# Simplified External memory Algorithms for Planar DAGs. July 2004

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Simplified External Memory Algorithms for Planar DAGs Lars Arge Duke University Laura Toma Bowdoin College July 2004

2 Graph Problems Graph G = (V, E) with V vertices and E edges DAG: directed acyclic graph G is planar if it can be drawn in the plane so no edges cross Some fundamental problems: BFS, DFS Single-source shortest path (SSSP) Topological order of a DAG A labeling of vertices such that if (v,u) in E then µ(v)< µ(u)

3 Massive graphs Massive planar graphs appear frequently in GIS Terrains are stored as grids or triangulations Example: modeling flow on terrain Each point is assigned a flow direction such that the resulting graph is directed and acyclic To trace the amount of flow must topologically sort this graph Massive graphs stored on disk Assume edge-list representation stored on disk Adj(v1) Adj(v2) Adj(v3) G I/O can be severe bottleneck

4 I/O Model [AV 88] Parameters: N = V+E B = disk block size M = memory size Block I/O M I/O-operation: movement of one block of data from/to disk Fundamental bounds: Scanning: scan(n) = O( N B ) I/Os N N Sorting: sort(n) = O log M ) I/Os ( B B B In practice B and M are big N B < log M << N B B N B N

5 Previous esults Lower bound: Ω(min{ V,sort( V )}) (practically sort(v)) Not matched for most general graph problems, e.g. General undirected graphs BFS: VE O ( + sort( E)) B VE W SSSP: O ( log + sort( E)) B w E DFS: O (( V+ )logv + sort( E)) B [MM 02] [MZ 03] [KS 96] General directed graphs BFS, DFS, SSSP, topological order (DAG) E O (( V+ )logv + sort( E)) [BVWB 00] B Sparse graphs E=O(V) Directed BFS, DFS, SSSP: O(V) I/Os

6 Previous esults Improved algorithms for special classes of (sparse) graphs Planar undirected graphs solved using O(sort(N)) reductions DFS [AMTZ01] BFS [ABT01] Multi-way separation [ABT01] SSSP O(sort(N)) multi-way separation algorithm [MZ 02] Generalized to planar directed graphs BFS, SSSP: O(sort(N)) [ATZ 03] DFS: O(sort(N) log N) [AZ 03] Planar DAG topological sort : O(sort(N)) [ATZ 03] Computed using a DED of the dual graph

7 Our esults Simplified algorithms for planar DAGs O(scan(N)) I/Os separation ============> top order, BFS, SSSP This does not improve the O(sort(N)) known upper bound since computing the separation takes O(sort(N)) I//Os Previous algorithms take O(sort(N)) even if separation is given

8 Planar graph separation: -partition A partition of a planar graph using a set S of separator vertices into subgraphs (clusters) of at most vertices each such that: O( N ) O( N ) separators vertices in total Each cluster is adjacent to separator vertices O( ) In external memory choose = B 2 O(N/B) separator vertices O(N/B 2 ) clusters, O(B 2 ) vertices each and O(B) boundary vertices Can be computed in O(sor(N)) I/Os [MZ 02]

9 1. Compute a B 2 -partition of G Planar SSSP 2. Construct a substitute graph G on the separator vertices such that it preserves SP in G between any u,v in S replace each subgraph G i with a complete graph on boundary of G i for any u, v on boundary of G i, the weight of edge (u,v) is δ Gi (u,v) 3. Solve SSSP on G 4. Find SSSP to vertices inside clusters s B 2 t Computed efficiently using G has O(N/B) vertices and O(N) edges Properties of the B 2 -partition

10 A Topological Sort Algorithm Compute indegree of each vertex Maintain list Z of indegree-zero vertices epeatedly Number an indegree-zero vertex v Consider all edges (v,u) and decrement indegree of u If indegree(u) becomes 0 insert u in list Z v O(1) I/O per edge ==> O(N) I/Os

11 Topological Sort using B 2 -partition 1. Construct a substitute graph G using B 2 -partition edge from v to u on boundary of G i iff exists path from v to u in G i B 2 Lemma: for any separator vertices u,v if u is reachable from v in G, then u is reachable from v in G 2. Topologically sort G (separator vertices in G) Lemma: A topological order on G is a topological order on G. 3. Compute topological order inside clusters

12 Topological Sort using B 2 -partition Problem: Not clear how to incorporate removed vertices from G in topological order of separator vertices (G ) E D A F C B 1 2 Solution (assuming only one in-degree zero vertex s for simplicity): Longest-path-from-s order is a topological order Longest paths to removed vertices locally computable from longest-paths to boundary vertices s B 2 t

13 Topological Sort using B 2 -partition 1. Construct substitute graph G Weight of edge between v and u on boundary of G i equal to length of longest path from v to u in G i 2. Topologically sort G 3. Compute longest path to each vertex in G (same as in G): Maintain list L of longest paths seen to each vertex epeatedly: Obtain longest path for the next vertex v in topological order Consider all edges (v,u) and update longest path to u in L 4. Find longest path to vertices inside clusters v

14 Longest path to vertices inside a cluster must cross the boundary of the cluster _ s u v LP(v) = max u Bnd(Gi) {LP(u) + LP Gi (u,v)} G j

15 Analysis Topologically sort G Maintain a list L with the indegree of each vertex Maintain list Z of indegree-zero vertices epeatedly Number an indegree-zero vertex v from Z Consider all edges (v,u) and decrement indegree of u in L If indegree(u) becomes 0 insert u in list Z v G has O(N/B) vertices and O(N/B 2 x B 2 ) = O(N) edges Each vertex: access its adjacency list ==> O(N/B) I/Os Each edge (v,u): update L ==> O(N) I/Os Can be reduced to O(N/B) using boundary set property

16 Analysis Boundary set in the B 2 -partition (Maximal) set of separator vertices adjacent to the same clusters A boundary set is of size O(B) There are O(N/B 2 ) boundary sets [F 87] (ass. bounded degree) We store L so that vertices in the same boundary set are consecutive Vertices in same boundary set have same O(B) neighbors in G Each boundary set is accessed once by each neighbor in G Each boundary set has size O(B) O(N/B 2 ) x O(B) = O(N/B) I/Os

17 Conclusion and Open Problems Given a B 2 -partition topological order can be computed in O(scan)N)) I/Os Longest path idea can also be used to compute SSSP and BFS in the same bound Open problems: Improved DFS on DAGs? (exploiting acyclicity) Planar directed DFS O(sort(N) log N)

18 Analysis Compute longest path to each vertex in G (same as in G): Maintain list L of longest paths seen to each vertex epeatedly: Obtain longest path for next vertex v in topological order Consider all edges (v,u) and update longest path to u We store L so that vertices in the same boundary set are consecutive Vertices in same boundary set have same O(B) neighbors in G Each boundary set is accessed once by each neighbor in G Each boundary set has size O(B) O(N/B 2 ) x O(B) = O(N/B) I/Os v

### Social Media Mining. Graph Essentials

Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures

### COT5405 Analysis of Algorithms Homework 3 Solutions

COT0 Analysis of Algorithms Homework 3 Solutions. Prove or give a counter example: (a) In the textbook, we have two routines for graph traversal - DFS(G) and BFS(G,s) - where G is a graph and s is any

### Part 2: Community Detection

Chapter 8: Graph Data Part 2: Community Detection Based on Leskovec, Rajaraman, Ullman 2014: Mining of Massive Datasets Big Data Management and Analytics Outline Community Detection - Social networks -

### Efficient Algorithms and Data Structures for Massive Data Sets

Efficient Algorithms and Data Structures for Massive Data Sets arxiv:1005.3473v1 [cs.ds] 19 May 2010 A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy

### Graph Algorithms. Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

Graph Algorithms Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar To accompany the text Introduction to Parallel Computing, Addison Wesley, 3. Topic Overview Definitions and Representation Minimum

### Unit 4: Layout Compaction

Unit 4: Layout Compaction Course contents Design rules Symbolic layout Constraint-graph compaction Readings: Chapter 6 Unit 4 1 Design rules: restrictions on the mask patterns to increase the probability

### Finding and counting given length cycles

Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected

### CMSC 451: Graph Properties, DFS, BFS, etc.

CMSC 451: Graph Properties, DFS, BFS, etc. Slides By: Carl Kingsford Department of Computer Science University of Maryland, College Park Based on Chapter 3 of Algorithm Design by Kleinberg & Tardos. Graphs

### 4 Basics of Trees. Petr Hliněný, FI MU Brno 1 FI: MA010: Trees and Forests

4 Basics of Trees Trees, actually acyclic connected simple graphs, are among the simplest graph classes. Despite their simplicity, they still have rich structure and many useful application, such as in

### Solutions to Exercises 8

Discrete Mathematics Lent 2009 MA210 Solutions to Exercises 8 (1) Suppose that G is a graph in which every vertex has degree at least k, where k 1, and in which every cycle contains at least 4 vertices.

### Planar Graph and Trees

Dr. Nahid Sultana December 16, 2012 Tree Spanning Trees Minimum Spanning Trees Maps and Regions Eulers Formula Nonplanar graph Dual Maps and the Four Color Theorem Tree Spanning Trees Minimum Spanning

### CIS 700: algorithms for Big Data

CIS 700: algorithms for Big Data Lecture 6: Graph Sketching Slides at http://grigory.us/big-data-class.html Grigory Yaroslavtsev http://grigory.us Sketching Graphs? We know how to sketch vectors: v Mv

### Graphs. Graph G=(V,E): representation

Graphs G = (V,E) V the vertices of the graph {v 1, v 2,..., v n } E the edges; E a subset of V x V A cost function cij is the cost/ weight of the edge (v i, v j ) Graph G=(V,E): representation 1. Adjacency

### Data Structures in Java. Session 16 Instructor: Bert Huang

Data Structures in Java Session 16 Instructor: Bert Huang http://www.cs.columbia.edu/~bert/courses/3134 Announcements Homework 4 due next class Remaining grades: hw4, hw5, hw6 25% Final exam 30% Midterm

### SCAN: A Structural Clustering Algorithm for Networks

SCAN: A Structural Clustering Algorithm for Networks Xiaowei Xu, Nurcan Yuruk, Zhidan Feng (University of Arkansas at Little Rock) Thomas A. J. Schweiger (Acxiom Corporation) Networks scaling: #edges connected

### Planar Tree Transformation: Results and Counterexample

Planar Tree Transformation: Results and Counterexample Selim G Akl, Kamrul Islam, and Henk Meijer School of Computing, Queen s University Kingston, Ontario, Canada K7L 3N6 Abstract We consider the problem

### Planarity Planarity

Planarity 8.1 71 Planarity Up until now, graphs have been completely abstract. In Topological Graph Theory, it matters how the graphs are drawn. Do the edges cross? Are there knots in the graph structure?

### Chapter 6 Planarity. Section 6.1 Euler s Formula

Chapter 6 Planarity Section 6.1 Euler s Formula In Chapter 1 we introduced the puzzle of the three houses and the three utilities. The problem was to determine if we could connect each of the three utilities

### Graph. Consider a graph, G in Fig Then the vertex V and edge E can be represented as:

Graph A graph G consist of 1. Set of vertices V (called nodes), (V = {v1, v2, v3, v4...}) and 2. Set of edges E (i.e., E {e1, e2, e3...cm} A graph can be represents as G = (V, E), where V is a finite and

### 15-750 Graduate Algorithms Spring 2010

15-750 Graduate Algorithms Spring 2010 1 Cheap Cut (25 pts.) Suppose we are given a directed network G = (V, E) with a root node r and a set of terminal nodes T V. We would like to remove the fewest number

### I/O-Efficient Well-Separated Pair Decomposition and Applications

I/O-Efficient Well-Separated Pair Decomposition and Applications Sathish Govindarajan Tamás Lukovszki Anil Maheshwari Norbert Zeh August 14, 2005 Abstract We present an external-memory algorithm to compute

### Scheduling Shop Scheduling. Tim Nieberg

Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations

### 5.1 Bipartite Matching

CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson

### Quiz 2 Solutions. Solution: False. Need stable sort.

Introduction to Algorithms April 13, 2011 Massachusetts Institute of Technology 6.006 Spring 2011 Professors Erik Demaine, Piotr Indyk, and Manolis Kellis Quiz 2 Solutions Problem 1. True or false [24

### Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like

### Distance Degree Sequences for Network Analysis

Universität Konstanz Computer & Information Science Algorithmics Group 15 Mar 2005 based on Palmer, Gibbons, and Faloutsos: ANF A Fast and Scalable Tool for Data Mining in Massive Graphs, SIGKDD 02. Motivation

### Labeling outerplanar graphs with maximum degree three

Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics

### Two General Methods to Reduce Delay and Change of Enumeration Algorithms

ISSN 1346-5597 NII Technical Report Two General Methods to Reduce Delay and Change of Enumeration Algorithms Takeaki Uno NII-2003-004E Apr.2003 Two General Methods to Reduce Delay and Change of Enumeration

### The Knapsack Problem. Decisions and State. Dynamic Programming Solution Introduction to Algorithms Recitation 19 November 23, 2011

The Knapsack Problem You find yourself in a vault chock full of valuable items. However, you only brought a knapsack of capacity S pounds, which means the knapsack will break down if you try to carry more

### Scheduling. Open shop, job shop, flow shop scheduling. Related problems. Open shop, job shop, flow shop scheduling

Scheduling Basic scheduling problems: open shop, job shop, flow job The disjunctive graph representation Algorithms for solving the job shop problem Computational complexity of the job shop problem Open

### Course on Social Network Analysis Graphs and Networks

Course on Social Network Analysis Graphs and Networks Vladimir Batagelj University of Ljubljana Slovenia V. Batagelj: Social Network Analysis / Graphs and Networks 1 Outline 1 Graph...............................

### From Point Cloud to Grid DEM: A Scalable Approach

From Point Cloud to Grid DEM: A Scalable Approach Pankaj K. Agarwal 1, Lars Arge 12, and Andrew Danner 1 1 Department of Computer Science, Duke University, Durham, NC 27708, USA {pankaj, large, adanner}@cs.duke.edu

### Approximation Algorithms. Scheduling. Approximation algorithms. Scheduling jobs on a single machine

Approximation algorithms Approximation Algorithms Fast. Cheap. Reliable. Choose two. NP-hard problems: choose 2 of optimal polynomial time all instances Approximation algorithms. Trade-off between time

### CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.

Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure

### CSC 505, Fall 2000: Week 8

Objecties: CSC 505, Fall 2000: Week 8 learn abot the basic depth-first search algorithm learn how properties of a graph can be inferred from the strctre of a DFS tree learn abot one nontriial application

### Total colorings of planar graphs with small maximum degree

Total colorings of planar graphs with small maximum degree Bing Wang 1,, Jian-Liang Wu, Si-Feng Tian 1 Department of Mathematics, Zaozhuang University, Shandong, 77160, China School of Mathematics, Shandong

### Lecture 1: Course overview, circuits, and formulas

Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik

### Data Structures and Algorithms Written Examination

Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where

### Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis

Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.0, steen@cs.vu.nl Chapter 06: Network analysis Version: April 8, 04 / 3 Contents Chapter

### Lesson 3. Algebraic graph theory. Sergio Barbarossa. Rome - February 2010

Lesson 3 Algebraic graph theory Sergio Barbarossa Basic notions Definition: A directed graph (or digraph) composed by a set of vertices and a set of edges We adopt the convention that the information flows

### Week 2 Polygon Triangulation

Week 2 Polygon Triangulation What is a polygon? Last week A polygonal chain is a connected series of line segments A closed polygonal chain is a polygonal chain, such that there is also a line segment

### Basic Notions on Graphs. Planar Graphs and Vertex Colourings. Joe Ryan. Presented by

Basic Notions on Graphs Planar Graphs and Vertex Colourings Presented by Joe Ryan School of Electrical Engineering and Computer Science University of Newcastle, Australia Planar graphs Graphs may be drawn

### 2.3 Scheduling jobs on identical parallel machines

2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed

### Algorithm Design and Analysis

Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;

### Chapter 2 Paths and Searching

Chapter 2 Paths and Searching Section 2.1 Distance Almost every day you face a problem: You must leave your home and go to school. If you are like me, you are usually a little late, so you want to take

### The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

### Graph Algorithms using Map-Reduce

Graph Algorithms using Map-Reduce Graphs are ubiquitous in modern society. Some examples: The hyperlink structure of the web 1/7 Graph Algorithms using Map-Reduce Graphs are ubiquitous in modern society.

### 1 Plane and Planar Graphs. Definition 1 A graph G(V,E) is called plane if

Plane and Planar Graphs Definition A graph G(V,E) is called plane if V is a set of points in the plane; E is a set of curves in the plane such that. every curve contains at most two vertices and these

### Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis. Contents. Introduction. Maarten van Steen. Version: April 28, 2014

Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R.0, steen@cs.vu.nl Chapter 0: Version: April 8, 0 / Contents Chapter Description 0: Introduction

### Introduction to Graph Theory

Introduction to Graph Theory Allen Dickson October 2006 1 The Königsberg Bridge Problem The city of Königsberg was located on the Pregel river in Prussia. The river divided the city into four separate

### Lecture 9. 1 Introduction. 2 Random Walks in Graphs. 1.1 How To Explore a Graph? CS-621 Theory Gems October 17, 2012

CS-62 Theory Gems October 7, 202 Lecture 9 Lecturer: Aleksander Mądry Scribes: Dorina Thanou, Xiaowen Dong Introduction Over the next couple of lectures, our focus will be on graphs. Graphs are one of

### Problem Set 7 Solutions

8 8 Introduction to Algorithms May 7, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Handout 25 Problem Set 7 Solutions This problem set is due in

### Computational Geometry [csci 3250]

Computational Geometry [csci 3250] Laura Toma Bowdoin College Polygon Triangulation Polygon Triangulation The problem: Triangulate a given polygon. (output a set of diagonals that partition the polygon

### Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar

Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples

### Chapter 4. Trees. 4.1 Basics

Chapter 4 Trees 4.1 Basics A tree is a connected graph with no cycles. A forest is a collection of trees. A vertex of degree one, particularly in a tree, is called a leaf. Trees arise in a variety of applications.

### Mining Social Network Graphs

Mining Social Network Graphs Debapriyo Majumdar Data Mining Fall 2014 Indian Statistical Institute Kolkata November 13, 17, 2014 Social Network No introduc+on required Really? We s7ll need to understand

### Why graph clustering is useful?

Graph Clustering Why graph clustering is useful? Distance matrices are graphs as useful as any other clustering Identification of communities in social networks Webpage clustering for better data management

V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer

### CS268: Geometric Algorithms Handout #5 Design and Analysis Original Handout #15 Stanford University Tuesday, 25 February 1992

CS268: Geometric Algorithms Handout #5 Design and Analysis Original Handout #15 Stanford University Tuesday, 25 February 1992 Original Lecture #6: 28 January 1991 Topics: Triangulating Simple Polygons

### 1 Definitions. Supplementary Material for: Digraphs. Concept graphs

Supplementary Material for: van Rooij, I., Evans, P., Müller, M., Gedge, J. & Wareham, T. (2008). Identifying Sources of Intractability in Cognitive Models: An Illustration using Analogical Structure Mapping.

### Linear Programming I

Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

### Diameter and Treewidth in Minor-Closed Graph Families, Revisited

Algorithmica manuscript No. (will be inserted by the editor) Diameter and Treewidth in Minor-Closed Graph Families, Revisited Erik D. Demaine, MohammadTaghi Hajiaghayi MIT Computer Science and Artificial

### Shortest Path Algorithms

Shortest Path Algorithms Jaehyun Park CS 97SI Stanford University June 29, 2015 Outline Cross Product Convex Hull Problem Sweep Line Algorithm Intersecting Half-planes Notes on Binary/Ternary Search Cross

### Dynamic Programming. Applies when the following Principle of Optimality

Dynamic Programming Applies when the following Principle of Optimality holds: In an optimal sequence of decisions or choices, each subsequence must be optimal. Translation: There s a recursive solution.

### Directed Graphs. Directed Graphs. Digraph Applications. Ecological Food Web. Digraph. Set of objects with oriented pairwise connections.

Directed Graphs Directed Graphs Digraph. Set of objects with oriented pairwise connections. Ex. One-way street, hyperlink. Reference: Chapter 9, Algorithms in Java, rd Edition, Robert Sedgewick Robert

### Graph Theory for Articulated Bodies

Graph Theory for Articulated Bodies Alba Perez-Gracia Department of Mechanical Engineering, Idaho State University Articulated Bodies A set of rigid bodies (links) joined by joints that allow relative

### 24: Polygon Partition - Faster Triangulations

24: Polygon Partition - Faster Triangulations CS 473u - Algorithms - Spring 2005 April 15, 2005 1 Previous lecture We described triangulations of simple polygons. See Figure 1 for an example of a polygon

### IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti

### A NOTE ON EDGE GUARDS IN ART GALLERIES

A NOTE ON EDGE GUARDS IN ART GALLERIES R. Nandakumar (nandacumar@gmail.com) Abstract: We study the Art Gallery Problem with Edge Guards. We give an algorithm to arrange edge guards to guard only the inward

### ! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

### Connectivity and cuts

Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every

### Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,

### GRAPH THEORY and APPLICATIONS. Trees

GRAPH THEORY and APPLICATIONS Trees Properties Tree: a connected graph with no cycle (acyclic) Forest: a graph with no cycle Paths are trees. Star: A tree consisting of one vertex adjacent to all the others.

### Arrangements And Duality

Arrangements And Duality 3.1 Introduction 3 Point configurations are tbe most basic structure we study in computational geometry. But what about configurations of more complicated shapes? For example,

### Characterizations of Arboricity of Graphs

Characterizations of Arboricity of Graphs Ruth Haas Smith College Northampton, MA USA Abstract The aim of this paper is to give several characterizations for the following two classes of graphs: (i) graphs

### Monotone Partitioning. Polygon Partitioning. Monotone polygons. Monotone polygons. Monotone Partitioning. ! Define monotonicity

Monotone Partitioning! Define monotonicity Polygon Partitioning Monotone Partitioning! Triangulate monotone polygons in linear time! Partition a polygon into monotone pieces Monotone polygons! Definition

### Graph/Network Visualization

Graph/Network Visualization Data model: graph structures (relations, knowledge) and networks. Applications: Telecommunication systems, Internet and WWW, Retailers distribution networks knowledge representation

### Strictly Localized Construction of Planar Bounded-Degree Spanners of Unit Disk Graphs

Strictly Localized Construction of Planar Bounded-Degree Spanners of Unit Disk Graphs Iyad A. Kanj Ljubomir Perković Ge Xia Abstract We describe a new distributed and strictly-localized approach for constructing

### Graph Mining and Social Network Analysis

Graph Mining and Social Network Analysis Data Mining and Text Mining (UIC 583 @ Politecnico di Milano) References Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann

### 5. A full binary tree with n leaves contains [A] n nodes. [B] log n 2 nodes. [C] 2n 1 nodes. [D] n 2 nodes.

1. The advantage of.. is that they solve the problem if sequential storage representation. But disadvantage in that is they are sequential lists. [A] Lists [B] Linked Lists [A] Trees [A] Queues 2. The

### HOMEWORK #3 SOLUTIONS - MATH 3260

HOMEWORK #3 SOLUTIONS - MATH 3260 ASSIGNED: FEBRUARY 26, 2003 DUE: MARCH 12, 2003 AT 2:30PM (1) Show either that each of the following graphs are planar by drawing them in a way that the vertices do not

### Chapter 2. Basic Terminology and Preliminaries

Chapter 2 Basic Terminology and Preliminaries 6 Chapter 2. Basic Terminology and Preliminaries 7 2.1 Introduction This chapter is intended to provide all the fundamental terminology and notations which

### Intersection Dimension and Maximum Degree

Intersection Dimension and Maximum Degree N.R. Aravind and C.R. Subramanian The Institute of Mathematical Sciences, Taramani, Chennai - 600 113, India. email: {nraravind,crs}@imsc.res.in Abstract We show

### Disjoint Compatible Geometric Matchings

Disjoint Compatible Geometric Matchings Mashhood Ishaque Diane L. Souvaine Csaba D. Tóth Abstract We prove that for every even set of n pairwise disjoint line segments in the plane in general position,

### Homework 15 Solutions

PROBLEM ONE (Trees) Homework 15 Solutions 1. Recall the definition of a tree: a tree is a connected, undirected graph which has no cycles. Which of the following definitions are equivalent to this definition

### Midterm Practice Problems

6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator

### On the independence number of graphs with maximum degree 3

On the independence number of graphs with maximum degree 3 Iyad A. Kanj Fenghui Zhang Abstract Let G be an undirected graph with maximum degree at most 3 such that G does not contain any of the three graphs

### FAST LOCAL SEARCH FOR THE MAXIMUM INDEPENDENT SET PROBLEM

FAST LOCAL SEARCH FOR THE MAXIMUM INDEPENDENT SET PROBLEM DIOGO V. ANDRADE, MAURICIO G.C. RESENDE, AND RENATO F. WERNECK Abstract. Given a graph G = (V, E), the independent set problem is that of finding

### THE PROBLEM WORMS (1) WORMS (2) THE PROBLEM OF WORM PROPAGATION/PREVENTION THE MINIMUM VERTEX COVER PROBLEM

1 THE PROBLEM OF WORM PROPAGATION/PREVENTION I.E. THE MINIMUM VERTEX COVER PROBLEM Prof. Tiziana Calamoneri Network Algorithms A.y. 2014/15 2 THE PROBLEM WORMS (1)! A computer worm is a standalone malware

### The Clar Structure of Fullerenes

The Clar Structure of Fullerenes Liz Hartung Massachusetts College of Liberal Arts June 12, 2013 Liz Hartung (Massachusetts College of Liberal Arts) The Clar Structure of Fullerenes June 12, 2013 1 / 25

### Minimum Bisection is NP-hard on Unit Disk Graphs

Minimum Bisection is NP-hard on Unit Disk Graphs Josep Díaz 1 and George B. Mertzios 2 1 Departament de Llenguatges i Sistemes Informátics, Universitat Politécnica de Catalunya, Spain. 2 School of Engineering

### GRAPH THEORY LECTURE 4: TREES

GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection

### A Functional Graph Library

A Functional Graph Library Based on Inductive Graphs and Functional Graph Algorithms by Martin Erwig Presentation by Christian Doczkal March 22 nd, 2006 Structure Motivation Inductive graph definition

### Theorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path.

Chapter 3 Trees Section 3. Fundamental Properties of Trees Suppose your city is planning to construct a rapid rail system. They want to construct the most economical system possible that will meet the

### Minimum Spanning Trees

Minimum Spanning Trees Algorithms and 18.304 Presentation Outline 1 Graph Terminology Minimum Spanning Trees 2 3 Outline Graph Terminology Minimum Spanning Trees 1 Graph Terminology Minimum Spanning Trees

### Homework Exam 1, Geometric Algorithms, 2016

Homework Exam 1, Geometric Algorithms, 2016 1. (3 points) Let P be a convex polyhedron in 3-dimensional space. The boundary of P is represented as a DCEL, storing the incidence relationships between the

### SGL: Stata graph library for network analysis

SGL: Stata graph library for network analysis Hirotaka Miura Federal Reserve Bank of San Francisco Stata Conference Chicago 2011 The views presented here are my own and do not necessarily represent the