Planar Graph and Trees

Size: px
Start display at page:

Download "Planar Graph and Trees"

Transcription

1 Dr. Nahid Sultana December 16, 2012

2 Tree Spanning Trees Minimum Spanning Trees Maps and Regions Eulers Formula Nonplanar graph Dual Maps and the Four Color Theorem

3 Tree Spanning Trees Minimum Spanning Trees A graph T is called a tree if T is connected and T has no cycles. Example: Tree Forest 5 leaves 4 leaves

4 Tree Spanning Trees Minimum Spanning Trees A graph T is called a tree if T is connected and T has no cycles. Example: Tree Forest 5 leaves 4 leaves If every connected component of a graph G is a tree, then G is called a forest.

5 Tree Spanning Trees Minimum Spanning Trees A graph T is called a tree if T is connected and T has no cycles. Example: Tree Forest 5 leaves 4 leaves If every connected component of a graph G is a tree, then G is called a forest. A graph without cycles is called cycle-free. The tree consisting of a single vertex with no edges is called the degenerate tree.

6 Tree Spanning Trees Minimum Spanning Trees A graph T is called a tree if T is connected and T has no cycles. Example: Tree Forest 5 leaves 4 leaves If every connected component of a graph G is a tree, then G is called a forest. A graph without cycles is called cycle-free. The tree consisting of a single vertex with no edges is called the degenerate tree. A leaf is a vertex with degree 1 in a tree (or forest).

7 Tree Spanning Trees Minimum Spanning Trees Every tree has the following properties: 1. There is a unique simple path between every pair of vertices. 2. Adding an edge between nonadjacent vertices in a tree creates a graph with a cycle. 3. Removing any edge disconnects the graph. 4. If the tree has at least two vertices, then it has at least two leaves. 5. The number of vertices in a tree is one larger than the number of edges.

8 Tree Spanning Trees Minimum Spanning Trees A subgraph T of a connected graph G is called a spanning tree of G if T is a tree and T includes all the vertices of G.

9 Tree Spanning Trees Minimum Spanning Trees A subgraph T of a connected graph G is called a spanning tree of G if T is a tree and T includes all the vertices of G. Example: A connected graph with a spanning tree highlighted.

10 Tree Spanning Trees Minimum Spanning Trees A subgraph T of a connected graph G is called a spanning tree of G if T is a tree and T includes all the vertices of G. Example: A connected graph with a spanning tree highlighted. Theorem: Every connected graph contains a spanning tree.

11 Tree Spanning Trees Minimum Spanning Trees A minimal spanning tree (MST) of a connected weighted graph G is the spanning tree of G with the smallest possible sum of edge weights.

12 Tree Spanning Trees Minimum Spanning Trees A minimal spanning tree (MST) of a connected weighted graph G is the spanning tree of G with the smallest possible sum of edge weights. Find MST T of a connected graph G with n vertices: notice that T must have n 1 edges. There are two algorithms: Algorithm 1: 1. Arrange the edges in the order of decreasing weights 2. Proceeding sequentially, delete each edge that does not disconnect the graph until n 1 edges remain. Example: In class

13 Tree Spanning Trees Minimum Spanning Trees Algorithm 2: 1. Arrange the edges in the order of increasing weights 2. Starting with only with the vertices and proceeding sequentially, add each edge which does not result in a cycle until n 1 edges are added. Example: In class

14 Tree Spanning Trees Minimum Spanning Trees Algorithm 2: 1. Arrange the edges in the order of increasing weights 2. Starting with only with the vertices and proceeding sequentially, add each edge which does not result in a cycle until n 1 edges are added. Example: In class The weight of a MST is unique, but the MST itself is not. Different MST can occur when two or more edges have the same weight.

15 Maps and Regions Eulers Formula Nonplanar graph A graph/multigraph which can be drawn in the plane so that its edges do not cross is said to be planar.

16 Maps and Regions Eulers Formula Nonplanar graph A graph/multigraph which can be drawn in the plane so that its edges do not cross is said to be planar. Example:

17 Maps and Regions Eulers Formula Nonplanar graph A particular planar representation of a planar graph is called a map. A map divides the plane into a number of regions or faces.

18 Maps and Regions Eulers Formula Nonplanar graph A particular planar representation of a planar graph is called a map. A map divides the plane into a number of regions or faces. Example: the planar graph of K 4 has 4 regions, one of which is exterior to the graph.

19 Maps and Regions Eulers Formula Nonplanar graph A particular planar representation of a planar graph is called a map. A map divides the plane into a number of regions or faces. Example: the planar graph of K 4 has 4 regions, one of which is exterior to the graph. Degree of a region r, written deg(r), is the length of the cycle or closed path which borders r.

20 Maps and Regions Eulers Formula Nonplanar graph A particular planar representation of a planar graph is called a map. A map divides the plane into a number of regions or faces. Example: the planar graph of K 4 has 4 regions, one of which is exterior to the graph. Degree of a region r, written deg(r), is the length of the cycle or closed path which borders r. Theorem: The sum of the degrees of the regions of a map is equal to twice the number of edges.

21 Maps and Regions Eulers Formula Nonplanar graph Example:

22 Maps and Regions Eulers Formula Nonplanar graph Example: The borders of all regions are cycles except for r 3. But if we start at the vertex C and move counter-clockwise around r 3, then we obtain the closed path: (C, D, E, F, E, C) where the edge {E, F } occurs twice.

23 Maps and Regions Eulers Formula Nonplanar graph Example: The borders of all regions are cycles except for r 3. But if we start at the vertex C and move counter-clockwise around r 3, then we obtain the closed path: (C, D, E, F, E, C) where the edge {E, F } occurs twice. deg(r 1 ) = 3,deg(r 2 ) = 3,deg(r 3 ) = 5,deg(r 4 ) = 4,deg(r 5 ) = 3. The sum of the degrees is 18, which is twice the number of edges.

24 Maps and Regions Eulers Formula Nonplanar graph Theorem: Let G = (V, E) be a connected planar graph, and let v = V, e = E, and r = number of regions. Then: v e + r = 2.

25 Maps and Regions Eulers Formula Nonplanar graph Theorem: Let G = (V, E) be a connected planar graph, and let v = V, e = E, and r = number of regions. Then: Example: v e + r = 2.

26 Maps and Regions Eulers Formula Nonplanar graph Theorem: Let G = (V, E) be a connected planar graph, and let v = V, e = E, and r = number of regions. Then: Example: v e + r = 2. Here v = 6, e = 9, and r = 5. And v e + r = = 2, as expected.

27 Maps and Regions Eulers Formula Nonplanar graph Theorem: Suppose a connected planar graph has v 3 vertices and e edges, then e 3v 6.

28 Maps and Regions Eulers Formula Nonplanar graph Theorem: Suppose a connected planar graph has v 3 vertices and e edges, then e 3v 6. Is K 5 planar?

29 Maps and Regions Eulers Formula Nonplanar graph Theorem: Suppose a connected planar graph has v 3 vertices and e edges, then e 3v 6. Is K 5 planar? A graph is called complete bipartite graph if its vertices V can be partitioned into two subsets M and N such that each vertex of M is connected to each vertex of N, denoted by K m,n, where m = M and n = N. Example:

30 Maps and Regions Eulers Formula Nonplanar graph Theorem: The following properties of a graph are equivalent (that is, if the graph has any one of the properties, then it has all of the properties): 1. The graph is bipartite. 2. The graph does not contain any cycles with odd length. 3. The graph does not contain any closed paths with odd length.

31 Maps and Regions Eulers Formula Nonplanar graph Theorem: The following properties of a graph are equivalent (that is, if the graph has any one of the properties, then it has all of the properties): 1. The graph is bipartite. 2. The graph does not contain any cycles with odd length. 3. The graph does not contain any closed paths with odd length. K 3,3 is not planar.

32 Maps and Regions Eulers Formula Nonplanar graph Theorem: The following properties of a graph are equivalent (that is, if the graph has any one of the properties, then it has all of the properties): 1. The graph is bipartite. 2. The graph does not contain any cycles with odd length. 3. The graph does not contain any closed paths with odd length. K 3,3 is not planar. Theorem: (Kuratowski) A graph is nonplanar iff it contains a subgraph homeomorphic to K 3,3 or K 5.

33 Dual Maps and the Four Color Theorem A Vertex coloring or simply coloring of a given graph G is an assignment of colors to the vertices of G such that adjacent vertices have different colors.

34 Dual Maps and the Four Color Theorem A Vertex coloring or simply coloring of a given graph G is an assignment of colors to the vertices of G such that adjacent vertices have different colors. A graph G is n-colorable if there exists a coloring of G which uses n colors.

35 Dual Maps and the Four Color Theorem A Vertex coloring or simply coloring of a given graph G is an assignment of colors to the vertices of G such that adjacent vertices have different colors. A graph G is n-colorable if there exists a coloring of G which uses n colors. The minimum number of colors needed to paint G is called the chromatic number of G and is denoted by χ(g). Example in Class.

36 Dual Maps and the Four Color Theorem Example: Find the chromatic number of the bipartite graph K 2,4.

37 Dual Maps and the Four Color Theorem Example: Find the chromatic number of the bipartite graph K 2,4. Theorem: The following are equivalent for a graph G: 1. G is 2-colorable. 2. G is bipartite. 3. Every cycle of G has even length.

38 Dual Maps and the Four Color Theorem Consider a map M (planar representation of a planar graph/multigraph), Two regions of M are said to be adjacent if they have an edge in common.

39 Dual Maps and the Four Color Theorem Consider a map M (planar representation of a planar graph/multigraph), Two regions of M are said to be adjacent if they have an edge in common. Example:

40 Dual Maps and the Four Color Theorem Consider a map M (planar representation of a planar graph/multigraph), Two regions of M are said to be adjacent if they have an edge in common. Example: By a coloring of M we mean an assignment of a color to each region of M such that adjacent regions have different colors. A map M is n-colorable if there exists a coloring of M which uses n colors.

41 Dual Maps and the Four Color Theorem Consider a map M. In each region of M we choose a point, and if two regions have an edge in common then we connect the corresponding points with a curve through the common edge. These curves can be drawn so that they are noncrossing. Thus we obtain a new map M, called the dual of M, such that each vertex of M corresponds to exactly one region of M.

42 Dual Maps and the Four Color Theorem Example: Find the map which is dual to the following maps:

43 Dual Maps and the Four Color Theorem Example: Find the map which is dual to the following maps: Four Color Theorem (Appel and Haken): If the regions of any map M are colored so that adjacent regions have different colors, then no more than four colors are required.

44 in class.

45 The weight of a cycle in a given weighted graph G is defined as the sum of the weights of the edges in the cycle.

46 The weight of a cycle in a given weighted graph G is defined as the sum of the weights of the edges in the cycle. Now suppose we want to find a Hamiltonian cycle that has least possible weight. This is a very famous optimization problem known as the Traveling Salesperson Problem.

47 The weight of a cycle in a given weighted graph G is defined as the sum of the weights of the edges in the cycle. Now suppose we want to find a Hamiltonian cycle that has least possible weight. This is a very famous optimization problem known as the Traveling Salesperson Problem. Theorem: The complete graph K n contains (n 1)! 2 Hamiltonian cycles.

48 The weight of a cycle in a given weighted graph G is defined as the sum of the weights of the edges in the cycle. Now suppose we want to find a Hamiltonian cycle that has least possible weight. This is a very famous optimization problem known as the Traveling Salesperson Problem. Theorem: The complete graph K n contains (n 1)! 2 Hamiltonian cycles. Example:

49 In class.

Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902

Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902 Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler Different Graphs, Similar Properties

More information

Sum of Degrees of Vertices Theorem

Sum of Degrees of Vertices Theorem Sum of Degrees of Vertices Theorem Theorem (Sum of Degrees of Vertices Theorem) Suppose a graph has n vertices with degrees d 1, d 2, d 3,...,d n. Add together all degrees to get a new number d 1 + d 2

More information

CS311H. Prof: Peter Stone. Department of Computer Science The University of Texas at Austin

CS311H. Prof: Peter Stone. Department of Computer Science The University of Texas at Austin CS311H Prof: Department of Computer Science The University of Texas at Austin Good Morning, Colleagues Good Morning, Colleagues Are there any questions? Logistics Class survey Logistics Class survey Homework

More information

Social Media Mining. Graph Essentials

Social Media Mining. Graph Essentials Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Allen Dickson October 2006 1 The Königsberg Bridge Problem The city of Königsberg was located on the Pregel river in Prussia. The river divided the city into four separate

More information

V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005

V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005 V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer

More information

Euler Paths and Euler Circuits

Euler Paths and Euler Circuits Euler Paths and Euler Circuits An Euler path is a path that uses every edge of a graph exactly once. An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler path starts and

More information

Class One: Degree Sequences

Class One: Degree Sequences Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of

More information

Chapter 6: Graph Theory

Chapter 6: Graph Theory Chapter 6: Graph Theory Graph theory deals with routing and network problems and if it is possible to find a best route, whether that means the least expensive, least amount of time or the least distance.

More information

Discrete Mathematics Problems

Discrete Mathematics Problems Discrete Mathematics Problems William F. Klostermeyer School of Computing University of North Florida Jacksonville, FL 32224 E-mail: wkloster@unf.edu Contents 0 Preface 3 1 Logic 5 1.1 Basics...............................

More information

Planar Graphs. Complement to Chapter 2, The Villas of the Bellevue

Planar Graphs. Complement to Chapter 2, The Villas of the Bellevue Planar Graphs Complement to Chapter 2, The Villas of the Bellevue In the chapter The Villas of the Bellevue, Manori gives Courtel the following definition. Definition A graph is planar if it can be drawn

More information

On planar regular graphs degree three without Hamiltonian cycles 1

On planar regular graphs degree three without Hamiltonian cycles 1 On planar regular graphs degree three without Hamiltonian cycles 1 E. Grinbergs Computing Centre of Latvian State University Abstract. Necessary condition to have Hamiltonian cycle in planar graph is given.

More information

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

More information

CMPSCI611: Approximating MAX-CUT Lecture 20

CMPSCI611: Approximating MAX-CUT Lecture 20 CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to

More information

136 CHAPTER 4. INDUCTION, GRAPHS AND TREES

136 CHAPTER 4. INDUCTION, GRAPHS AND TREES 136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics

More information

UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE

UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE ANDREW LUM ADVISOR: DAVID GUICHARD ABSTRACT. L(2,1)-labeling was first defined by Jerrold Griggs [Gr, 1992] as a way to use graphs

More information

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti

More information

Graph Theory Problems and Solutions

Graph Theory Problems and Solutions raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is

More information

Connectivity and cuts

Connectivity and cuts Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every

More information

On the crossing number of K m,n

On the crossing number of K m,n On the crossing number of K m,n Nagi H. Nahas nnahas@acm.org Submitted: Mar 15, 001; Accepted: Aug 10, 00; Published: Aug 1, 00 MR Subject Classifications: 05C10, 05C5 Abstract The best lower bound known

More information

Midterm Practice Problems

Midterm Practice Problems 6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator

More information

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph

More information

Outline 2.1 Graph Isomorphism 2.2 Automorphisms and Symmetry 2.3 Subgraphs, part 1

Outline 2.1 Graph Isomorphism 2.2 Automorphisms and Symmetry 2.3 Subgraphs, part 1 GRAPH THEORY LECTURE STRUCTURE AND REPRESENTATION PART A Abstract. Chapter focuses on the question of when two graphs are to be regarded as the same, on symmetries, and on subgraphs.. discusses the concept

More information

HOLES 5.1. INTRODUCTION

HOLES 5.1. INTRODUCTION HOLES 5.1. INTRODUCTION One of the major open problems in the field of art gallery theorems is to establish a theorem for polygons with holes. A polygon with holes is a polygon P enclosing several other

More information

Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )

Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( ) 1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the

More information

Every tree contains a large induced subgraph with all degrees odd

Every tree contains a large induced subgraph with all degrees odd Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University

More information

Removing Even Crossings

Removing Even Crossings EuroComb 2005 DMTCS proc. AE, 2005, 105 110 Removing Even Crossings Michael J. Pelsmajer 1, Marcus Schaefer 2 and Daniel Štefankovič 2 1 Department of Applied Mathematics, Illinois Institute of Technology,

More information

The Clar Structure of Fullerenes

The Clar Structure of Fullerenes The Clar Structure of Fullerenes Liz Hartung Massachusetts College of Liberal Arts June 12, 2013 Liz Hartung (Massachusetts College of Liberal Arts) The Clar Structure of Fullerenes June 12, 2013 1 / 25

More information

ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD. 1. Introduction

ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD. 1. Introduction ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD A.D. SCOTT Abstract. Gallai proved that the vertex set of any graph can be partitioned into two sets, each inducing a subgraph with all degrees even. We prove

More information

Removing even crossings

Removing even crossings Removing even crossings Michael J. Pelsmajer a, Marcus Schaefer b, Daniel Štefankovič c a Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA b Department of Computer

More information

Finding and counting given length cycles

Finding and counting given length cycles Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected

More information

Total colorings of planar graphs with small maximum degree

Total colorings of planar graphs with small maximum degree Total colorings of planar graphs with small maximum degree Bing Wang 1,, Jian-Liang Wu, Si-Feng Tian 1 Department of Mathematics, Zaozhuang University, Shandong, 77160, China School of Mathematics, Shandong

More information

Examination paper for MA0301 Elementær diskret matematikk

Examination paper for MA0301 Elementær diskret matematikk Department of Mathematical Sciences Examination paper for MA0301 Elementær diskret matematikk Academic contact during examination: Iris Marjan Smit a, Sverre Olaf Smalø b Phone: a 9285 0781, b 7359 1750

More information

Labeling outerplanar graphs with maximum degree three

Labeling outerplanar graphs with maximum degree three Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics

More information

Small Maximal Independent Sets and Faster Exact Graph Coloring

Small Maximal Independent Sets and Faster Exact Graph Coloring Small Maximal Independent Sets and Faster Exact Graph Coloring David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science The Exact Graph Coloring Problem: Given an undirected

More information

Mathematics for Algorithm and System Analysis

Mathematics for Algorithm and System Analysis Mathematics for Algorithm and System Analysis for students of computer and computational science Edward A. Bender S. Gill Williamson c Edward A. Bender & S. Gill Williamson 2005. All rights reserved. Preface

More information

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact

More information

Page 1. CSCE 310J Data Structures & Algorithms. CSCE 310J Data Structures & Algorithms. P, NP, and NP-Complete. Polynomial-Time Algorithms

Page 1. CSCE 310J Data Structures & Algorithms. CSCE 310J Data Structures & Algorithms. P, NP, and NP-Complete. Polynomial-Time Algorithms CSCE 310J Data Structures & Algorithms P, NP, and NP-Complete Dr. Steve Goddard goddard@cse.unl.edu CSCE 310J Data Structures & Algorithms Giving credit where credit is due:» Most of the lecture notes

More information

On the k-path cover problem for cacti

On the k-path cover problem for cacti On the k-path cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China zeminjin@eyou.com, x.li@eyou.com Abstract In this paper we

More information

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set

More information

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various

More information

Definition 11.1. Given a graph G on n vertices, we define the following quantities:

Definition 11.1. Given a graph G on n vertices, we define the following quantities: Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define

More information

Max Flow, Min Cut, and Matchings (Solution)

Max Flow, Min Cut, and Matchings (Solution) Max Flow, Min Cut, and Matchings (Solution) 1. The figure below shows a flow network on which an s-t flow is shown. The capacity of each edge appears as a label next to the edge, and the numbers in boxes

More information

Large induced subgraphs with all degrees odd

Large induced subgraphs with all degrees odd Large induced subgraphs with all degrees odd A.D. Scott Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, England Abstract: We prove that every connected graph of order

More information

Network/Graph Theory. What is a Network? What is network theory? Graph-based representations. Friendship Network. What makes a problem graph-like?

Network/Graph Theory. What is a Network? What is network theory? Graph-based representations. Friendship Network. What makes a problem graph-like? What is a Network? Network/Graph Theory Network = graph Informally a graph is a set of nodes joined by a set of lines or arrows. 1 1 2 3 2 3 4 5 6 4 5 6 Graph-based representations Representing a problem

More information

arxiv:1409.4299v1 [cs.cg] 15 Sep 2014

arxiv:1409.4299v1 [cs.cg] 15 Sep 2014 Planar Embeddings with Small and Uniform Faces Giordano Da Lozzo, Vít Jelínek, Jan Kratochvíl 3, and Ignaz Rutter 3,4 arxiv:409.499v [cs.cg] 5 Sep 04 Department of Engineering, Roma Tre University, Italy

More information

GRAPH THEORY LECTURE 4: TREES

GRAPH THEORY LECTURE 4: TREES GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection

More information

Regular Augmentations of Planar Graphs with Low Degree

Regular Augmentations of Planar Graphs with Low Degree Regular Augmentations of Planar Graphs with Low Degree Bachelor Thesis of Huyen Chau Nguyen At the Department of Informatics Institute of Theoretical Computer Science Reviewers: Advisors: Prof. Dr. Dorothea

More information

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH 31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

More information

3. Eulerian and Hamiltonian Graphs

3. Eulerian and Hamiltonian Graphs 3. Eulerian and Hamiltonian Graphs There are many games and puzzles which can be analysed by graph theoretic concepts. In fact, the two early discoveries which led to the existence of graphs arose from

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

Network Metrics, Planar Graphs, and Software Tools. Based on materials by Lala Adamic, UMichigan

Network Metrics, Planar Graphs, and Software Tools. Based on materials by Lala Adamic, UMichigan Network Metrics, Planar Graphs, and Software Tools Based on materials by Lala Adamic, UMichigan Network Metrics: Bowtie Model of the Web n The Web is a directed graph: n webpages link to other webpages

More information

Anotherpossibilityistoentersomealreadyknownimplicationsbeforestartingtheexploration.Theseimplications,theuseralreadyknowstobevalid,

Anotherpossibilityistoentersomealreadyknownimplicationsbeforestartingtheexploration.Theseimplications,theuseralreadyknowstobevalid, BackgroundImplicationsandExceptions AttributeExplorationwith jectsinaspeciedcontext.thisknowledgerepresentationisespeciallyuseful Summary:Implicationsbetweenattributescanrepresentknowledgeaboutob- Schlogartenstr.7,D{64289Darmstadt,stumme@mathematik.th-darmstadt.de

More information

A Study of Sufficient Conditions for Hamiltonian Cycles

A Study of Sufficient Conditions for Hamiltonian Cycles DeLeon 1 A Study of Sufficient Conditions for Hamiltonian Cycles Melissa DeLeon Department of Mathematics and Computer Science Seton Hall University South Orange, New Jersey 07079, U.S.A. ABSTRACT A graph

More information

Ph.D. Thesis. Judit Nagy-György. Supervisor: Péter Hajnal Associate Professor

Ph.D. Thesis. Judit Nagy-György. Supervisor: Péter Hajnal Associate Professor Online algorithms for combinatorial problems Ph.D. Thesis by Judit Nagy-György Supervisor: Péter Hajnal Associate Professor Doctoral School in Mathematics and Computer Science University of Szeged Bolyai

More information

Optimal 3D Angular Resolution for Low-Degree Graphs

Optimal 3D Angular Resolution for Low-Degree Graphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 17, no. 3, pp. 173 200 (2013) DOI: 10.7155/jgaa.00290 Optimal 3D Angular Resolution for Low-Degree Graphs David Eppstein 1 Maarten Löffler

More information

Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle. Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

More information

CSC 373: Algorithm Design and Analysis Lecture 16

CSC 373: Algorithm Design and Analysis Lecture 16 CSC 373: Algorithm Design and Analysis Lecture 16 Allan Borodin February 25, 2013 Some materials are from Stephen Cook s IIT talk and Keven Wayne s slides. 1 / 17 Announcements and Outline Announcements

More information

The chromatic spectrum of mixed hypergraphs

The chromatic spectrum of mixed hypergraphs The chromatic spectrum of mixed hypergraphs Tao Jiang, Dhruv Mubayi, Zsolt Tuza, Vitaly Voloshin, Douglas B. West March 30, 2003 Abstract A mixed hypergraph is a triple H = (X, C, D), where X is the vertex

More information

Odd induced subgraphs in graphs of maximum degree three

Odd induced subgraphs in graphs of maximum degree three Odd induced subgraphs in graphs of maximum degree three David M. Berman, Hong Wang, and Larry Wargo Department of Mathematics University of New Orleans New Orleans, Louisiana, USA 70148 Abstract A long-standing

More information

Arrangements And Duality

Arrangements And Duality Arrangements And Duality 3.1 Introduction 3 Point configurations are tbe most basic structure we study in computational geometry. But what about configurations of more complicated shapes? For example,

More information

Institut für Informatik Lehrstuhl Theoretische Informatik I / Komplexitätstheorie. An Iterative Compression Algorithm for Vertex Cover

Institut für Informatik Lehrstuhl Theoretische Informatik I / Komplexitätstheorie. An Iterative Compression Algorithm for Vertex Cover Friedrich-Schiller-Universität Jena Institut für Informatik Lehrstuhl Theoretische Informatik I / Komplexitätstheorie Studienarbeit An Iterative Compression Algorithm for Vertex Cover von Thomas Peiselt

More information

Disjoint Compatible Geometric Matchings

Disjoint Compatible Geometric Matchings Disjoint Compatible Geometric Matchings Mashhood Ishaque Diane L. Souvaine Csaba D. Tóth Abstract We prove that for every even set of n pairwise disjoint line segments in the plane in general position,

More information

USE OF EIGENVALUES AND EIGENVECTORS TO ANALYZE BIPARTIVITY OF NETWORK GRAPHS

USE OF EIGENVALUES AND EIGENVECTORS TO ANALYZE BIPARTIVITY OF NETWORK GRAPHS USE OF EIGENVALUES AND EIGENVECTORS TO ANALYZE BIPARTIVITY OF NETWORK GRAPHS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA natarajan.meghanathan@jsums.edu ABSTRACT This

More information

CIS 700: algorithms for Big Data

CIS 700: algorithms for Big Data CIS 700: algorithms for Big Data Lecture 6: Graph Sketching Slides at http://grigory.us/big-data-class.html Grigory Yaroslavtsev http://grigory.us Sketching Graphs? We know how to sketch vectors: v Mv

More information

Lecture Notes on GRAPH THEORY Tero Harju

Lecture Notes on GRAPH THEORY Tero Harju Lecture Notes on GRAPH THEORY Tero Harju Department of Mathematics University of Turku FIN-20014 Turku, Finland e-mail: harju@utu.fi 1994 2011 Contents 1 Introduction..........................................................

More information

A Turán Type Problem Concerning the Powers of the Degrees of a Graph

A Turán Type Problem Concerning the Powers of the Degrees of a Graph A Turán Type Problem Concerning the Powers of the Degrees of a Graph Yair Caro and Raphael Yuster Department of Mathematics University of Haifa-ORANIM, Tivon 36006, Israel. AMS Subject Classification:

More information

Exponential time algorithms for graph coloring

Exponential time algorithms for graph coloring Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].

More information

Ramsey numbers for bipartite graphs with small bandwidth

Ramsey numbers for bipartite graphs with small bandwidth Ramsey numbers for bipartite graphs with small bandwidth Guilherme O. Mota 1,, Gábor N. Sárközy 2,, Mathias Schacht 3,, and Anusch Taraz 4, 1 Instituto de Matemática e Estatística, Universidade de São

More information

Product irregularity strength of certain graphs

Product irregularity strength of certain graphs Also available at http://amc.imfm.si ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 7 (014) 3 9 Product irregularity strength of certain graphs Marcin Anholcer

More information

M-Degrees of Quadrangle-Free Planar Graphs

M-Degrees of Quadrangle-Free Planar Graphs M-Degrees of Quadrangle-Free Planar Graphs Oleg V. Borodin, 1 Alexandr V. Kostochka, 1,2 Naeem N. Sheikh, 2 and Gexin Yu 3 1 SOBOLEV INSTITUTE OF MATHEMATICS NOVOSIBIRSK 630090, RUSSIA E-mail: brdnoleg@math.nsc.ru

More information

Graphs without proper subgraphs of minimum degree 3 and short cycles

Graphs without proper subgraphs of minimum degree 3 and short cycles Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract

More information

Analysis of Algorithms, I

Analysis of Algorithms, I Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications

More information

Minimum degree condition forcing complete graph immersion

Minimum degree condition forcing complete graph immersion Minimum degree condition forcing complete graph immersion Matt DeVos Department of Mathematics Simon Fraser University Burnaby, B.C. V5A 1S6 Jacob Fox Department of Mathematics MIT Cambridge, MA 02139

More information

The Minimum Consistent Subset Cover Problem and its Applications in Data Mining

The Minimum Consistent Subset Cover Problem and its Applications in Data Mining The Minimum Consistent Subset Cover Problem and its Applications in Data Mining Byron J Gao 1,2, Martin Ester 1, Jin-Yi Cai 2, Oliver Schulte 1, and Hui Xiong 3 1 School of Computing Science, Simon Fraser

More information

2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]

2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8] Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)

More information

Extremal Wiener Index of Trees with All Degrees Odd

Extremal Wiener Index of Trees with All Degrees Odd MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 70 (2013) 287-292 ISSN 0340-6253 Extremal Wiener Index of Trees with All Degrees Odd Hong Lin School of

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

Small independent edge dominating sets in graphs of maximum degree three

Small independent edge dominating sets in graphs of maximum degree three Small independent edge dominating sets in graphs of maimum degree three Grażna Zwoźniak Grazna.Zwozniak@ii.uni.wroc.pl Institute of Computer Science Wrocław Universit Small independent edge dominating

More information

Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li

Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li Computer Algorithms NP-Complete Problems NP-completeness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order

More information

Simple Graphs Degrees, Isomorphism, Paths

Simple Graphs Degrees, Isomorphism, Paths Mathematics for Computer Science MIT 6.042J/18.062J Simple Graphs Degrees, Isomorphism, Types of Graphs Simple Graph this week Multi-Graph Directed Graph next week Albert R Meyer, March 10, 2010 lec 6W.1

More information

Polytope Examples (PolyComp Fukuda) Matching Polytope 1

Polytope Examples (PolyComp Fukuda) Matching Polytope 1 Polytope Examples (PolyComp Fukuda) Matching Polytope 1 Matching Polytope Let G = (V,E) be a graph. A matching in G is a subset of edges M E such that every vertex meets at most one member of M. A matching

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm. Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

More information

On one-factorizations of replacement products

On one-factorizations of replacement products Filomat 27:1 (2013), 57 63 DOI 10.2298/FIL1301057A Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat On one-factorizations of replacement

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

Introduction to Algorithms. Part 3: P, NP Hard Problems

Introduction to Algorithms. Part 3: P, NP Hard Problems Introduction to Algorithms Part 3: P, NP Hard Problems 1) Polynomial Time: P and NP 2) NP-Completeness 3) Dealing with Hard Problems 4) Lower Bounds 5) Books c Wayne Goddard, Clemson University, 2004 Chapter

More information

Simplified External memory Algorithms for Planar DAGs. July 2004

Simplified External memory Algorithms for Planar DAGs. July 2004 Simplified External Memory Algorithms for Planar DAGs Lars Arge Duke University Laura Toma Bowdoin College July 2004 Graph Problems Graph G = (V, E) with V vertices and E edges DAG: directed acyclic graph

More information

8.1 Min Degree Spanning Tree

8.1 Min Degree Spanning Tree CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree

More information

Final Review Geometry A Fall Semester

Final Review Geometry A Fall Semester Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over

More information

Guessing Game: NP-Complete?

Guessing Game: NP-Complete? Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple

More information

A Sublinear Bipartiteness Tester for Bounded Degree Graphs

A Sublinear Bipartiteness Tester for Bounded Degree Graphs A Sublinear Bipartiteness Tester for Bounded Degree Graphs Oded Goldreich Dana Ron February 5, 1998 Abstract We present a sublinear-time algorithm for testing whether a bounded degree graph is bipartite

More information

Lecture 7: NP-Complete Problems

Lecture 7: NP-Complete Problems IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 7: NP-Complete Problems David Mix Barrington and Alexis Maciel July 25, 2000 1. Circuit

More information

On Integer Additive Set-Indexers of Graphs

On Integer Additive Set-Indexers of Graphs On Integer Additive Set-Indexers of Graphs arxiv:1312.7672v4 [math.co] 2 Mar 2014 N K Sudev and K A Germina Abstract A set-indexer of a graph G is an injective set-valued function f : V (G) 2 X such that

More information

1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification)

1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification) Some N P problems Computer scientists have studied many N P problems, that is, problems that can be solved nondeterministically in polynomial time. Traditionally complexity question are studied as languages:

More information

Tensor invariants of SL(n), wave graphs and L-tris arxiv:math/9802119v1 [math.rt] 27 Feb 1998

Tensor invariants of SL(n), wave graphs and L-tris arxiv:math/9802119v1 [math.rt] 27 Feb 1998 Tensor invariants of SL(n), wave graphs and L-tris arxiv:math/9802119v1 [math.rt] 27 Feb 1998 Aleksandrs Mihailovs Department of Mathematics University of Pennsylvania Philadelphia, PA 19104-6395 mihailov@math.upenn.edu

More information

FRACTIONAL COLORINGS AND THE MYCIELSKI GRAPHS

FRACTIONAL COLORINGS AND THE MYCIELSKI GRAPHS FRACTIONAL COLORINGS AND THE MYCIELSKI GRAPHS By G. Tony Jacobs Under the Direction of Dr. John S. Caughman A math 501 project submitted in partial fulfillment of the requirements for the degree of Master

More information

The Out-Degree Curve of Planar Orientation

The Out-Degree Curve of Planar Orientation Planar Orientations with Low Out-Degree and Compaction of Adjacency Matrices Marek Chrobak David Eppstein February 25, 1989 Abstract We consider the problem of orienting the edges of a planar graph in

More information

Graph Theory Origin and Seven Bridges of Königsberg -Rhishikesh

Graph Theory Origin and Seven Bridges of Königsberg -Rhishikesh Graph Theory Origin and Seven Bridges of Königsberg -Rhishikesh Graph Theory: Graph theory can be defined as the study of graphs; Graphs are mathematical structures used to model pair-wise relations between

More information

Graph Theory: Penn State Math 485 Lecture Notes. Christopher Griffin 2011-2012

Graph Theory: Penn State Math 485 Lecture Notes. Christopher Griffin 2011-2012 Graph Theory: Penn State Math 485 Lecture Notes Version 1.4..1 Christopher Griffin 011-01 Licensed under a Creative Commons Attribution-Noncommercial-Share Alike.0 United States License With Contributions

More information

On the maximum average degree and the incidence chromatic number of a graph

On the maximum average degree and the incidence chromatic number of a graph Discrete Mathematics and Theoretical Computer Science DMTCS ol. 7, 2005, 203 216 On the maximum aerage degree and the incidence chromatic number of a graph Mohammad Hosseini Dolama 1 and Eric Sopena 2

More information