematical Methods in the Physical Sciences Chapter 2 & 14 George Arfken, Mathematical Methods for Physicists Chapter 6 The