# Radioactivity. [ particles ] [second] [area] [ I ] =

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 1 Radioactivity The term radiation literally means "that which moves radially." This means that radiation usually emanates from a point and moves away along a radius of the sphere which has its center at that point. The inverse square law describes the relationship between the intensity (I) of a certain radiation and the distance (r) from the source: I 1 r2. But why is the intensity proportional to the inverse of the square of the distance? The answer is actually pretty simple. The units for intensity are particles per second per unit area, i.e.: [ I ] = [ particles ] [second] [area] On average, a certain point source emits a certain number of particles per second. These particles move away from the source in arbitrary directions, and they move radially. Statistically speaking, the trajectories of the particles will be evenly distributed over all the possible radial directions. Let's say that a source emits X particles every second and that they all travel away from the source at the same speed. If you put a sphere around the source with the source at the center, there will be X particles per second passing through the surface area of the sphere because the sphere completely encloses the source. If you use a sphere of a greater radius (but with the center still at the source), X particles per second still pass through the sphere, but they will pass through a greater surface area, and the intensity will be less (because there are fewer particles per second passing through each unit of area). The relationship between the area (A) of a sphere and the radius (r) is as follows: A = 4 π r 2 Therefore, for a source radially emitting X particles per second, the intensity will be: I = X 4 π r 2 and we see the inverse square relationship. In the past laboratories, we have been observing a type of radiation called visiblelight electromagnetic radiation. The particle which carries this type of radiation is called the photon, and is emitted or absorbed when electrons move from one energy level in the

2 2 atom to another. Other types of radiation called nuclear radiation also exist. These are composed of basically three types of particles *, the alpha (α), the beta (β), and the gamma (γ). The α is a high energy helium nucleus which is released in a nuclear decay in which the He +2 (two neutrons and two protons) is ejected from the nucleus, lowering the atomic number of an atom by two and the mass number by four. The β is a high energy electron which is emitted when a neutron in the nucleus decays into a proton and an electron, raising the atomic number by one and leaving the mass number unchanged. The γ is a high energy, high frequency, ultra-short wavelength photon which is released when the protons and neutrons change energy states in the nucleus, a process which is analogous to the manner by which ordinary photons are released when the electron changes states in the atom. While all three types of nuclear radiation are harmful, only β and γ radiation can penetrate deep into the body. In this lab, we will be studying a very weak source of nuclear radiation, and how the intensity (counts/second area) relates to the distance from the source. Procedure: The Geiger-Muller (GM) Tube. The GM tube is a device which is used to measure the presence of alpha, beta, and gamma radiation. It consists of a rarefied (low density) gas at a low pressure contained in a sealed tube between two high voltage electrodes. When radiation enters the tube, it ionizes on of the molecules of the gas, giving it a charge. The charged particles are then accelerated through the voltage produced by the electrodes until they strike the electrodes, causing a spike in the current. This spike corresponds to a single particle which is detected and is called a count. Only certain voltages may be placed between the two electrodes for the GM tube to function properly. The starting voltage is the minimum voltage below which no detection will occur. The operating voltage is the optimal voltage for maximum detection. If the voltage is increased to the avalanche voltage, the rarefied gas will become ionized, large currents will be produced, and the tube may be damaged. The individual pulses or counts can then be sent through an electronic circuit which time-averages them to determine the number of "counts per second". Since the area of the window of the GM tube is constant, the intensity will be directly related to this quantity. Normally the operating voltage must be determined for an individual tube, but this has already been done previous to this experiment. * Neutrons and neutrinos are also emitted in nuclear reactions, but they are difficult to detect and will not be treated in this lab.

3 3 We will be using the GM tube and a simple ruler to measure I and r, and testing if the inverse square law is indeed applicable. Preliminary procedure: A preliminary examination of the GM tube should reveal the following: 1. It has an on-off, volume control switch with which the volume of the audible clicks (counts) may be controlled. Also, there is an indicator light which will flash when counting occurs. 2. The device has a range selector which allows the single meter to read a wide range of counts per minute (CPM). Note the two scales, one ending at 1000 and the other ending at You will need to multiply the meter reading by the respective power of ten to get the actual reading. For instance, if the range is set on the 0-30,000 range, you will read the scale and multiply by There is a red button which when pressed, causes the meter to read the tube voltage on the red scale. 4. There is a vertical cm scale with zero at the end of the GM tube. 5. The GM tube fits between two clamps at the end of the cm scale and should be positioned with its window facing upward and centered on the scale. 6. The radiation source is very weak and is not of any danger to you. The source is imbedded in a plastic disc and the radiation is emitted through a hole in the aluminum mount. The radiation from the hole is emitted in a hemispherical distribution. The magnet on the mount allows it to be placed anywhere along the cm scale. 7. The response control has three settings: slow, medium, and fast. The slow setting will yield a very accurate reading of counts / sec but it will take a long time to get the reading. The fast reading will give a less accurate reading, with the needle showing visible fluctuations. You should use the slow or medium settings. Data Collection: 1. Do not turn on the counter yet! Set the tube voltage to zero by turning the voltage control counter-clockwise to its zero setting. Now you may turn on the counter. Press and hold down the red button and turn up the voltage until the value reaches the V 0 listed at the top of the counter. 2. Since the Earth is constantly bombarded by cosmic radiation, you will need to record the value of the CPM with no sources present. This will give you the reading of the background radiation. You will need to repeat this several times throughout the experiment. This background CPM should be subtracted from all subsequent readings.

4 4 3. With the selector on the 0-10,000 range, move the source close to the GM tube until the reading on the meter is nearly full-scale. Record I and r. 4. Move the source away at 0.5 cm increments, recording I and r for every position. When the reading is below 3000, you can change the range setting to get a more accurate reading of the intensity. Analysis: Since the intensity is proportional to the inverse of the distance squared, the product of intensity and distance squared should be constant. For each data pair, compute Ir 2. Plot all your intensity/ distance data on a graph and turn it in with your report. Conclusions: 1. Summarize your results for this experiment. 2. Are the values Ir 2 constant? Did the inverse square law apply here? 3. Did you notice any pattern to the clicks on the counter, any rhythm? Since the particles are emitted radially, what do you think about the direction each individual particle is emitted? Is it predictable? 4. Look at your graph. Does it have a smooth inverse square curve? Are there any anomalies? What happens when the source is especially close to the tube? Would the inverse square law apply here? What would happen if the GM tube's reading were not linear (that is, not directly proportional to the actual CPM)? Error Analysis: law. Describe any major sources of possible error and deviation from the inverse square

5 5 Radioactivity Name: Section: Abstract: Data: r r2 I I r2

6 6 Calculations: (Use back if necessary)

7 7 Conclusions: Error Analysis:

### Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics

Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics PART I Geiger Tube: Optimal Operating Voltage and Resolving Time Objective: To become acquainted with the operation and characteristics

### The Nature of Electromagnetic Radiation

II The Nature of Electromagnetic Radiation The Sun s energy has traveled across space as electromagnetic radiation, and that is the form in which it arrives on Earth. It is this radiation that determines

### Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

### Introduction to Geiger Counters

Introduction to Geiger Counters A Geiger counter (Geiger-Muller tube) is a device used for the detection and measurement of all types of radiation: alpha, beta and gamma radiation. Basically it consists

### Basics of Nuclear Physics and Fission

Basics of Nuclear Physics and Fission A basic background in nuclear physics for those who want to start at the beginning. Some of the terms used in this factsheet can be found in IEER s on-line glossary.

### Physics 1104 Midterm 2 Review: Solutions

Physics 114 Midterm 2 Review: Solutions These review sheets cover only selected topics from the chemical and nuclear energy chapters and are not meant to be a comprehensive review. Topics covered in these

### Atomic and Nuclear Physics Laboratory (Physics 4780)

Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *

### LI 1 Revision of Atomic Structure and Nuclide Notations

Topic 13 National 5 Chemistry Summary Notes Nuclear Chemistry In this topic you will learn about radioactive elements whose atoms are so unstable that they have to release radiation in order to become

### RADIOACTIVE DECAY. In this section, we describe radioactivity - how unstable nuclei can decay - and the laws governing radioactive decay.

ctivity BP RDIOCTIVE DECY Section 8: RDIOCTIVE DECY In this section, we describe radioactivity - how unstable nuclei can decay - and the laws governing radioactive decay. Radioactive Decay Naturally occurring

### AS91172 version 1 Demonstrate understanding of atomic and nuclear physics Level 2 Credits 3

AS91172 version 1 Demonstrate understanding of atomic and nuclear physics Level 2 Credits 3 This achievement standard involves demonstrating understanding of atomic and nuclear physics. Assessment typically

Radiation and the Universe Higher Exam revision questions and answers Madeley High School Q.The names of three different processes are given in List A. Where these processes happen is given in List B.

### Main properties of atoms and nucleus

Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom

### Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

### Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel

Chemistry 1000 Lecture 2: Nuclear reactions and radiation Marc R. Roussel Nuclear reactions Ordinary chemical reactions do not involve the nuclei, so we can balance these reactions by making sure that

### REVIEW NUCLEAR CHEMISTRY 3/31/16 NAME: PD 3

3/31/16 NAME: PD 3 1. Given the equation representing a nuclear reaction in which X represents a nuclide: Which nuclide is represented by X? 2. Which nuclear emission has the greatest mass and the least

### Chapter 4 & 25 Notes Atomic Structure and Nuclear Chemistry Page 1

Chapter 4 & 25 Notes Atomic Structure and Nuclear Chemistry Page 1 DEFINING THE ATOM Early Models of the Atom In this chapter, we will look into the tiny fundamental particles that make up matter. An atom

### ABSORPTION OF ALPHA PARTICLES AND ELECTRONS

Vilnius University Faculty of Physics Department of Solid State Electronics Laboratory of Atomic and Nuclear Physics Experiment No. 9 ABSORPTION OF ALPHA PARTICLES AND ELECTRONS by Andrius Poškus (e-mail:

### A-level PHYSICS (7408/1)

SPECIMEN MATERIAL A-level PHYSICS (7408/1) Paper 1 Specimen 2014 Morning Time allowed: 2 hours Materials For this paper you must have: a pencil a ruler a calculator a data and formulae booklet. Instructions

### Introduction to Nuclear Physics

Introduction to Nuclear Physics 1. Atomic Structure and the Periodic Table According to the Bohr-Rutherford model of the atom, also called the solar system model, the atom consists of a central nucleus

### Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

Chapter NP-5 Nuclear Physics Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 2.0 NEUTRON INTERACTIONS 2.1 ELASTIC SCATTERING 2.2 INELASTIC SCATTERING 2.3 RADIATIVE CAPTURE 2.4 PARTICLE

### Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

### Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

### The Atom. Unit 3 Atomic Structure And Nuclear Chemistry. Ancient Ideas of the Atom. Ancient Ideas of the Atom. Ancient Ideas of the Atom

1 The Atom Unit 3 Atomic Structure And Nuclear Chemistry What are the basic parts of an atom? How is an atom identified? What is nuclear chemistry? How is a nuclear equation written? Atom Smallest particle

### Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

### DETECTION OF CHARGED PARTICLES WITH SILICON DETECTORS

DETECTION OF CHARGED PARTICLES WITH SILICON DETECTORS A) DESCRIPTION OF SILICON CHARGED PARTICLE DETECTOR The silicon charged particle detector is a wafer of silicon having surface contacts forming a p-n

### Nuclear Energy: Nuclear Decay

Introduction The Nucleus Nuclear Energy: Nuclear Decay Almost any phrase that has the word nuclear in it has a bad reputation. The term conjures up images of mushroom clouds and radioactive mutants. It

### Atomic Origins: Chapter Problems

Atomic Origins: Chapter Problems Big Bang 1. How old is the Universe? 2. Name and describe the three subatomic particles. 3. Nuclear fusion reactions power stars. Name 2 elements that can be formed in

### Date: Deflection of an Electron in a Magnetic Field

Name: Partners: Date: Deflection of an Electron in a Magnetic Field Purpose In this lab, we use a Cathode Ray Tube (CRT) to measure the effects of an electric and magnetic field on the motion of a charged

### ............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq.

1 Strontium-90 decays with the emission of a β-particle to form Yttrium-90. The reaction is represented by the equation 90 38 The decay constant is 0.025 year 1. 90 39 0 1 Sr Y + e + 0.55 MeV. (a) Suggest,

### Radioactivity III: Measurement of Half Life.

PHY 192 Half Life 1 Radioactivity III: Measurement of Half Life. Introduction This experiment will once again use the apparatus of the first experiment, this time to measure radiation intensity as a function

### A) B) C) D) Which particle is represented by the letter X?

1. Which nuclear emission has the greatest mass and the least penetrating power? an alpha particle a beta particle a neutron a positron 2. Which equation represents alpha decay? 3. An unstable nucleus

### Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

PAM1014 Introduction to Radiation Physics Basic Atomic Theory Objectives Introduce and Molecules The periodic Table Electronic Energy Levels Atomic excitation & de-excitation Ionisation Molecules Constituents

### 2.4 Early Experiments to Characterize the Atom

2.4 Early Experiments to Characterize the Atom Early Experiments to Characterize the Atom J. J. Thomson (1856-1940) - postulated the existence of negatively charged particles called electrons using cathode

### Quick Review Concept Map

Quick Review - Scientific Method - qualitative and quantitative observations. - Hypothesis - possible explanation for an observation. - Theory vs. a Law - SI units and prefixes (memorize) - Significant

### Lab 7: Magnetic Field of a Permanent Magnet (Magnetic Field Sensor)

of a Permanent Magnet (Magnetic Field Sensor) Equipment Needed Qty Equipment Needed Qty Magnetic Field Sensor (CI-6520A) 1 Meter stick, non-metal 1 Magnet*, disk, Neodymium, 1/2 or 3/4 (EM-8648) 1 Small

### KAZAN FEDERAL UNIVERSITY INSTITUTE OF PHYSICS DETECTING RADIOACTIVITY RECORDING THE CHARACTERISTIC OF A GEIGER-MÜLLER COUNTER TUBE

KAZAN FEDERAL UNIVERSITY INSTITUTE OF PHYSICS DETECTING RADIOACTIVITY RECORDING THE CHARACTERISTIC OF A GEIGER-MÜLLER COUNTER TUBE Kazan 2013 UDK 539.164 BBK 22.38 Approved by the Editorial Board of Kazan

Write your name here Surname Other names Centre Number Candidate Number Edexcel GCSE Physics/Additional Science Unit 2: Physics for Your Future Thursday 7 March 2013 Morning Time: 1 hour You must have:

### Nuclear Chain Reaction

P h y s i c s Q u e s t A c t i v i t i e s Bonus Activity Nuclear Chain Reaction Observe fission reactions similar to those in a nuclear reactor. Instructions 1. Arrange the dominoes in a similar formation

### Nuclear Reactions- chap.31. Fission vs. fusion mass defect..e=mc 2 Binding energy..e=mc 2 Alpha, beta, gamma oh my!

Nuclear Reactions- chap.31 Fission vs. fusion mass defect..e=mc 2 Binding energy..e=mc 2 Alpha, beta, gamma oh my! Definitions A nucleon is a general term to denote a nuclear particle - that is, either

### 5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

### Lecture Outlines. Chapter 27. Astronomy Today 7th Edition Chaisson/McMillan. 2011 Pearson Education, Inc.

Lecture Outlines Chapter 27 Astronomy Today 7th Edition Chaisson/McMillan Chapter 27 The Early Universe Units of Chapter 27 27.1 Back to the Big Bang 27.2 The Evolution of the Universe More on Fundamental

### Instrumentation & Methods: Gas Proportional Counters

Instrumentation & Methods: Gas Proportional Counters Richard Sheibley Pennsylvania Dept of Env Protection Instrumentation Detectors Gas proportional Zinc sulfide (ZnS) scintillation Liquid scintillation

### AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity

AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity 7.1 Electromagnetic Radiation A. Types of EM Radiation (wavelengths in meters) 10-1 10-10 10-8 4 to 7x10-7 10-4 10-1 10 10 4 gamma

### Lecture 7: Light Waves. Newton s Laws of Motion (1666) Newton s First Law of Motion

Lecture 7: Light Waves Isaac Newton (1643-1727) was born in the year Galileo died He discovered the Law of Gravitation in 1665 He developed the Laws of Mechanics that govern all motions In order to solve

### Time allowed: 1 hour 45 minutes

GCSE PHYSICS Foundation Tier Paper 1F F Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the Physics Equation Sheet (enclosed). Instructions Answer

### Experiment 10. Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado

1 Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Introduction Some radioactive isotopes formed billions of years ago have half- lives so long that they are

### Webster s Dictionary. Dictionary.com. The act or process of radiating The process of emitting radiant energy in the form of waves or particles

Webster s Dictionary The act or process of radiating The process of emitting radiant energy in the form of waves or particles Dictionary.com the process in which energy is emitted as particles or waves.

### Thursday 13 June 2013 Morning

THIS IS A NEW SPECIFICATION H Thursday 13 June 2013 Morning GCSE TWENTY FIRST CENTURY SCIENCE PHYSICS A A182/02 Modules P4 P5 P6 (Higher Tier) *A137290613* Candidates answer on the Question Paper. A calculator

### UNIT: Electromagnetic Radiation and Photometric Equipment

UNIT: Electromagnetic Radiation and Photometric Equipment 3photo.wpd Task Instrumentation I To review the theory of electromagnetic radiation and the principle and use of common laboratory instruments

### GAMMA-RAY SPECTRA REFERENCES

GAMMA-RAY SPECTRA REFERENCES 1. K. Siegbahn, Alpha, Beta and Gamma-Ray Spectroscopy, Vol. I, particularly Chapts. 5, 8A. 2. Nucleonics Data Sheets, Nos. 1-45 (available from the Resource Centre) 3. H.E.

Activity 17 Electromagnetic Radiation Why? Electromagnetic radiation, which also is called light, is an amazing phenomenon. It carries energy and has characteristics of both particles and waves. We can

### Basic Nuclear Concepts

Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section

### Energy. Mechanical Energy

Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance

Nuclear Physics and Radioactivity 1. The number of electrons in an atom of atomic number Z and mass number A is 1) A 2) Z 3) A+Z 4) A-Z 2. The repulsive force between the positively charged protons does

### Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.

Chemistry UNIT I: Introduction to Chemistry The student will be able to describe what chemistry is and its scope. a. Define chemistry. b. Explain that chemistry overlaps many other areas of science. The

### IX: Angular Correlation of Gamma Rays

IX: Angular Correlation of Gamma Rays I. References Brady, E. L. and Deutsch, M., Angular Correlation of Successive Gamma- Rays, Physical Review 78, no. 5 (1950), pp. 558-566. Frauenfelder, H. and Steffen,

### Structure and Properties of Atoms

PS-2.1 Compare the subatomic particles (protons, neutrons, electrons) of an atom with regard to mass, location, and charge, and explain how these particles affect the properties of an atom (including identity,

### Unit 1 Practice Test. Matching

Unit 1 Practice Test Matching Match each item with the correct statement below. a. proton d. electron b. nucleus e. neutron c. atom 1. the smallest particle of an element that retains the properties of

### Table of Contents. Chapter 4 Elements and the Periodic Table. Chapter Preview. 4.1 Introduction to Atoms. 4.2 Organizing the Elements. 4.

Table of Contents Chapter Preview 4.1 Introduction to Atoms 4.2 Organizing the Elements 4.3 Metals 4.4 Nonmetals, Inert Gases, and Semimetals 4.5 Radioactive Elements Chapter Preview Questions 1. Groups

### Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies (Ci), where 1 Ci = 3.7x10 10 disintegrations per second.

### CHEM 1411 Chapter 5 Homework Answers

1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of

### 8. Newton's Law of Gravitation

2 8. Newton's Law Gravitation Rev.nb 8. Newton's Law of Gravitation Introduction and Summary There is one other major law due to Newton that will be used in this course and this is his famous Law of Universal

### A n = 2 to n = 1. B n = 3 to n = 1. C n = 4 to n = 2. D n = 5 to n = 2

North arolina Testing Program EO hemistry Sample Items Goal 4 1. onsider the spectrum for the hydrogen atom. In which situation will light be produced? 3. Which color of light would a hydrogen atom emit

### From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

### Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

### Chapter 16 Electric Forces and Fields

Chapter 16 Electric Forces and Fields 2. How many electrons does it take to make one coulomb of negative charge? A. 1.00 10 9 B. 6.25 10 18 C. 6.02 10 23 D. 1.66 10 18 E. 2.24 10 4 10. Two equal point

### ABSORPTION OF BETA AND GAMMA RADIATION

ABSORPTION OF BETA AND GAMMA RADIATION The purpose of this experiment is to understand the interaction of radiation and matter, and the application to radiation detection and shielding Apparatus: 137 Cs

### Objectives 404 CHAPTER 9 RADIATION

Objectives Explain the difference between isotopes of the same element. Describe the force that holds nucleons together. Explain the relationship between mass and energy according to Einstein s theory

### Origins of the Cosmos Summer 2016. Pre-course assessment

Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of

### Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible

### Magnetism. ***WARNING: Keep magnets away from computers and any computer disks!***

Magnetism This lab is a series of experiments investigating the properties of the magnetic field. First we will investigate the polarity of magnets and the shape of their field. Then we will explore the

### LAB 8: Electron Charge-to-Mass Ratio

Name Date Partner(s) OBJECTIVES LAB 8: Electron Charge-to-Mass Ratio To understand how electric and magnetic fields impact an electron beam To experimentally determine the electron charge-to-mass ratio.

### Noble Gases. Outline Nobel Gas Elements Radon and Health Chemistry Homework

Radon and Other Noble Gases The elements in the last column of the periodic table are all very stable, mono-atomic gases. Until 1962, they were called inert gases because they did not react with other

### Nuclear Terminology. Nuclear Chemistry. Nuclear Chemistry. Nuclear Chemistry. Nuclear Reactions. Types of Radioactivity 9/1/12

Nuclear Chemistry Up to now, we have been concerned mainly with the electrons in the elements the nucleus has just been a positively charged thing that attracts electrons The nucleus may also undergo changes

### MAKING SENSE OF ENERGY Electromagnetic Waves

Adapted from State of Delaware TOE Unit MAKING SENSE OF ENERGY Electromagnetic Waves GOALS: In this Part of the unit you will Learn about electromagnetic waves, how they are grouped, and how each group

### PHYA5/1. General Certificate of Education Advanced Level Examination June 2012. Unit 5 Nuclear and Thermal Physics Section A

Centre Number Surname Candidate Number For Examinerʼs Use Other Names Candidate Signature Examinerʼs Initials General Certificate of Education Advanced Level Examination June 2012 Question 1 2 Mark Physics

### History of the Atom & Atomic Theory

Chapter 5 History of the Atom & Atomic Theory You re invited to a Thinking Inside the Box Conference Each group should nominate a: o Leader o Writer o Presenter You have 5 minutes to come up with observations

### Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* PHYSICS 0625/04 Paper 4 Theory (Extended) For Examination from 2016 SPECIMEN PAPER 1

### Lab O1: Radioactivity and Counting Statistics

O11 Lab O1: Radioactivity and Counting Statistics Radioactivity Radioactivity usually results from nuclear reactions, that is, reactions which involve the breaking of nuclear bonds having energies of the

### radioactivity: a spontaneous (naturally-occurring) emission of particles or radiation from the nuclei of atoms

CHAPTER 20: Atomic Structure Nuclear Chemistry radioactivity: a spontaneous (naturally-occurring) emission of particles or radiation from the nuclei of atoms Historical Background Roentgen (1895) discovery

### Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

### Wednesday 16 January 2013 Afternoon

Wednesday 16 January 2013 Afternoon A2 GCE PHYSICS B (ADVANCING PHYSICS) G494/01 Rise and Fall of the Clockwork Universe *G411660113* Candidates answer on the Question Paper. OCR supplied materials: Data,

### Simple Pendulum 10/10

Physical Science 101 Simple Pendulum 10/10 Name Partner s Name Purpose In this lab you will study the motion of a simple pendulum. A simple pendulum is a pendulum that has a small amplitude of swing, i.e.,

Radioactivity & Particles Introduction... 2 Atomic structure... 2 How are these particles arranged?... 2 Atomic notation... 4 Isotopes... 4 What is radioactivity?... 5 Types of Radiation: alpha, beta and

### Determination of Molecular Structure by MOLECULAR SPECTROSCOPY

Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic

### 1/7/2013. Chapter 2. Atoms and the Periodic Table. Chemistry: Atoms First Julia Burdge & Jason Overby. 2.1 Atoms First

Chemistry: Atoms First Julia Burdge & Jason Overby 2 Atoms and the Periodic Table Chapter 2 Atoms and the Periodic Table Kent L. McCorkle Cosumnes River College Sacramento, CA Copyright (c) The McGraw-Hill

### Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 Magnets

### Particle Soup: Big Bang Nucleosynthesis

Name: Partner(s): Lab #7 Particle Soup: Big Bang Nucleosynthesis Purpose The student explores how helium was made in the Big Bang. Introduction Very little helium is made in stars. Yet the universe is

### CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

### Chap. 6 Proportional Counters

Chap. 6 Proportional Counters Consider the drift motion of an ion in a simple ion chamber. The ions will have a thermal velocity plus a component along the field lines. Then after traveling for a mean-free-path

### Q1. (a) The diagram shows an aircraft and the horizontal forces acting on it as it moves along a runway. The resultant force on the aircraft is zero.

Q. (a) The diagram shows an aircraft and the horizontal forces acting on it as it moves along a runway. The resultant force on the aircraft is zero. (i) What is meant by the term resultant force?......

### CHAPTER What type of particle is emitted when a U-235 decays to Np-235? a. alpha particle b. beta particle c. neutron d. helium nuclei.

CHAPTER 13 1. What type of particle is emitted when a U-235 decays to Np-235? a. alpha particle b. beta particle c. neutron d. helium nuclei 2. Stable nuclei (that is, nonradioactive nuclei) have mass

### The Electric Force. From mechanics, the relationship for the gravitational force on an object is: m is the mass of the particle of interest,

. The Electric Force Concepts and Principles The Gravitational Analogy In introducing the concept of the electric field, I tried to illustrate it by drawing an analogy with the gravitational field, g.

### fission and fusion: a Physics kit

half-life Number of particles left The half-life of an element tells us how long it will take for half of the nuclei in a sample of an unstable element to decay. So, after one half-life, only half of the

### Rules for this test. Physics 222, Winter 2012 Final Exam April 16, 2012 Instructor: Scott Bergeson

Physics 222, Winter 2012 Final Exam April 16, 2012 Instructor: Scott Bergeson Rules for this test 1. This test is open book and open notes, including our class notes page online, and your homework solutions.

Vilnius University Faculty of Physics Department of Solid State Electronics Laboratory of Atomic and Nuclear Physics Experiment No. 8 ARTIFICIAL RADIOACTIVITY by Andrius Poškus (e-mail: andrius.poskus@ff.vu.lt)

### The Structure of the Atom

The Structure of the Atom Section 4.1 Early Ideas About Matter In your textbook, read about the philosophers, John Dalton, and defining the atom. For each statement below, write true or false. 1. Ancient

Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron