Name: Class: Date: 1. Find the exponential function f (x) = a x whose graph is given.

Size: px
Start display at page:

Download "Name: Class: Date: 1. Find the exponential function f (x) = a x whose graph is given."

Transcription

1 . Find the exponential function f (x) = a x whose graph is given. 2. Find the exponential function f (x) = a x whose graph is given. 3. State the domain of the function f (x) = 5 x. PAGE

2 4. State the asymptote of the function g (x) = 9 x State the range of the function h (x) = x 6. Find the function of the form f (x) = Ca x whose graph is given. 7. If $000 is invested at an interest rate of 0% per year, compounded semiannually, find the value of the investment after 0 years. 8. The present value of a sum of money is the amount that must be invested now, at a given rate of interest, to produce the desired sum at a later date. Find the present value of $0000 if interest is paid at a rate of 9% per year, compounded semiannually, for 9 years. 9. Find value of x at which the local minimum occurs for the function f (x) = e x + e 4 x. State the answer correct to two decimal places. PAGE 2

3 0. Express the equation in exponential form log 3 3 =. Express the equation ln (x + 5) = 2 in exponential form. 2. Express the equation in logarithmic form 0 2 = Express the equation 5 z = n in logarithmic form. 4. Express the equation in logarithmic form e x + 2 = Use the definition of the logarithmic function to find x: log 6 x = 0 6. Use the definition of the logarithmic function to find x: log x 9 = 2 PAGE 3

4 7. Find the function of the form y = log x whose graph is given. a PAGE 4

5 8. Find the function of the form y = log a x whose graph is given. 9. Find the domain of the function g (x) = log 3 (x 2 4). 20. Find the domain of the function f (x) = log (x x 4 ) Find the domain of the function f (x) = x 4 log 2 x 5 PAGE 5

6 22. Use the Laws of Logarithms to rewrite the expression log 3 ( x (x 9) ) in a form with no logarithm of a product. 23. Use the Laws of Logarithms to rewrite the expression below in a form with no logarithm of a quotient. log 6 x Use the Laws of Logarithms to rewrite the expression below in a form with no logarithm of a power. log Use the Laws of Logarithms to rewrite the expression below in a form with no logarithm of a power. log 6 7 x Use the Laws of Logarithms to rewrite the expression below in a form with no logarithm of a product, quotient or power. log a x 8 yz Use the Laws of Logarithms to rewrite the expression below in a form with no logarithm of a product or power. ln 6 3r 5 s PAGE 6

7 28. Use the Laws of Logarithms to rewrite the expression below in a form with no logarithm of a product, quotient or power. log b 5 a 9 c 29. Use the Laws of Logarithms to rewrite the expression below in a form with no logarithm of a product, quotient or power. ln x 3 y z 30. Use the Laws of Logarithms to rewrite the expression below in a form with no logarithm of a product, quotient or power. log x ( x 5 + ) ( x 3 2 ) 2 3. Use the Laws of Logarithms to rewrite the expression below in a form with no logarithm of a product or power. log 5 x 5 y 5 z 32. Use the Laws of Logarithms to rewrite the expression below in a form with no logarithm of a product or power. ln z 5 x 9 y 2 + 3y Evaluate the expression log PAGE 7

8 34. Rewrite the expression as a single logarithm log log Rewrite the expression below as a single logarithm. log 2 + log 6 log Rewrite the expression as a single logarithm ln ln x + 7 ln (x 2 + 7) 37. Simplify (log 3 5)(log 5 9). 38. Find the solution of the exponential equation, correct to four decimal places. e x = Find the solution of the exponential equation 4 4 x = 9, correct to four decimal places. 40. Find the solution of the exponential equation, correct to four decimal places x = 4 4. Find the solution of the exponential equation e 2 2 x =, correct to four decimal places. 42. Find the solution of the exponential equation 5 x = 2 x + 3, correct to four decimal places. PAGE 8

9 43. Find the solution of the exponential equation below, correct to four decimal places. 3 + e x = Find the solution of the exponential equation x = 0, correct to four decimal places. 45. Solve the equation x 7 6 x = 6 x 46. Solve the equation e 2x 5 e x + 4 = Solve the logarithmic equation for x: ln x = Solve the logarithmic equation for x: log x = 49. Solve the logarithmic equation for x: log ( 9 x + 7 ) = Solve the logarithmic equation for x: log 3 ( 4 x ) = PAGE 9

10 5. Solve the logarithmic equation for x: log log 2 x = log log 2 ( x 25 ) 52. Solve the logarithmic equation for x: log 5 ( x + 7 ) log 5 ( x 7 ) = For what value of x is the following true? log ( x + 6 ) = log x + log Solve for x. log 2 ( log 3 x ) = A sum of $0000 was invested for 7 years, and the interest was compounded semiannually. If this sum amounted to $2900 in the given time, what was the interest rate? 56. A 25 g sample of radioactive iodine decays in such a way that the mass remaining after t days is given by m ( t ) = 25 e t where m( t ) is measured in grams. After how many days is there only 8 g remaining? PAGE 0

11 57. An electric circuit contains a battery that produces a voltage of 60 volts ( V ), a resistor with a resistance of 3 ohms ( ), and an inductor with an inductance of 5 henrys ( H ), as shown in the figure. Using calculus, it can be shown that the current I = I ( t ), ( in amps A ) t seconds after the switch is closed is I = 60 3 ( e 3t/5 ). Consider how you would express time as a function of current, and apply that to answer the following question. After how many seconds is the current 2.5 A? Enter the number of seconds rounded to three decimal places. 58. Use a graphing device to find all solutions of the equation, correct to three decimal places. log x = x Use a graphing device to find all solutions of the equation, correct to two decimal places. e x 2 2 = x 3 x 60. Solve the inequality. log ( x 6 ) + log ( 3 x ) < 6. Solve the inequality. 2 < 0 x < 7 PAGE

12 62. Solve the inequality x 2 e x 25 e x < Solve the equation 9 x 3 x + = The fox population in a certain region has a relative growth rate of 8% per year. It is estimated that the population in 998 was 000. Find a function p(t) that models the population t years after A culture starts with 8600 bacteria. After one hour the count is 000. Find a function that models the number of bacteria n ( t ) after t hours. 66. An infectious strain of bacteria increases in number at a relative growth rate of 200% per hour. When a certain critical number of bacteria are present in the bloodstream, a person becomes ill. If a single bacterium infects a person, the critical level is reached in 28 hours. How long (in hours) will it take for the critical level to be reached if the same person is infected with 8 bacteria? 67. The half life of cesium 37 is 30 years. Suppose we have a 85 g sample. Find a function that models the mass remaining after t years. 68. Newton s Law of Cooling is used in homicide investigations to determine the time of death. The normal body temperature is 98.6 o F. Immediately following death, the body begins to cool. It has been determined experimentally that the constant in Newton s Law of Cooling is approximately k = 0.947, assuming time is measured in hours. Suppose that the temperature of the surroundings is 58 o F. If the temperature of the body is now 74 o F, how long ago ( in hours ) was the time of death? Round the answer to the nearest tenth. 69. A kettle full of water is brought to a boil in a room with temperature 22 o C. After min the temperature of the water has decreased from 00 o C to 75 o C. Find the temperature after another min. PAGE 2

13 70. An unknown substance has a hydrogen ion concentration of Find the ph. [ H + ] = M PAGE 3

14 ANSWER KEY. 4 x x (, ) 4. y= 7 5. ( 8, ) x 7. $ $ =3. x=e log 00 0 = log n 5 =z x= 2+log 0.9 e x=3 y=log 2 x 8. y=log ( x) (, 2) ( 2, ) ( 0,) 4,2) log x 3 +log x 9 3 log x 6 log log ( 9 3) log ( 6 x2 +7) 26. 8log x a log y a 6log z a ln ln r 6 9log ( a) 5log ( b) ln ( x)+ ln y ln ( s ) log c 2 ln z 3 2 log ( 0 x5 +9) 2 log 0 x5 + log x 5 + log y 25 + log z 25 5ln ( z)+ ln x 2 4 log log 3 6 ( 7 ) 36. ln 6x 3 x 2 +7 PAGE log x ln y2 +3y+

15 ANSWER KEY 37. log , % , , x ( 6,8) (,3) 6. ( log ( 2 ),log 7 0 ) x ( 5,5) p=000e 0.08t n ( t)=8600e 0.25t m ( t)=85e t PAGE 2

Solving Exponential Equations

Solving Exponential Equations Solving Exponential Equations Deciding How to Solve Exponential Equations When asked to solve an exponential equation such as x + 6 = or x = 18, the first thing we need to do is to decide which way is

More information

Logarithmic and Exponential Equations

Logarithmic and Exponential Equations 11.5 Logarithmic and Exponential Equations 11.5 OBJECTIVES 1. Solve a logarithmic equation 2. Solve an exponential equation 3. Solve an application involving an exponential equation Much of the importance

More information

4.6 Exponential and Logarithmic Equations (Part I)

4.6 Exponential and Logarithmic Equations (Part I) 4.6 Eponential and Logarithmic Equations (Part I) In this section you will learn to: solve eponential equations using like ases solve eponential equations using logarithms solve logarithmic equations using

More information

8.7 Exponential Growth and Decay

8.7 Exponential Growth and Decay Section 8.7 Exponential Growth and Decay 847 8.7 Exponential Growth and Decay Exponential Growth Models Recalling the investigations in Section 8.3, we started by developing a formula for discrete compound

More information

Section 4-7 Exponential and Logarithmic Equations. Solving an Exponential Equation. log 2. 3 2 log 5. log 2 1.4406

Section 4-7 Exponential and Logarithmic Equations. Solving an Exponential Equation. log 2. 3 2 log 5. log 2 1.4406 314 4 INVERSE FUNCTIONS; EXPONENTIAL AND LOGARITHMIC FUNCTIONS Section 4-7 Exponential and Logarithmic Equations Exponential Equations Logarithmic Equations Change of Base Equations involving exponential

More information

Section 4.5 Exponential and Logarithmic Equations

Section 4.5 Exponential and Logarithmic Equations Section 4.5 Exponential and Logarithmic Equations Exponential Equations An exponential equation is one in which the variable occurs in the exponent. EXAMPLE: Solve the equation x = 7. Solution 1: We have

More information

Equations. #1-10 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0

Equations. #1-10 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0 College Algebra Review Problems for Final Exam Equations #1-10 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve

More information

Solving Compound Interest Problems

Solving Compound Interest Problems Solving Compound Interest Problems What is Compound Interest? If you walk into a bank and open up a savings account you will earn interest on the money you deposit in the bank. If the interest is calculated

More information

Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.

Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. MAC 1105 Final Review Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. 1) 8x 2-49x + 6 x - 6 A) 1, x 6 B) 8x - 1, x 6 x -

More information

2312 test 2 Fall 2010 Form B

2312 test 2 Fall 2010 Form B 2312 test 2 Fall 2010 Form B 1. Write the slope-intercept form of the equation of the line through the given point perpendicular to the given lin point: ( 7, 8) line: 9x 45y = 9 2. Evaluate the function

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =

More information

College Algebra. George Voutsadakis 1. LSSU Math 111. Lake Superior State University. 1 Mathematics and Computer Science

College Algebra. George Voutsadakis 1. LSSU Math 111. Lake Superior State University. 1 Mathematics and Computer Science College Algebra George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 111 George Voutsadakis (LSSU) College Algebra December 2014 1 / 91 Outline 1 Exponential

More information

LESSON EIII.E EXPONENTS AND LOGARITHMS

LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential

More information

Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller Tristan@CatherineNorth.com

Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller Tristan@CatherineNorth.com Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller Tristan@CatherineNorth.com Series Circuits. A Series circuit, in my opinion, is the simplest circuit

More information

Solutions to Exercises, Section 4.5

Solutions to Exercises, Section 4.5 Instructor s Solutions Manual, Section 4.5 Exercise 1 Solutions to Exercises, Section 4.5 1. How much would an initial amount of $2000, compounded continuously at 6% annual interest, become after 25 years?

More information

Section 1. Logarithms

Section 1. Logarithms Worksheet 2.7 Logarithms and Exponentials Section 1 Logarithms The mathematics of logarithms and exponentials occurs naturally in many branches of science. It is very important in solving problems related

More information

Week 2: Exponential Functions

Week 2: Exponential Functions Week 2: Exponential Functions Goals: Introduce exponential functions Study the compounded interest and introduce the number e Suggested Textbook Readings: Chapter 4: 4.1, and Chapter 5: 5.1. Practice Problems:

More information

Solutions to Midterm #1 Practice Problems

Solutions to Midterm #1 Practice Problems MAT Fall 0 Solutions to Midterm # Practice Problems. Below is the graph of a function y = r(). y = r() Sketch graphs of the following functions: (a) y = r( 3) (b) y = r( ) 3 (c) y = r() + (d) y = r( +

More information

12) 13) 14) (5x)2/3. 16) x5/8 x3/8. 19) (r1/7 s1/7) 2

12) 13) 14) (5x)2/3. 16) x5/8 x3/8. 19) (r1/7 s1/7) 2 DMA 080 WORKSHEET # (8.-8.2) Name Find the square root. Assume that all variables represent positive real numbers. ) 6 2) 8 / 2) 9x8 ) -00 ) 8 27 2/ Use a calculator to approximate the square root to decimal

More information

Student Exploration: Circuits

Student Exploration: Circuits Name: Date: Student Exploration: Circuits Vocabulary: ammeter, circuit, current, ohmmeter, Ohm s law, parallel circuit, resistance, resistor, series circuit, voltage Prior Knowledge Questions (Do these

More information

Exponential Functions. Exponential Functions and Their Graphs. Example 2. Example 1. Example 3. Graphs of Exponential Functions 9/17/2014

Exponential Functions. Exponential Functions and Their Graphs. Example 2. Example 1. Example 3. Graphs of Exponential Functions 9/17/2014 Eponential Functions Eponential Functions and Their Graphs Precalculus.1 Eample 1 Use a calculator to evaluate each function at the indicated value of. a) f ( ) 8 = Eample In the same coordinate place,

More information

Regents Exam Questions A2.S.7: Exponential Regression www.jmap.org

Regents Exam Questions A2.S.7: Exponential Regression www.jmap.org A2.S.7: Exponential Regression: Determine the function for the regression model, using appropriate technology, and use the regression function to interpolate/extrapolate from data 1 A cup of soup is left

More information

4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS

4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally 4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS Functions Modeling Change: A Preparation for Calculus, 4th Edition,

More information

Algebra 2 Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED

Algebra 2 Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED Algebra Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED. Graph eponential functions. (Sections 7., 7.) Worksheet 6. Solve eponential growth and eponential decay problems. (Sections 7., 7.) Worksheet 8.

More information

6.4 Logarithmic Equations and Inequalities

6.4 Logarithmic Equations and Inequalities 6.4 Logarithmic Equations and Inequalities 459 6.4 Logarithmic Equations and Inequalities In Section 6.3 we solved equations and inequalities involving exponential functions using one of two basic strategies.

More information

AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules

AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Name Period AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Dr. Campbell 1. Four 240 Ω light bulbs are connected in series. What is the total resistance of the circuit? What

More information

Math. Rounding Decimals. Answers. 1) Round to the nearest tenth. 8.54 8.5. 2) Round to the nearest whole number. 99.59 100

Math. Rounding Decimals. Answers. 1) Round to the nearest tenth. 8.54 8.5. 2) Round to the nearest whole number. 99.59 100 1) Round to the nearest tenth. 8.54 8.5 2) Round to the nearest whole number. 99.59 100 3) Round to the nearest tenth. 310.286 310.3 4) Round to the nearest whole number. 6.4 6 5) Round to the nearest

More information

First Order Circuits. EENG223 Circuit Theory I

First Order Circuits. EENG223 Circuit Theory I First Order Circuits EENG223 Circuit Theory I First Order Circuits A first-order circuit can only contain one energy storage element (a capacitor or an inductor). The circuit will also contain resistance.

More information

MAT12X Intermediate Algebra

MAT12X Intermediate Algebra MAT12X Intermediate Algebra Workshop I - Exponential Functions LEARNING CENTER Overview Workshop I Exponential Functions of the form y = ab x Properties of the increasing and decreasing exponential functions

More information

Substitute 4 for x in the function, Simplify.

Substitute 4 for x in the function, Simplify. Page 1 of 19 Review of Eponential and Logarithmic Functions An eponential function is a function in the form of f ( ) = for a fied ase, where > 0 and 1. is called the ase of the eponential function. The

More information

Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller Tristan@CatherineNorth.com

Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller Tristan@CatherineNorth.com Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller Tristan@CatherineNorth.com Parallel Circuits. Parallel Circuits are a little bit more complicated

More information

MPE Review Section III: Logarithmic & Exponential Functions

MPE Review Section III: Logarithmic & Exponential Functions MPE Review Section III: Logarithmic & Eponential Functions FUNCTIONS AND GRAPHS To specify a function y f (, one must give a collection of numbers D, called the domain of the function, and a procedure

More information

CALIBRATION OF A THERMISTOR THERMOMETER (version = fall 2001)

CALIBRATION OF A THERMISTOR THERMOMETER (version = fall 2001) CALIBRATION OF A THERMISTOR THERMOMETER (version = fall 2001) I. Introduction Calibration experiments or procedures are fairly common in laboratory work which involves any type of instrumentation. Calibration

More information

dy dx and so we can rewrite the equation as If we now integrate both sides of this equation, we get xy x 2 C Integrating both sides, we would have

dy dx and so we can rewrite the equation as If we now integrate both sides of this equation, we get xy x 2 C Integrating both sides, we would have Linear Differential Equations A first-der linear differential equation is one that can be put into the fm 1 d P y Q where P and Q are continuous functions on a given interval. This type of equation occurs

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

More information

How To Understand Algebraic Equations

How To Understand Algebraic Equations Please use the resources below to review mathematical concepts found in chemistry. 1. Many Online videos by MiraCosta Professor Julie Harland: www.yourmathgal.com 2. Text references in red/burgundy and

More information

Parallel DC circuits

Parallel DC circuits Parallel DC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Element of same atomic number, but different atomic mass o Example: Hydrogen

Element of same atomic number, but different atomic mass o Example: Hydrogen Atomic mass: p + = protons; e - = electrons; n 0 = neutrons p + + n 0 = atomic mass o For carbon-12, 6p + + 6n 0 = atomic mass of 12.0 o For chlorine-35, 17p + + 18n 0 = atomic mass of 35.0 atomic mass

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

Experiment #4, Ohmic Heat

Experiment #4, Ohmic Heat Experiment #4, Ohmic Heat 1 Purpose Physics 18 - Fall 013 - Experiment #4 1 1. To demonstrate the conversion of the electric energy into heat.. To demonstrate that the rate of heat generation in an electrical

More information

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

More information

Also, compositions of an exponential function with another function are also referred to as exponential. An example would be f(x) = 4 + 100 3-2x.

Also, compositions of an exponential function with another function are also referred to as exponential. An example would be f(x) = 4 + 100 3-2x. Exponential Functions Exponential functions are perhaps the most important class of functions in mathematics. We use this type of function to calculate interest on investments, growth and decline rates

More information

Hats 1 are growth rates, or percentage changes, in any variable. Take for example Y, the GDP in year t compared the year before, t 1.

Hats 1 are growth rates, or percentage changes, in any variable. Take for example Y, the GDP in year t compared the year before, t 1. 1 Growth rates Hats 1 are growth rates, or percentage changes, in any variable. Take for example Y, the GDP in year t compared the year before, t 1. We have: Ŷ = Y Y = Y t Y t 1 Y t 1 = Y t Y t 1 1 Example

More information

6.5 Applications of Exponential and Logarithmic Functions

6.5 Applications of Exponential and Logarithmic Functions 6.5 Applications of Exponential and Logarithmic Functions 469 6.5 Applications of Exponential and Logarithmic Functions As we mentioned in Section 6.1, exponential and logarithmic functions are used to

More information

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and

More information

12.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following:

12.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Section 1.6 Logarithmic and Exponential Equations 811 1.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Solve Quadratic Equations (Section

More information

13.10: How Series and Parallel Circuits Differ pg. 571

13.10: How Series and Parallel Circuits Differ pg. 571 13.10: How Series and Parallel Circuits Differ pg. 571 Key Concepts: 5. Connecting loads in series and parallel affects the current, potential difference, and total resistance. - Using your knowledge of

More information

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.

More information

Some Lecture Notes and In-Class Examples for Pre-Calculus:

Some Lecture Notes and In-Class Examples for Pre-Calculus: Some Lecture Notes and In-Class Examples for Pre-Calculus: Section.7 Definition of a Quadratic Inequality A quadratic inequality is any inequality that can be put in one of the forms ax + bx + c < 0 ax

More information

EXPONENTIAL FUNCTIONS 8.1.1 8.1.6

EXPONENTIAL FUNCTIONS 8.1.1 8.1.6 EXPONENTIAL FUNCTIONS 8.1.1 8.1.6 In these sections, students generalize what they have learned about geometric sequences to investigate exponential functions. Students study exponential functions of the

More information

Experiment 4 ~ Resistors in Series & Parallel

Experiment 4 ~ Resistors in Series & Parallel Experiment 4 ~ Resistors in Series & Parallel Objective: In this experiment you will set up three circuits: one with resistors in series, one with resistors in parallel, and one with some of each. You

More information

For additional information, see the Math Notes boxes in Lesson B.1.3 and B.2.3.

For additional information, see the Math Notes boxes in Lesson B.1.3 and B.2.3. EXPONENTIAL FUNCTIONS B.1.1 B.1.6 In these sections, students generalize what they have learned about geometric sequences to investigate exponential functions. Students study exponential functions of the

More information

5.1 Simple and Compound Interest

5.1 Simple and Compound Interest 5.1 Simple and Compound Interest Question 1: What is simple interest? Question 2: What is compound interest? Question 3: What is an effective interest rate? Question 4: What is continuous compound interest?

More information

9 Exponential Models CHAPTER. Chapter Outline. www.ck12.org Chapter 9. Exponential Models

9 Exponential Models CHAPTER. Chapter Outline. www.ck12.org Chapter 9. Exponential Models www.ck12.org Chapter 9. Eponential Models CHAPTER 9 Eponential Models Chapter Outline 9.1 EXPONENTIAL GROWTH 9.2 EXPONENTIAL DECAY 9.3 REVISITING RATE OF CHANGE 9.4 A QUICK REVIEW OF LOGARITHMS 9.5 USING

More information

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all

More information

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will Name: Thursday, December 13, 2007 Test 5 Review questions 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will 1. decrease 2. increase 3. remain the same 2. The graph below

More information

Summer Assignment for incoming Fairhope Middle School 7 th grade Advanced Math Students

Summer Assignment for incoming Fairhope Middle School 7 th grade Advanced Math Students Summer Assignment for incoming Fairhope Middle School 7 th grade Advanced Math Students Studies show that most students lose about two months of math abilities over the summer when they do not engage in

More information

Mathematics Placement Examination (MPE)

Mathematics Placement Examination (MPE) Practice Problems for Mathematics Placement Eamination (MPE) Revised August, 04 When you come to New Meico State University, you may be asked to take the Mathematics Placement Eamination (MPE) Your inital

More information

Exponential Functions, Logarithms, and e

Exponential Functions, Logarithms, and e chapter 3 Starry Night, painted by Vincent Van Gogh in 889. The brightness of a star as seen from Earth is measured using a logarithmic scale. Eponential Functions, Logarithms, and e This chapter focuses

More information

$496. 80. Example If you can earn 6% interest, what lump sum must be deposited now so that its value will be $3500 after 9 months?

$496. 80. Example If you can earn 6% interest, what lump sum must be deposited now so that its value will be $3500 after 9 months? Simple Interest, Compound Interest, and Effective Yield Simple Interest The formula that gives the amount of simple interest (also known as add-on interest) owed on a Principal P (also known as present

More information

Problem Solving 8: RC and LR Circuits

Problem Solving 8: RC and LR Circuits MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 8: RC and LR Circuits Section Table and Group (e.g. L04 3C ) Names Hand in one copy per group at the end of the Friday Problem

More information

Pre-Session Review. Part 2: Mathematics of Finance

Pre-Session Review. Part 2: Mathematics of Finance Pre-Session Review Part 2: Mathematics of Finance For this section you will need a calculator with logarithmic and exponential function keys (such as log, ln, and x y ) D. Exponential and Logarithmic Functions

More information

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

More information

Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20

Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20 SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed

More information

Math 0306 Final Exam Review

Math 0306 Final Exam Review Math 006 Final Exam Review Problem Section Answers Whole Numbers 1. According to the 1990 census, the population of Nebraska is 1,8,8, the population of Nevada is 1,01,8, the population of New Hampshire

More information

3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS. Copyright Cengage Learning. All rights reserved.

3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS. Copyright Cengage Learning. All rights reserved. 3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS Copyright Cengage Learning. All rights reserved. What You Should Learn Recognize and evaluate logarithmic functions with base a. Graph logarithmic functions.

More information

100. In general, we can define this as if b x = a then x = log b

100. In general, we can define this as if b x = a then x = log b Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,

More information

Experiment NO.3 Series and parallel connection

Experiment NO.3 Series and parallel connection Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.

More information

M122 College Algebra Review for Final Exam

M122 College Algebra Review for Final Exam M122 College Algebra Review for Final Eam Revised Fall 2007 for College Algebra in Contet All answers should include our work (this could be a written eplanation of the result, a graph with the relevant

More information

Chapter 4: Exponential and Logarithmic Functions

Chapter 4: Exponential and Logarithmic Functions Chapter 4: Eponential and Logarithmic Functions Section 4.1 Eponential Functions... 15 Section 4. Graphs of Eponential Functions... 3 Section 4.3 Logarithmic Functions... 4 Section 4.4 Logarithmic Properties...

More information

Dimensional Analysis and Exponential Models

Dimensional Analysis and Exponential Models MAT 42 College Mathematics Module XP Dimensional Analysis and Exponential Models Terri Miller revised December 3, 200. Dimensional Analysis The purpose of this section is to convert between various types

More information

Section 1.4. Difference Equations

Section 1.4. Difference Equations Difference Equations to Differential Equations Section 1.4 Difference Equations At this point almost all of our sequences have had explicit formulas for their terms. That is, we have looked mainly at sequences

More information

Dimensional Analysis; Exponential and Logarithmic Growth/Decay

Dimensional Analysis; Exponential and Logarithmic Growth/Decay MAT 42 College Mathematics Module #5 Dimensional Analysis; Exponential and Logarithmic Growth/Decay Terri Miller Spring 2009 revised November 7, 2009. Dimensional Analysis The purpose of this section is

More information

a b c d e You have two hours to do this exam. Please write your name on this page, and at the top of page three. GOOD LUCK! 3. a b c d e 12.

a b c d e You have two hours to do this exam. Please write your name on this page, and at the top of page three. GOOD LUCK! 3. a b c d e 12. MA123 Elem. Calculus Fall 2015 Exam 2 2015-10-22 Name: Sec.: Do not remove this answer page you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during

More information

Vaporization of Liquid Nitrogen

Vaporization of Liquid Nitrogen Vaporization of Liquid Nitrogen Goals and Introduction As a system exchanges thermal energy with its surroundings, the temperature of the system will usually increase or decrease, depending on the direction

More information

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have 8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents

More information

Chapter 11. Inductors ISU EE. C.Y. Lee

Chapter 11. Inductors ISU EE. C.Y. Lee Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive

More information

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

More information

Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits)

Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits) Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits) Administration: o Prayer o Turn in quiz Electricity and Electronics, Chapter 8, Introduction: o

More information

Differential Equations

Differential Equations 40 CHAPTER 15 Differential Equations In many natural conditions the rate at which the amount of an object changes is directly proportional to the amount of the object itself. For example: 1) The marginal

More information

Series and Parallel Circuits

Series and Parallel Circuits Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected end-to-end. A parallel

More information

The Time Constant of an RC Circuit

The Time Constant of an RC Circuit The Time Constant of an RC Circuit 1 Objectives 1. To determine the time constant of an RC Circuit, and 2. To determine the capacitance of an unknown capacitor. 2 Introduction What the heck is a capacitor?

More information

ALGEBRA 2/TRIGONOMETRY

ALGEBRA 2/TRIGONOMETRY ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Thursday, January 9, 015 9:15 a.m to 1:15 p.m., only Student Name: School Name: The possession

More information

7-2 Solving Exponential Equations and Inequalities. Solve each equation. 1. 3 5x = 27 2x 4 SOLUTION:

7-2 Solving Exponential Equations and Inequalities. Solve each equation. 1. 3 5x = 27 2x 4 SOLUTION: 7-2 Solving Exponential Equations and Inequalities Solve each equation. 1. 3 5x = 27 2x 4 3. 2 6x = 32 x 2 12 2. 16 2y 3 = 4 y + 1 10 4. 49 x + 5 = 7 8x 6 3. 2 6x = 32 x 2 5. SCIENCE Mitosis is a process

More information

Series and Parallel Resistive Circuits Physics Lab VIII

Series and Parallel Resistive Circuits Physics Lab VIII Series and Parallel Resistive Circuits Physics Lab VIII Objective In the set of experiments, the theoretical expressions used to calculate the total resistance in a combination of resistors will be tested

More information

Keystone National High School Placement Exam Math Level 1. Find the seventh term in the following sequence: 2, 6, 18, 54

Keystone National High School Placement Exam Math Level 1. Find the seventh term in the following sequence: 2, 6, 18, 54 1. Find the seventh term in the following sequence: 2, 6, 18, 54 2. Write a numerical expression for the verbal phrase. sixteen minus twelve divided by six Answer: b) 1458 Answer: d) 16 12 6 3. Evaluate

More information

Energy, Work, and Power

Energy, Work, and Power Energy, Work, and Power This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Energy in Electrical Systems. Overview

Energy in Electrical Systems. Overview Energy in Electrical Systems Overview How can Potential Energy be stored in electrical systems? Battery Stored as chemical energy then transformed to electrical energy on usage Water behind a dam Water

More information

dy dx and so we can rewrite the equation as If we now integrate both sides of this equation, we get xy x 2 C Integrating both sides, we would have

dy dx and so we can rewrite the equation as If we now integrate both sides of this equation, we get xy x 2 C Integrating both sides, we would have LINEAR DIFFERENTIAL EQUATIONS A first-der linear differential equation is one that can be put into the fm 1 d Py Q where P and Q are continuous functions on a given interval. This type of equation occurs

More information

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

More information

Determination of Capacitor Life as a Function of Operating Voltage and Temperature David Evans Evans Capacitor Company

Determination of Capacitor Life as a Function of Operating Voltage and Temperature David Evans Evans Capacitor Company Determination of Capacitor Life as a Function of Operating Voltage and Temperature David Evans Evans Capacitor Company Background Potentiostatically charged Hybrid capacitors age predictably by a mechanism

More information

Tutorial on Using Excel Solver to Analyze Spin-Lattice Relaxation Time Data

Tutorial on Using Excel Solver to Analyze Spin-Lattice Relaxation Time Data Tutorial on Using Excel Solver to Analyze Spin-Lattice Relaxation Time Data In the measurement of the Spin-Lattice Relaxation time T 1, a 180 o pulse is followed after a delay time of t with a 90 o pulse,

More information

To Evaluate an Algebraic Expression

To Evaluate an Algebraic Expression 1.5 Evaluating Algebraic Expressions 1.5 OBJECTIVES 1. Evaluate algebraic expressions given any signed number value for the variables 2. Use a calculator to evaluate algebraic expressions 3. Find the sum

More information

EXAMPLE 8: An Electrical System (Mechanical-Electrical Analogy)

EXAMPLE 8: An Electrical System (Mechanical-Electrical Analogy) EXAMPLE 8: An Electrical System (Mechanical-Electrical Analogy) A completely analogous procedure can be used to find the state equations of electrical systems (and, ultimately, electro-mechanical systems

More information

Objectives 200 CHAPTER 4 RESISTANCE

Objectives 200 CHAPTER 4 RESISTANCE Objectives Explain the differences among conductors, insulators, and semiconductors. Define electrical resistance. Solve problems using resistance, voltage, and current. Describe a material that obeys

More information

Pre-Algebra Lecture 6

Pre-Algebra Lecture 6 Pre-Algebra Lecture 6 Today we will discuss Decimals and Percentages. Outline: 1. Decimals 2. Ordering Decimals 3. Rounding Decimals 4. Adding and subtracting Decimals 5. Multiplying and Dividing Decimals

More information

Ohm's Law and Circuits

Ohm's Law and Circuits 2. Conductance, Insulators and Resistance A. A conductor in electricity is a material that allows electrons to flow through it easily. Metals, in general, are good conductors. Why? The property of conductance

More information

Free Pre-Algebra Lesson 55! page 1

Free Pre-Algebra Lesson 55! page 1 Free Pre-Algebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can

More information

Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture - 33 3 phase System 4

Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture - 33 3 phase System 4 Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore Lecture - 33 3 phase System 4 Hello everybody. So, in the last class we have been

More information