Chapter I: Digital System and Binary Numbers

Size: px
Start display at page:

Download "Chapter I: Digital System and Binary Numbers"

Transcription

1 Chapter I: Digital System and Binary Numbers 1-1Digital Systems Digital systems are used in: - Communication - Business transaction - Traffic Control - Medical treatment - Internet The signals in digital systems use just two discrete values: a binary digit. Binary digit called a bit, has two values: 0 or 1. The decimal digits a through 9 are represented in digital system with a code of four bits (e.g. is represented by 0111, 8 is represented by 1000, 9 is represented by 1001). 1-2 Binary Numbers Decimal number: The decimal number system is said to be of base, or radix, 10 because it uses 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Example1: The decimal number 245 may be written as 2x x x10 0 where 2, 4, and 5 are the coefficients. Example2: The decimal number may be written as 2x x x x x10-2 Binary Number System: The coefficients of the binary number have only two possible values: 0 or 1. (111) 2 its equivalent decimal number is : 1x2 2 +1x2 1 +1x , where 1, 1, and 1 are the coefficients. (1001) 2 its equivalent decimal number is : 1x2 3 +0x2 2 +0x2 1 +1x where 1, 0, 0, and 1 are the coefficients. ( ) 2 its equivalent decimal number is :

2 1x x x x x x , In general, a number expressed in a base r system has coefficients multiplied by powers of r. a n.r n + a n-1.r n a 2.r 2 + a 1.r 1 + a 0 + a -1.r -1 + a -2.r a -m.r -m The coefficient a j coefficient rang in value from 0 to r-1. To distinguish between numbers of different bases, the coefficients are enclosed in parentheses and write a subscript equal to the based used (except sometimes for decimal number). Hexadecimal number system (Base 16): It uses 16 digits : (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F). The letter A, B, C, D, E, and F are used for the digits 10,11, 12, 13, 14, and 15 respectively. (124) 16 1x x x (B32A) 16 11x x x x Number-Base conversions The conversion of a number in base r is done by expanding the number in a power series and adding all terms. Example1: (24) 8 2x x8 0 (18) Conversion of a decimal integer The conversion of a decimal integer to a number in base r is done by dividing the number and all successive quotients by r and accumulation the remainders. Example2: Convert decimal 41 to binary Dividing by (41) 10 (101001) result reading

3 Example3: Convert decimal 153 to octal. 153 Dividing by (153) 10 (231) result reading Conversion of a decimal fraction The conversion of a decimal to a binary is accomplished by a method similar to that used for integers. However, multiplication is used instead of division, and integers instead of remainders are accumulated. Example4: Convert (0.6875) 10 to binary, Integer fraction coefficient x a x a x a x a -4 1 Therefore, the answer is (0.6875) 10 (0.1011) Conversion from binary to hexadecimal and to octal - The conversion from and to binary, octal, and hexadecimal plays an important role in digital computers. Each octal digit corresponds to three binary digits. Each hexadecimal digit corresponds to four binary digits. - The first 16 numbers in decimal, binary, octal, and hexadecimal number systems are listed in table1.

4 Decimal Binary Octal Hexadecimal A B C D E F Table1: Numbers with different bases 9 Example1: Convert binary to octal and to hexadecimal. - Binary to octal: Starting from the left and partitioning the binary number into groups of three digits each, then assign the corresponding octal digit to each group. ( ) 2 (17463) 8 - Binary to Hexadecimal: Conversion from binary to Hexadecimal is similar, except thr binary number is divided into groups of four digits. ( ) 2 (1F33) 16 Example2: Convert the following numbers. ( ) 2 (? ) 8 ( ) 2 (? ) 16 Solution: ( ) 2 (671.67) 8 ( ) 2 (1B9.37) 16

5 1-5 Conversion from octal or hexadecimal to binary This conversion is done by reversing the preceding procedure. Each octal digit is converted to its three digits binary and each hexadecimal digit is converted to its four digits binary. (436) 8 ( ) 2 (52.67) 8 ( ) 2 (B79A) 16 ( ) Complements Complements are used in digital computers to simplify the subtraction operation and for logical manipulation. Each base-r-system has two types of complements: - The radix complement: r's Complement. - The diminished complement: (r-1)'s complement. For base 2, the two types are: 2's Complement and 1's Complement. For base 10, the two types are: 10's Complement and 9's Complement. - Diminished radix Complement Given a number N in base r having n digits, the (r-1)'s Complement of N is defined as (r n -1) N. - For decimal numbers, r 10 and r-1 9, so, the 9's Complement of N is (10 n -1) N Find the 9's Complement of The number has 5 digits (n 5), the 9's Complement is : (10 5-1) For binary numbers, r 2 and r-1 1, so, the 1's Complement of N is (2 n -1) N. Important: 2 n is represented by a binary number that consists of a 1 followed by n 0's. e.g. : 2 5 (100000) 2 ; 2 4 (10000) 2. 2 n -1 is binary number represented by n 1's. e.g. : (11111) 2 ; 2 4 (1111) 2. Find the 1's Complement of Solution:

6 N8 so, the 1's Complement of is: (2 8-1) - ( ) ( ) ( ) The 1's Complement can be obtained more easily by changing 1's to 0's and 0's to 1's as follow: The 1's Complement of is The 1's Complement of is Radix Complement: The r's Complement of an n digits number N in base r is defined as r n N for N 0 and as 0 for N 0. Comparing with (r-1)'s Complement, we can write: r's Complement (r-1)'s Complement + 1. Thus the 2's Complement of binary is obtained by adding 1 to the 1's Complement value. The 2's Complement of binary is : 's Complement The 2's Complement can be obtained by leaving all least significant 0's and the first 1 unchanged and replacing 1's with 0's and 0's with 1's in all other significant digits. The 2's Complement of is: All other significant bits are changed - Subtraction with Complement: First 1 unchanged Two least significant 0: unchanged The subtraction of two n digits unsigned numbers M-N in base r can be done as follow. 1- Add the minuend M to the r's Complement of the subtrahend N. M + (r n N) M N + r n 2- If M > N, the Sum will produce an end carry r n, which can be discarded, what is left is the result M N. 3- If M < N, the sum does not produce an end carry and is equal to r n (M N) which is the r's Complement of (M N). To obtain the r's complement of the sum and place a negative sign in front.

7 Given the two binary numbers X and Y , perform the substraction: a- X - Y b- Y X by using 2's Complement a- Solution: X 2' s Complement of Y Sum L Discard end carry 2 AnswerX Y b- Y 2' s Complement of X Sum There is no end carry. Therefore, the answer is: Y X - (2's Complement of ) Substraction of unsigned numbers can also be done by means of the 1's Complement: a- X Y X 1' s Complement of Y Sum End around carry Answer X Y b- Y X Y ' s Complement of Sum X There is no carry. Therefore, the answer is: Y X - (1's Complement of )

8 1-6 Signed Binary Numbers - Positive Integer can be represented as unsigned numbers. - Negative integers, are represented by using a signed complement system which can use either 1's complement or 2's complement but the 2's complement is the most common. The convention is to make the sign bit the sign bit 0 for positive and 1 for negative. - As an example, consider the number 9, represented in binary with eight bits (By using 2's complement) Arithmetic Addition: To add two signed binary numbers, the negative number must be initially in 2's complement form and that if the sum obtained after the addition is negative, it's in 2's complement form

The string of digits 101101 in the binary number system represents the quantity

The string of digits 101101 in the binary number system represents the quantity Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for

More information

Chapter 1: Digital Systems and Binary Numbers

Chapter 1: Digital Systems and Binary Numbers Chapter 1: Digital Systems and Binary Numbers Digital age and information age Digital computers general purposes many scientific, industrial and commercial applications Digital systems telephone switching

More information

CPEN 214 - Digital Logic Design Binary Systems

CPEN 214 - Digital Logic Design Binary Systems CPEN 4 - Digital Logic Design Binary Systems C. Gerousis Digital Design 3 rd Ed., Mano Prentice Hall Digital vs. Analog An analog system has continuous range of values A mercury thermometer Vinyl records

More information

CSI 333 Lecture 1 Number Systems

CSI 333 Lecture 1 Number Systems CSI 333 Lecture 1 Number Systems 1 1 / 23 Basics of Number Systems Ref: Appendix C of Deitel & Deitel. Weighted Positional Notation: 192 = 2 10 0 + 9 10 1 + 1 10 2 General: Digit sequence : d n 1 d n 2...

More information

Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8

Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8 ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also

More information

Useful Number Systems

Useful Number Systems Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2

More information

NUMBER SYSTEMS. 1.1 Introduction

NUMBER SYSTEMS. 1.1 Introduction NUMBER SYSTEMS 1.1 Introduction There are several number systems which we normally use, such as decimal, binary, octal, hexadecimal, etc. Amongst them we are most familiar with the decimal number system.

More information

2 Number Systems. Source: Foundations of Computer Science Cengage Learning. Objectives After studying this chapter, the student should be able to:

2 Number Systems. Source: Foundations of Computer Science Cengage Learning. Objectives After studying this chapter, the student should be able to: 2 Number Systems 2.1 Source: Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: Understand the concept of number systems. Distinguish

More information

Computer Science 281 Binary and Hexadecimal Review

Computer Science 281 Binary and Hexadecimal Review Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two

More information

3. Convert a number from one number system to another

3. Convert a number from one number system to another 3. Convert a number from one number system to another Conversion between number bases: Hexa (16) Decimal (10) Binary (2) Octal (8) More Interest Way we need conversion? We need decimal system for real

More information

Number Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi)

Number Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi) Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi) INTRODUCTION System- A number system defines a set of values to represent quantity. We talk about the number of people

More information

Lecture 2. Binary and Hexadecimal Numbers

Lecture 2. Binary and Hexadecimal Numbers Lecture 2 Binary and Hexadecimal Numbers Purpose: Review binary and hexadecimal number representations Convert directly from one base to another base Review addition and subtraction in binary representations

More information

Lecture 11: Number Systems

Lecture 11: Number Systems Lecture 11: Number Systems Numeric Data Fixed point Integers (12, 345, 20567 etc) Real fractions (23.45, 23., 0.145 etc.) Floating point such as 23. 45 e 12 Basically an exponent representation Any number

More information

Goals. Unary Numbers. Decimal Numbers. 3,148 is. 1000 s 100 s 10 s 1 s. Number Bases 1/12/2009. COMP370 Intro to Computer Architecture 1

Goals. Unary Numbers. Decimal Numbers. 3,148 is. 1000 s 100 s 10 s 1 s. Number Bases 1/12/2009. COMP370 Intro to Computer Architecture 1 Number Bases //9 Goals Numbers Understand binary and hexadecimal numbers Be able to convert between number bases Understand binary fractions COMP37 Introduction to Computer Architecture Unary Numbers Decimal

More information

2011, The McGraw-Hill Companies, Inc. Chapter 3

2011, The McGraw-Hill Companies, Inc. Chapter 3 Chapter 3 3.1 Decimal System The radix or base of a number system determines the total number of different symbols or digits used by that system. The decimal system has a base of 10 with the digits 0 through

More information

Number and codes in digital systems

Number and codes in digital systems Number and codes in digital systems Decimal Numbers You are familiar with the decimal number system because you use them everyday. But their weighted structure is not understood. In the decimal number

More information

Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 04 Digital Logic II May, I before starting the today s lecture

More information

Binary Numbers. Binary Octal Hexadecimal

Binary Numbers. Binary Octal Hexadecimal Binary Numbers Binary Octal Hexadecimal Binary Numbers COUNTING SYSTEMS UNLIMITED... Since you have been using the 10 different digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 all your life, you may wonder how

More information

Digital Design. Assoc. Prof. Dr. Berna Örs Yalçın

Digital Design. Assoc. Prof. Dr. Berna Örs Yalçın Digital Design Assoc. Prof. Dr. Berna Örs Yalçın Istanbul Technical University Faculty of Electrical and Electronics Engineering Office Number: 2318 E-mail: siddika.ors@itu.edu.tr Grading 1st Midterm -

More information

Number Systems and Radix Conversion

Number Systems and Radix Conversion Number Systems and Radix Conversion Sanjay Rajopadhye, Colorado State University 1 Introduction These notes for CS 270 describe polynomial number systems. The material is not in the textbook, but will

More information

NUMBER SYSTEMS. William Stallings

NUMBER SYSTEMS. William Stallings NUMBER SYSTEMS William Stallings The Decimal System... The Binary System...3 Converting between Binary and Decimal...3 Integers...4 Fractions...5 Hexadecimal Notation...6 This document available at WilliamStallings.com/StudentSupport.html

More information

COMPSCI 210. Binary Fractions. Agenda & Reading

COMPSCI 210. Binary Fractions. Agenda & Reading COMPSCI 21 Binary Fractions Agenda & Reading Topics: Fractions Binary Octal Hexadecimal Binary -> Octal, Hex Octal -> Binary, Hex Decimal -> Octal, Hex Hex -> Binary, Octal Animation: BinFrac.htm Example

More information

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline Data Representation Binary Codes Why 6-3-1-1 and Excess-3? Data Representation (1/2) Each numbering

More information

Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 INTRODUCTION TO DIGITAL LOGIC

Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 INTRODUCTION TO DIGITAL LOGIC Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 1 Number Systems Representation Positive radix, positional number systems A number with radix r is represented by a string of digits: A n

More information

Base Conversion written by Cathy Saxton

Base Conversion written by Cathy Saxton Base Conversion written by Cathy Saxton 1. Base 10 In base 10, the digits, from right to left, specify the 1 s, 10 s, 100 s, 1000 s, etc. These are powers of 10 (10 x ): 10 0 = 1, 10 1 = 10, 10 2 = 100,

More information

Chapter Binary, Octal, Decimal, and Hexadecimal Calculations

Chapter Binary, Octal, Decimal, and Hexadecimal Calculations Chapter 5 Binary, Octal, Decimal, and Hexadecimal Calculations This calculator is capable of performing the following operations involving different number systems. Number system conversion Arithmetic

More information

LSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology

LSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology LSN 2 Number Systems Department of Engineering Technology LSN 2 Decimal Number System Decimal number system has 10 digits (0-9) Base 10 weighting system... 10 5 10 4 10 3 10 2 10 1 10 0. 10-1 10-2 10-3

More information

EE 261 Introduction to Logic Circuits. Module #2 Number Systems

EE 261 Introduction to Logic Circuits. Module #2 Number Systems EE 261 Introduction to Logic Circuits Module #2 Number Systems Topics A. Number System Formation B. Base Conversions C. Binary Arithmetic D. Signed Numbers E. Signed Arithmetic F. Binary Codes Textbook

More information

THE BINARY NUMBER SYSTEM

THE BINARY NUMBER SYSTEM THE BINARY NUMBER SYSTEM Dr. Robert P. Webber, Longwood University Our civilization uses the base 10 or decimal place value system. Each digit in a number represents a power of 10. For example, 365.42

More information

Positional Numbering System

Positional Numbering System APPENDIX B Positional Numbering System A positional numbering system uses a set of symbols. The value that each symbol represents, however, depends on its face value and its place value, the value associated

More information

Unsigned Conversions from Decimal or to Decimal and other Number Systems

Unsigned Conversions from Decimal or to Decimal and other Number Systems Page 1 of 5 Unsigned Conversions from Decimal or to Decimal and other Number Systems In all digital design, analysis, troubleshooting, and repair you will be working with binary numbers (or base 2). It

More information

Lecture 8: Binary Multiplication & Division

Lecture 8: Binary Multiplication & Division Lecture 8: Binary Multiplication & Division Today s topics: Addition/Subtraction Multiplication Division Reminder: get started early on assignment 3 1 2 s Complement Signed Numbers two = 0 ten 0001 two

More information

MATH-0910 Review Concepts (Haugen)

MATH-0910 Review Concepts (Haugen) Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,

More information

Recall the process used for adding decimal numbers. 1. Place the numbers to be added in vertical format, aligning the decimal points.

Recall the process used for adding decimal numbers. 1. Place the numbers to be added in vertical format, aligning the decimal points. 2 MODULE 4. DECIMALS 4a Decimal Arithmetic Adding Decimals Recall the process used for adding decimal numbers. Adding Decimals. To add decimal numbers, proceed as follows: 1. Place the numbers to be added

More information

Fractions and Linear Equations

Fractions and Linear Equations Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps

More information

Today. Binary addition Representing negative numbers. Andrew H. Fagg: Embedded Real- Time Systems: Binary Arithmetic

Today. Binary addition Representing negative numbers. Andrew H. Fagg: Embedded Real- Time Systems: Binary Arithmetic Today Binary addition Representing negative numbers 2 Binary Addition Consider the following binary numbers: 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 How do we add these numbers? 3 Binary Addition 0 0 1 0 0 1 1

More information

Binary, Hexadecimal, Octal, and BCD Numbers

Binary, Hexadecimal, Octal, and BCD Numbers 23CH_PHCalter_TMSETE_949118 23/2/2007 1:37 PM Page 1 Binary, Hexadecimal, Octal, and BCD Numbers OBJECTIVES When you have completed this chapter, you should be able to: Convert between binary and decimal

More information

COMBINATIONAL CIRCUITS

COMBINATIONAL CIRCUITS COMBINATIONAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/combinational_circuits.htm Copyright tutorialspoint.com Combinational circuit is a circuit in which we combine the different

More information

Chapter 2. Binary Values and Number Systems

Chapter 2. Binary Values and Number Systems Chapter 2 Binary Values and Number Systems Numbers Natural numbers, a.k.a. positive integers Zero and any number obtained by repeatedly adding one to it. Examples: 100, 0, 45645, 32 Negative numbers A

More information

Binary Adders: Half Adders and Full Adders

Binary Adders: Half Adders and Full Adders Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order

More information

To convert an arbitrary power of 2 into its English equivalent, remember the rules of exponential arithmetic:

To convert an arbitrary power of 2 into its English equivalent, remember the rules of exponential arithmetic: Binary Numbers In computer science we deal almost exclusively with binary numbers. it will be very helpful to memorize some binary constants and their decimal and English equivalents. By English equivalents

More information

Numeral Systems. The number twenty-five can be represented in many ways: Decimal system (base 10): 25 Roman numerals:

Numeral Systems. The number twenty-five can be represented in many ways: Decimal system (base 10): 25 Roman numerals: Numeral Systems Which number is larger? 25 8 We need to distinguish between numbers and the symbols that represent them, called numerals. The number 25 is larger than 8, but the numeral 8 above is larger

More information

Section 1.4 Place Value Systems of Numeration in Other Bases

Section 1.4 Place Value Systems of Numeration in Other Bases Section.4 Place Value Systems of Numeration in Other Bases Other Bases The Hindu-Arabic system that is used in most of the world today is a positional value system with a base of ten. The simplest reason

More information

Binary Representation. Number Systems. Base 10, Base 2, Base 16. Positional Notation. Conversion of Any Base to Decimal.

Binary Representation. Number Systems. Base 10, Base 2, Base 16. Positional Notation. Conversion of Any Base to Decimal. Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must be able to handle more than just values for real world problems

More information

plc numbers - 13.1 Encoded values; BCD and ASCII Error detection; parity, gray code and checksums

plc numbers - 13.1 Encoded values; BCD and ASCII Error detection; parity, gray code and checksums plc numbers - 3. Topics: Number bases; binary, octal, decimal, hexadecimal Binary calculations; s compliments, addition, subtraction and Boolean operations Encoded values; BCD and ASCII Error detection;

More information

Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Systems I: Computer Organization and Architecture Lecture 2: Number Systems and Arithmetic Number Systems - Base The number system that we use is base : 734 = + 7 + 3 + 4 = x + 7x + 3x + 4x = x 3 + 7x

More information

2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal

2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal 2/9/9 Binary number system Computer (electronic) systems prefer binary numbers Binary number: represent a number in base-2 Binary numbers 2 3 + 7 + 5 Some terminology Bit: a binary digit ( or ) Hexadecimal

More information

Numbering Systems. InThisAppendix...

Numbering Systems. InThisAppendix... G InThisAppendix... Introduction Binary Numbering System Hexadecimal Numbering System Octal Numbering System Binary Coded Decimal (BCD) Numbering System Real (Floating Point) Numbering System BCD/Binary/Decimal/Hex/Octal

More information

Chapter 7 Lab - Decimal, Binary, Octal, Hexadecimal Numbering Systems

Chapter 7 Lab - Decimal, Binary, Octal, Hexadecimal Numbering Systems Chapter 7 Lab - Decimal, Binary, Octal, Hexadecimal Numbering Systems This assignment is designed to familiarize you with different numbering systems, specifically: binary, octal, hexadecimal (and decimal)

More information

Number Representation

Number Representation Number Representation CS10001: Programming & Data Structures Pallab Dasgupta Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Topics to be Discussed How are numeric data

More information

3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS 3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

More information

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012 Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about

More information

Tool 1. Greatest Common Factor (GCF)

Tool 1. Greatest Common Factor (GCF) Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When

More information

Logic Reference Guide

Logic Reference Guide Logic eference Guide Advanced Micro evices INTOUCTION Throughout this data book and design guide we have assumed that you have a good working knowledge of logic. Unfortunately, there always comes a time

More information

A Step towards an Easy Interconversion of Various Number Systems

A Step towards an Easy Interconversion of Various Number Systems A towards an Easy Interconversion of Various Number Systems Shahid Latif, Rahat Ullah, Hamid Jan Department of Computer Science and Information Technology Sarhad University of Science and Information Technology

More information

Exponents, Radicals, and Scientific Notation

Exponents, Radicals, and Scientific Notation General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =

More information

Binary Representation

Binary Representation Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must tbe able to handle more than just values for real world problems

More information

Solution for Homework 2

Solution for Homework 2 Solution for Homework 2 Problem 1 a. What is the minimum number of bits that are required to uniquely represent the characters of English alphabet? (Consider upper case characters alone) The number of

More information

Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course

Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course Session ENG 206-6 Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course Nikunja Swain, Ph.D., PE South Carolina State University swain@scsu.edu Raghu Korrapati,

More information

MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.

MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers. 1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with

More information

Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1

Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1 Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1

More information

Math Review. Numbers. Place Value. Rounding Whole Numbers. Place value thousands hundreds tens ones

Math Review. Numbers. Place Value. Rounding Whole Numbers. Place value thousands hundreds tens ones Math Review Knowing basic math concepts and knowing when to apply them are essential skills. You should know how to add, subtract, multiply, divide, calculate percentages, and manipulate fractions. This

More information

Decimals Adding and Subtracting

Decimals Adding and Subtracting 1 Decimals Adding and Subtracting Decimals are a group of digits, which express numbers or measurements in units, tens, and multiples of 10. The digits for units and multiples of 10 are followed by a decimal

More information

6 3 4 9 = 6 10 + 3 10 + 4 10 + 9 10

6 3 4 9 = 6 10 + 3 10 + 4 10 + 9 10 Lesson The Binary Number System. Why Binary? The number system that you are familiar with, that you use every day, is the decimal number system, also commonly referred to as the base- system. When you

More information

Addition Methods. Methods Jottings Expanded Compact Examples 8 + 7 = 15

Addition Methods. Methods Jottings Expanded Compact Examples 8 + 7 = 15 Addition Methods Methods Jottings Expanded Compact Examples 8 + 7 = 15 48 + 36 = 84 or: Write the numbers in columns. Adding the tens first: 47 + 76 110 13 123 Adding the units first: 47 + 76 13 110 123

More information

Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

More information

Paramedic Program Pre-Admission Mathematics Test Study Guide

Paramedic Program Pre-Admission Mathematics Test Study Guide Paramedic Program Pre-Admission Mathematics Test Study Guide 05/13 1 Table of Contents Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS3 Introduction to Numerical Methods Lecture Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506-0633 August 7, 05 Number in

More information

Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:

Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers: Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules

More information

Machine Architecture and Number Systems. Major Computer Components. Schematic Diagram of a Computer. The CPU. The Bus. Main Memory.

Machine Architecture and Number Systems. Major Computer Components. Schematic Diagram of a Computer. The CPU. The Bus. Main Memory. 1 Topics Machine Architecture and Number Systems Major Computer Components Bits, Bytes, and Words The Decimal Number System The Binary Number System Converting from Decimal to Binary Major Computer Components

More information

1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal:

1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: Exercises 1 - number representations Questions 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: (a) 3012 (b) - 435 2. For each of

More information

Divide: Paper & Pencil. Computer Architecture ALU Design : Division and Floating Point. Divide algorithm. DIVIDE HARDWARE Version 1

Divide: Paper & Pencil. Computer Architecture ALU Design : Division and Floating Point. Divide algorithm. DIVIDE HARDWARE Version 1 Divide: Paper & Pencil Computer Architecture ALU Design : Division and Floating Point 1001 Quotient Divisor 1000 1001010 Dividend 1000 10 101 1010 1000 10 (or Modulo result) See how big a number can be

More information

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

More information

MEP Y9 Practice Book A

MEP Y9 Practice Book A 1 Base Arithmetic 1.1 Binary Numbers We normally work with numbers in base 10. In this section we consider numbers in base 2, often called binary numbers. In base 10 we use the digits 0, 1, 2, 3, 4, 5,

More information

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

More information

BINARY CODED DECIMAL: B.C.D.

BINARY CODED DECIMAL: B.C.D. BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.

More information

Radicals - Square Roots

Radicals - Square Roots 8.1 Radicals - Square Roots Objective: Simplify expressions with square roots. Square roots are the most common type of radical used. A square root unsquares a number. For example, because 5 2 = 25 we

More information

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers. Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

More information

Sequential Skills. Strands and Major Topics

Sequential Skills. Strands and Major Topics Sequential Skills This set of charts lists, by strand, the skills that are assessed, taught, and practiced in the Skills Tutorial program. Each Strand ends with a Mastery Test. You can enter correlating

More information

CS201: Architecture and Assembly Language

CS201: Architecture and Assembly Language CS201: Architecture and Assembly Language Lecture Three Brendan Burns CS201: Lecture Three p.1/27 Arithmetic for computers Previously we saw how we could represent unsigned numbers in binary and how binary

More information

CS101 Lecture 11: Number Systems and Binary Numbers. Aaron Stevens 14 February 2011

CS101 Lecture 11: Number Systems and Binary Numbers. Aaron Stevens 14 February 2011 CS101 Lecture 11: Number Systems and Binary Numbers Aaron Stevens 14 February 2011 1 2 1 3!!! MATH WARNING!!! TODAY S LECTURE CONTAINS TRACE AMOUNTS OF ARITHMETIC AND ALGEBRA PLEASE BE ADVISED THAT CALCULTORS

More information

ADDITION. Children should extend the carrying method to numbers with at least four digits.

ADDITION. Children should extend the carrying method to numbers with at least four digits. Y5 AND Y6 ADDITION Children should extend the carrying method to numbers with at least four digits. 587 3587 + 475 + 675 1062 4262 1 1 1 1 1 Using similar methods, children will: add several numbers with

More information

APPENDIX B. Routers route based on the network number. The router that delivers the data packet to the correct destination host uses the host ID.

APPENDIX B. Routers route based on the network number. The router that delivers the data packet to the correct destination host uses the host ID. APPENDIX B IP Subnetting IP Addressing Routers route based on the network number. The router that delivers the data packet to the correct destination host uses the host ID. IP Classes An IP address is

More information

Course Syllabus. MATH 1350-Mathematics for Teachers I. Revision Date: 8/15/2016

Course Syllabus. MATH 1350-Mathematics for Teachers I. Revision Date: 8/15/2016 Course Syllabus MATH 1350-Mathematics for Teachers I Revision Date: 8/15/2016 Catalog Description: This course is intended to build or reinforce a foundation in fundamental mathematics concepts and skills.

More information

PREPARATION FOR MATH TESTING at CityLab Academy

PREPARATION FOR MATH TESTING at CityLab Academy PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST

More information

6 The Hindu-Arabic System (800 BC)

6 The Hindu-Arabic System (800 BC) 6 The Hindu-Arabic System (800 BC) Today the most universally used system of numeration is the Hindu-Arabic system, also known as the decimal system or base ten system. The system was named for the Indian

More information

Test 4 Sample Problem Solutions, 27.58 = 27 47 100, 7 5, 1 6. 5 = 14 10 = 1.4. Moving the decimal two spots to the left gives

Test 4 Sample Problem Solutions, 27.58 = 27 47 100, 7 5, 1 6. 5 = 14 10 = 1.4. Moving the decimal two spots to the left gives Test 4 Sample Problem Solutions Convert from a decimal to a fraction: 0.023, 27.58, 0.777... For the first two we have 0.023 = 23 58, 27.58 = 27 1000 100. For the last, if we set x = 0.777..., then 10x

More information

YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!

YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR! DETAILED SOLUTIONS AND CONCEPTS - DECIMALS AND WHOLE NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! YOU MUST

More information

Decimal to Binary Conversion

Decimal to Binary Conversion Decimal to Binary Conversion A tool that makes the conversion of decimal values to binary values simple is the following table. The first row is created by counting right to left from one to eight, for

More information

Number Systems. Introduction / Number Systems

Number Systems. Introduction / Number Systems Number Systems Introduction / Number Systems Data Representation Data representation can be Digital or Analog In Analog representation values are represented over a continuous range In Digital representation

More information

0.8 Rational Expressions and Equations

0.8 Rational Expressions and Equations 96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

More information

Comp 255Q - 1M: Computer Organization Lab #3 - Machine Language Programs for the PDP-8

Comp 255Q - 1M: Computer Organization Lab #3 - Machine Language Programs for the PDP-8 Comp 255Q - 1M: Computer Organization Lab #3 - Machine Language Programs for the PDP-8 January 22, 2013 Name: Grade /10 Introduction: In this lab you will write, test, and execute a number of simple PDP-8

More information

Bachelors of Computer Application Programming Principle & Algorithm (BCA-S102T)

Bachelors of Computer Application Programming Principle & Algorithm (BCA-S102T) Unit- I Introduction to c Language: C is a general-purpose computer programming language developed between 1969 and 1973 by Dennis Ritchie at the Bell Telephone Laboratories for use with the Unix operating

More information

PROBLEMS AND SOLUTIONS - OPERATIONS ON IRRATIONAL NUMBERS

PROBLEMS AND SOLUTIONS - OPERATIONS ON IRRATIONAL NUMBERS PROBLEMS AND SOLUTIONS - OPERATIONS ON IRRATIONAL NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

More information

Accentuate the Negative: Homework Examples from ACE

Accentuate the Negative: Homework Examples from ACE Accentuate the Negative: Homework Examples from ACE Investigation 1: Extending the Number System, ACE #6, 7, 12-15, 47, 49-52 Investigation 2: Adding and Subtracting Rational Numbers, ACE 18-22, 38(a),

More information

Greatest Common Factor (GCF) Factoring

Greatest Common Factor (GCF) Factoring Section 4 4: Greatest Common Factor (GCF) Factoring The last chapter introduced the distributive process. The distributive process takes a product of a monomial and a polynomial and changes the multiplication

More information

Integers are positive and negative whole numbers, that is they are; {... 3, 2, 1,0,1,2,3...}. The dots mean they continue in that pattern.

Integers are positive and negative whole numbers, that is they are; {... 3, 2, 1,0,1,2,3...}. The dots mean they continue in that pattern. INTEGERS Integers are positive and negative whole numbers, that is they are; {... 3, 2, 1,0,1,2,3...}. The dots mean they continue in that pattern. Like all number sets, integers were invented to describe

More information

Fractions to decimals

Fractions to decimals Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of

More information

Chapter 1: Order of Operations, Fractions & Percents

Chapter 1: Order of Operations, Fractions & Percents HOSP 1107 (Business Math) Learning Centre Chapter 1: Order of Operations, Fractions & Percents ORDER OF OPERATIONS When finding the value of an expression, the operations must be carried out in a certain

More information

HIBBING COMMUNITY COLLEGE COURSE OUTLINE

HIBBING COMMUNITY COLLEGE COURSE OUTLINE HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,

More information