Radiation biology: dosimetry, target and. action of radiation, radiation sensitivity

Size: px
Start display at page:

Download "Radiation biology: dosimetry, target and. action of radiation, radiation sensitivity"

Transcription

1 Radiation biology: dosimetry, target and molecular theories, direct and indirect action of radiation, radiation sensitivity Dose concepts (II/4.1) Dose dependence of radiation effects, target theory (Poisson distribution), molecular theory (II/ ) Factors influencing radiation sensitivity (II/4.6) Indirect effect ofradiation, theory ofactivation ofwater water, dilution effect (p lecture material) Radiation sickness (II/ ) 1/20

2 Physical dose concepts 1 Only the absorbed fraction of radiation leads to physical, chemical or biological effects. This is characterized by dose: the energy absorbed by the material during the interaction with radiation divided by the mass of the absorbing material. 1. Absorbed dose: the energy absorbed by a body of unit mass: D a E m unit: J/kg=gray (Gy) principally the easiest way to measure D a is to detect the temperature increase induced by the absorbed energy (E), but: the absorption of 8 J/kg of energy is lethal in humans E 8 J cm kj 4 1 kg kg K 3 E c m T T 210 K it is difficult to measure such a low temperature increase an alternative dose concept is required since a dose of 8 J/kg leads to severe biological lconsequences, the damage has to be generated by molecular events, and not by heat transfer 2/20

3 Physical dose concepts 2 2. Exposure: the amount ofpositive ornegative charges generated by X ray or gamma radiation in a body ofunit mass during electron equilibrium: X Q, unit: m electron equilibrium: the number of electrons entering and leaving the detected volume. C kg detected volume chamber wall environment 3/20

4 Physical dose concepts 3 3. Kinetic energy released in material (KERMA): in the case of indirectly ionizing, high energy radiation a fraction of the evoked electrons loses its energy in the environment, outside the absorbing mass of m ionization radiation damage absorbent a fraction ofthe primary absorbed dose results in heating of the environment of the absorbing mass of m electrons giving off their energy in the environment of mass m also contribute to the radiation damage of mass m a concept characterizing the amount of the primarily absorbed energy is required secondary radiation electrons, some of which gives off its energy in the environment definition of KERMA: the ratio of the total initial kinetic energy of all charges particles and the mass of the absorbing material. In the case of high energy radiation: KERMA > absorbed dose unit of KERMA: gray 4/20

5 Biological dose concepts 1 1. Equivalent dose: the physical properties of radiation (type (electromagnetic, corpuscular, what kind of particle), energy, LET) influence the extent of biological damage this is taken into account by a weighing factor which used to be called quality factor (Q R ), but recently its name is radiation weighing gf factor (w R R) definition of equivalent dose (H T ) : unit of equivalent dose: sievert=j/kg (Sv) H wd T R T, R R, where w R radiation weighing factor D T,R the dose absorbed by a given tissue from a given type of radiation Radiation and energy range Photons 1 Electrons 1 Neutrons (E N <10 kev) 5 w R Neutrons (10 kev<e N <10 kev) 10 Neutrons (100 kev<e N <2 MeV) 20 Neutrons (2 Mev<E N <20 MeV) 10 N Neutrons (E N >20 MeV) 5 Protons, E P >2 MeV 5 a particles, heavy nuclei 20 5/20

6 2. Effective dose: Biological dose concepts different tissues and organs exhibit different radiation sensitivity and contribute differently to the overall radiation damage of the organism this is taken into account by a tissue specific weighing factor (w T ) definition of effective dose (E):, E w H w w D T T T T R T R T, R equivalent dose 6/20

7 Dose dependence of radiation effects, dose effect (dose response) curves Dose effect curve: the fraction of surviving (i.e. non inactivated, not damaged) d) individuals d (objects) as a function of dose. It is often called survival curve. 1 N surviving objects N 0 number of all objects N/N 0 often plotted on a logarithmic scale dose Two models have been created to explain the shape of the curves: target theory: generation of radiation damage is stochastic the interaction between the radiation and the biological object is not described molecularly but it appropriately described the dose effect curves of molecules molecular theory: generation of radiation damage is stochastic radiation damage is described molecularly; the major determinant of radiation damage is DNA double strand break it is appropriate to describe radiation damage of cells 7/20

8 Inactivation of molecules according to the target theory in the case of one target 1 There is one target in the molecules. The volume ofthe target is V. The distribution of hits in volume V follows a Poisson distribution with parameter (mean value) of Vi (i number of hits in unit volume) The probability that the target with a volume ofv V receives n hits: VD n n n Vi Vi P n e e n! n! Since i D, with correct choice of the unit of D the equation can be written in the following form: If k hits are required to inactive the target: P n n! e VD.. 0 hit, P 0 VD 0 0! VD e 1 hit, P 1 VD 1 1! VD e k1 VD k1 hits, Pk 1 e k 1! VD k or more hits inactivated molecules the fraction of non inactivated molecules: N N k 1 0 VD n 0 n! n e VD 8/20

9 Inactivation of molecules according to the target theory in the case of one target 2 N/N 0 N/N 0 dose The width of the shoulder of the curve increases with the number of hits required for inactivation: at low doses no molecules are inactivated (because the probability that a single target is hit k times is negligible (if k >> 1). dose The simplest case: one target which is inactivated by a single hit Only those molecules are not inactivated which are not hit by any radiation. Therefore, the fraction of surviving targets is N N 0 0! 0 VD VD e e If VD=1 (the number of expected hits in the radiosensitive volume is one), then N N N 0 e VD This dose is called D 37, because 37% of the objects survive. VD D V In the case of the one target single hit model D 37 is the reciprocal of the radiosensitive volume. 9/20

10 Molecular theory of radiation damage 1 n, N/N 0 viving fractio surv (A) HeLa, (B) CHO, (C) T1 cells dose (Gy) The curves cannot be interpreted using the target theory. A new model was required which h interprets the radiation i damage of mammalian cells by DNA damage. Evidence for the key role of DNA damage in radiation damage: in simple organisms there is a quantitative relationship between DNA damage and radiation damage in eukaryotic cells the loss of biological function correlates with single and double strand breaks in DNA DNA repair is correlated with radiation sensitivity: cells lacking DNA repair mechanisms exhibit extreme radiation sensitivity agents inhibiting DNA repair increase radiation sensitivity 10/20

11 Molecular theory of radiation damage 2: The model The key event leading to radiation damage is DNA double strand break. radiation radiation generated free radicals (see indirect effect of radiation) formation of DSB induced by a single particle joint effect of two independent events n, N/N 0 Surv viving fractio Molecular or linear quadratic model: 2 N D D a and empirical constants (a and S e characterize DSB generated in one and N two steps, respectively. 0 Explanation of the term D 2 : the probability of the joint occurrence of two independent events. The probability of the independent events is proportional to dose (D):, P SSB D P SSB SSB D 2 Dose 11/20

12 Direct effect of radiation: Direct and indirect effects of radiation the biological molecule is directly hit and inactivated by the radiation it is the only mechanism taking place when irradiating dried samples its probability bilit is much smaller than that t of hitting a solvent molecule l when irradiating solutions. Indirect effect of radiation: water radical In dilute aqueous solutions the probability that the radiation hits a water molecule is much larger than the probability of hitting a target (e.g. enzyme molecule). Radiation leads to the generation of free radicals from water which reach and inactivate the target. 12/20

13 Generation of radicals from water (radiolysis of water) Radical: anatom atom or molecule possessing anunpaired electron. ionization of water: HOHO +e hydrated electron (e water) H0 2 H+OH + + e+h0 2 HOH * excitation of water: H2OHO 2 H +OH The most important radicals generated: H, OH, e water Reactions of radicals: R H + H R + H R H + H R H 2 2 R H + OH R + HO R H + OH R HOH 2 H + OH HO H + H H 2 2 OH + OH HO 2 2 damage of biological molecules (R) these processes compete with each other recombination: the reactive radicals react with each other leading to harmless (or less harmful) molecules. 13/20

14 Enzymes can be inactivated with a lower dose in aqueous solutions Dried: the molecule is only inactivated if the target is directly hit. ity (%) enzyme activi dried (water free) ribonuclease Aqueous solution: radicals generated from water molecules surrounding the enzyme reach and inactivate the target. Thetarget gets bigger. 5 mg/ml solution dose (kgy) 14/20

15 Factors influencing radiation sensitivity 1 A. Quality of radiation 1. Ionization density (LET) 2. Penetrability B. Biological variation 1. Cell cycle 2. Differentiation C. Time factor 1. Fractionation, the role of DNA repair D. Metabolism and temperature E. The effect of oxygen 15/20

16 Factors influencing radiation sensitivity 2 A. The quality of radiation the extent of radiation damage depends on ionization density (LET). This is characterized by relative biological effectiveness (RBE), a constant similar to quality factor (Q R ) and radiation weighing factor (w R ). penetrability: alpha and beta radiation cannot penetrate t the skin they can only generate systemic effects if they can into the organism Relative biological effectiveness (RBE) The ratio of a dose of X ray with 250 kev energy (D R ) to the dose of the test radiation (D X ) required to cause the same biological effect : RBE RBE D D R X RBE is similar, but not identical to quality factor (Q R ) and radiation weighing factor (w R ) LET (kev/m) 16/20

17 B. Biological variability Factors influencing radiation sensitivity 3 1. cells display different radiation sensitivity in different parts ofthe cell cycle (implications for radiation therapy of cancer: in cancer a higher fraction of cells is in the M phase than in normal tissue). G2: preparation for mitosis M:mitosis cstart of the cycle G1: cell growth Largest radiation sensitivity: M and G2 phases Lowest radiation sensitivity: S phase S: replication of DNA 2. the less differentiated the cells are, the higher their radiation sensitivity is (implications for radiation therapy of cancer: cancer cells are less differentiated than normal ones) The radiation sensitivity of tissues based on the dependence of radiation sensitivity on cell cycle and differentiation: tissue tissue 1 lymphatic tissue 6 blood vessels 2 white blood cells, immature erythrocytes in bone 7 glands, liver marrow 3 mucous membrane of stomach and intestine 8 connective tissue 4 gametes 9 muscle tissue 5 proliferating cell layer of the skin 10 nervous tissue 17/20

18 Factors influencing radiation sensitivity 4 C. Time factor If a certain dose is given in fractions, a part of the radiation damage can be repaired between fractions the extent of radiation damage is reduced. Repair: primarily DNA repair, repair of double strand breaks. 1 ng fraction survivi dose given in two fractions surviving fraction if the dose would have been given in a single fraction D. Metabolism and temperature dose (Gy) Cells with a higher metabolic rate usually have higher radiation sensitivity. Since the rate of metabolism increases with temperature, a temperature increase usually leads to higher radiation sensitivity. 18/20

19 Factors influencing radiation sensitivity 5 E. The effect of oxygen in the presence of O 2 the amount of radiation generated radicals increases higher radiation sensitivity OER (oxygen enhancement ratio): the ratio of doses generating an arbitrary, equal surviving fraction under hypoxic and normoxic conditions. survivin ng fraction OER normoxic hypoxic dose (cgy) cancer therapy: malignant tumors are often hypovascularized hypoxia radiation therapy ofa hypoxic tumor is not efficient hypoxic tumors were cured less efficiently more patients died normoxia hypoxia anoxia Source: The Oncologist, 9(Suppl. 5), 31 40; Medscape 19/20

20 Radiation sickness (radiation poisoning) Ionizing radiation Symptoms of radiation exposure: radiation sickness accumulation of mutations development of tumors damage of offsprings (in the case of damage of gametes) 1 2 Gy 2 6 Gy 6 8 Gy 8 30 Gy >30 Gy dominant hematopoietic i hematopoietic i gastrointestinal i gastrointestinal i central nervous affected organ system system latency days 7 28 days <7 days none none leading symptoms mortality without medical care mortality with medical care Source: Merck Manual white blood cell count (leukopenia), leukopenia, bleedings, infections, severe leukopenia, fever, nausea, fatigue epilation vomiting, diarrhea, electrolyte disturbance, hypotension high fever, nausea, vomiting diarrhea, electrolyte disturbance, shock 0 5% 5 100% % 100% 100% 0 5% 5 50% % 100% 100% seizures, ataxia tremor 20/20

Environmental Health and Safety Radiation Safety. Module 1. Radiation Safety Fundamentals

Environmental Health and Safety Radiation Safety. Module 1. Radiation Safety Fundamentals Environmental Health and Safety Radiation Safety Module 1 Radiation Safety Fundamentals Atomic Structure Atoms are composed of a variety of subatomic particles. The three of interest to Health Physics

More information

Radiation Oncology Nursing Care. Helen Lusby Radiation Oncology Nurse BAROC 2012

Radiation Oncology Nursing Care. Helen Lusby Radiation Oncology Nurse BAROC 2012 Radiation Oncology Nursing Care Helen Lusby Radiation Oncology Nurse BAROC 2012 Definitions Radiation Therapy: Treatment of cancer using x- ray particles that cause ionisation within the cells. External

More information

[Image removed due to copyright concerns]

[Image removed due to copyright concerns] Radiation Chemistry Ionizing radiation produces abundant secondary electrons that rapidly slow down (thermalize) to energies below 7.4 ev, the threshold to produce electronic transitions in liquid water.

More information

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel Chemistry 1000 Lecture 2: Nuclear reactions and radiation Marc R. Roussel Nuclear reactions Ordinary chemical reactions do not involve the nuclei, so we can balance these reactions by making sure that

More information

ACCELERATORS AND MEDICAL PHYSICS 2

ACCELERATORS AND MEDICAL PHYSICS 2 ACCELERATORS AND MEDICAL PHYSICS 2 Ugo Amaldi University of Milano Bicocca and TERA Foundation EPFL 2-28.10.10 - U. Amaldi 1 The icone of radiation therapy Radiation beam in matter EPFL 2-28.10.10 - U.

More information

In vivo dose response assays

In vivo dose response assays In vivo dose response assays Tumor assays 1. Tumor growth measurements; tumor growth delay. After irradiation, the tumor is measured daily to determine the mean diameter, or volume. Plot tumor size versus

More information

PRINIPLES OF RADIATION THERAPY Adarsh Kumar. The basis of radiation therapy revolve around the principle that ionizing radiations kill cells

PRINIPLES OF RADIATION THERAPY Adarsh Kumar. The basis of radiation therapy revolve around the principle that ionizing radiations kill cells PRINIPLES OF RADIATION THERAPY Adarsh Kumar The basis of radiation therapy revolve around the principle that ionizing radiations kill cells Radiotherapy terminology: a. Radiosensitivity: refers to susceptibility

More information

1. Orthovoltage vs. megavoltage x-rays. (AL) External beam radiation sources: Orthovoltage radiotherapy: 200-500 kv range

1. Orthovoltage vs. megavoltage x-rays. (AL) External beam radiation sources: Orthovoltage radiotherapy: 200-500 kv range 1. Orthovoltage vs. megavoltage x-rays. (AL) External beam radiation sources: Orthovoltage radiotherapy: 200-500 kv range The radiation from orthovoltage units is referred to as x-rays, generated by bombarding

More information

Basics of Nuclear Physics and Fission

Basics of Nuclear Physics and Fission Basics of Nuclear Physics and Fission A basic background in nuclear physics for those who want to start at the beginning. Some of the terms used in this factsheet can be found in IEER s on-line glossary.

More information

Atomic and Nuclear Physics Laboratory (Physics 4780)

Atomic and Nuclear Physics Laboratory (Physics 4780) Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *

More information

1. In the general symbol cleus, which of the three letters. 2. What is the mass number of an alpha particle?

1. In the general symbol cleus, which of the three letters. 2. What is the mass number of an alpha particle? 1. In the general symbol cleus, which of the three letters Z A X for a nu represents the atomic number? 2. What is the mass number of an alpha particle? 3. What is the mass number of a beta particle? 4.

More information

Basic Radiation Therapy Terms

Basic Radiation Therapy Terms Basic Radiation Therapy Terms accelerated radiation: radiation schedule in which the total dose is given over a shorter period of time. (Compare to hyperfractionated radiation.) adjuvant therapy (add-joo-vunt):

More information

Respiration occurs in the mitochondria in cells.

Respiration occurs in the mitochondria in cells. B3 Question Which process occurs in the mitochondria in cells? Why do the liver and muscle cells have large number of mitochondria? What is the function of the ribosomes? Answer Respiration occurs in the

More information

How To Understand The Effects Of Radiation On A Cell

How To Understand The Effects Of Radiation On A Cell Biological Effects of Radiation Whether the source of radiation is natural or man-made, whether it is a small dose of radiation or a large dose, there will be some biological effects. This chapter summarizes

More information

5.111 Principles of Chemical Science

5.111 Principles of Chemical Science MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Principles

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010 Lecture 2 Macroscopic Interactions 22.106 Neutron Interactions and Applications Spring 2010 Objectives Macroscopic Interactions Atom Density Mean Free Path Moderation in Bulk Matter Neutron Shielding Effective

More information

Cell Division Mitosis and the Cell Cycle

Cell Division Mitosis and the Cell Cycle Cell Division Mitosis and the Cell Cycle A Chromosome and Sister Chromatids Key Points About Chromosome Structure A chromosome consists of DNA that is wrapped around proteins (histones) and condensed Each

More information

Cancer: DNA Synthesis, Mitosis, and Meiosis

Cancer: DNA Synthesis, Mitosis, and Meiosis Chapter 5 Cancer: DNA Synthesis, Mitosis, and Meiosis Copyright 2007 Pearson Copyright Prentice Hall, 2007 Inc. Pearson Prentice Hall, Inc. 1 What Is Cancer? Benign tumors do not invade surrounding tissue

More information

The role of negative -ION in the improvement of our health

The role of negative -ION in the improvement of our health What are IONS and where do they come from? IONS are particles with a positive or a negative electrical charge The percentage and number of +IONS and -IONS change depending on the time and place. IONS can

More information

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS Chapter NP-5 Nuclear Physics Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 2.0 NEUTRON INTERACTIONS 2.1 ELASTIC SCATTERING 2.2 INELASTIC SCATTERING 2.3 RADIATIVE CAPTURE 2.4 PARTICLE

More information

Radiation and the Universe Higher Exam revision questions and answers

Radiation and the Universe Higher Exam revision questions and answers Radiation and the Universe Higher Exam revision questions and answers Madeley High School Q.The names of three different processes are given in List A. Where these processes happen is given in List B.

More information

Advanced Radiation Therapy of Cancer by Proton Beam

Advanced Radiation Therapy of Cancer by Proton Beam March 20th, 2014 Advanced Radiation Therapy of Cancer by Proton Beam Fukui Prefectural Hospital Proton Therapy Center Yamamoto, Kazutaka Wave (electromagnetic wave) IR (Ionizing) Radiation 700 400 350~100

More information

The effects of radiation on the body can be divided into Stochastic (random) effects and deterministic or Non-stochastic effects.

The effects of radiation on the body can be divided into Stochastic (random) effects and deterministic or Non-stochastic effects. RADIATION SAFETY: HOW TO EDUCATE AND PROTECT YOURSELF AND YOUR STAFF John Farrelly, DVM, MS, ACVIM (Oncology), ACVR (Radiation Oncology) Cornell University Veterinary Specialists The Veterinary Cancer

More information

North Bergen School District Benchmarks

North Bergen School District Benchmarks Grade: 10,11, and 12 Subject: Anatomy and Physiology First Marking Period Define anatomy and physiology, and describe various subspecialties of each discipline. Describe the five basic functions of living

More information

Essentials of Human Anatomy & Physiology 11 th Edition, 2015 Marieb

Essentials of Human Anatomy & Physiology 11 th Edition, 2015 Marieb A Correlation of Essentials of Human Anatomy Marieb To the Next Generation Science Standards Life A Correlation of, HS-LS1 From Molecules to Organisms: Structures and Processes HS-LS1-1. Construct an explanation

More information

BIO 137: CHAPTER 1 OBJECTIVES

BIO 137: CHAPTER 1 OBJECTIVES BIO 137: CHAPTER 1 OBJECTIVES 1. Define the terms anatomy and physiology, and explain their relationship using an example of a human structure with its corresponding function. A. ANATOMY = the study of

More information

LYMPHOMA IN DOGS. Diagnosis/Initial evaluation. Treatment and Prognosis

LYMPHOMA IN DOGS. Diagnosis/Initial evaluation. Treatment and Prognosis LYMPHOMA IN DOGS Lymphoma is a relatively common cancer in dogs. It is a cancer of lymphocytes (a type of white blood cell) and lymphoid tissues. Lymphoid tissue is normally present in many places in the

More information

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z.

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z. Cell Structure and Organization 1. All living things must possess certain characteristics. They are all composed of one or more cells. They can grow, reproduce, and pass their genes on to their offspring.

More information

Lesson 43: Alpha, Beta, & Gamma Decay

Lesson 43: Alpha, Beta, & Gamma Decay Lesson 43: Alpha, Beta, & Gamma Decay The late 18s and early 19s were a period of intense research into the new nuclear realm of physics. In 1896 Henri Becquerel found that a sample of uranium he was doing

More information

S t r a i g h t T o x

S t r a i g h t T o x S t r a i g h t T o x Polonium-210: The perfect poison? by Dwain Fuller, D-FTCB, TC-NRCC It was July 5 th, 2012, the Thursday of the Society of Forensic Toxicologists meeting in Boston. My cell phone rings,

More information

RADIATION THERAPY FOR LYMPHOMA. Facts to Help Patients Make an Informed Decision TARGETING CANCER CARE AMERICAN SOCIETY FOR RADIATION ONCOLOGY

RADIATION THERAPY FOR LYMPHOMA. Facts to Help Patients Make an Informed Decision TARGETING CANCER CARE AMERICAN SOCIETY FOR RADIATION ONCOLOGY RADIATION THERAPY FOR Facts to Help Patients Make an Informed Decision TARGETING CANCER CARE AMERICAN SOCIETY FOR RADIATION ONCOLOGY FACTS ABOUT The lymphatic system is a network of tiny vessels extending

More information

Multiple Myeloma. This reference summary will help you understand multiple myeloma and its treatment options.

Multiple Myeloma. This reference summary will help you understand multiple myeloma and its treatment options. Multiple Myeloma Introduction Multiple myeloma is a type of cancer that affects white blood cells. Each year, thousands of people find out that they have multiple myeloma. This reference summary will help

More information

HADRON THERAPY FOR CANCER TREATMENT

HADRON THERAPY FOR CANCER TREATMENT HADRON THERAPY FOR CANCER TREATMENT Seminar presented by Arlene Lennox at Fermilab on Nov 21, 2003 CANCER STAGES LOCAL TUMOR REGIONAL METASTASIS SYSTEMIC DISEASE CANCER TREATMENT SURGERY RADIATION THERAPY

More information

Structure and Properties of Atoms

Structure and Properties of Atoms PS-2.1 Compare the subatomic particles (protons, neutrons, electrons) of an atom with regard to mass, location, and charge, and explain how these particles affect the properties of an atom (including identity,

More information

Endocrine System: Practice Questions #1

Endocrine System: Practice Questions #1 Endocrine System: Practice Questions #1 1. Removing part of gland D would most likely result in A. a decrease in the secretions of other glands B. a decrease in the blood calcium level C. an increase in

More information

Pancreatic Cancer Information for patients and their families

Pancreatic Cancer Information for patients and their families Pancreatic Cancer Information for patients and their families This handout answers common questions that are often asked by our patients and families. The information in this booklet is what we talked

More information

Absorption of Drugs. Transport of a drug from the GI tract

Absorption of Drugs. Transport of a drug from the GI tract Absorption of Drugs Absorption is the transfer of a drug from its site of administration to the bloodstream. The rate and efficiency of absorption depend on the route of administration. For IV delivery,

More information

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics. Nuclear Physics comprises the study of: Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

More information

LESSON 3.5 WORKBOOK. How do cancer cells evolve? Workbook Lesson 3.5

LESSON 3.5 WORKBOOK. How do cancer cells evolve? Workbook Lesson 3.5 LESSON 3.5 WORKBOOK How do cancer cells evolve? In this unit we have learned how normal cells can be transformed so that they stop behaving as part of a tissue community and become unresponsive to regulation.

More information

A Local Stability of Mathematical Models for Cancer Treatment by Using Gene Therapy

A Local Stability of Mathematical Models for Cancer Treatment by Using Gene Therapy International Journal of Modeling Optimization, Vol 5, No 3, June 2015 A Local Stability of Mathematical Models for Cancer Treatment by Using Gene Therapy Dwi Lestari Ratnasari Dwi Ambarwati Abstract This

More information

Clinical Physics. Dr/Aida Radwan Assistant Professor of Medical Physics Umm El-Qura University

Clinical Physics. Dr/Aida Radwan Assistant Professor of Medical Physics Umm El-Qura University Clinical Physics Dr/Aida Radwan Assistant Professor of Medical Physics Umm El-Qura University Physics of Radiotherapy using External Beam Dose distribution PHANTOMS Basic dose distribution data are usually

More information

Forensic Science Standards and Benchmarks

Forensic Science Standards and Benchmarks Forensic Science Standards and Standard 1: Understands and applies principles of scientific inquiry Power : Identifies questions and concepts that guide science investigations Uses technology and mathematics

More information

10. T and B cells are types of a. endocrine cells. c. lymphocytes. b. platelets. d. complement cells.

10. T and B cells are types of a. endocrine cells. c. lymphocytes. b. platelets. d. complement cells. Virus and Immune System Review Directions: Write your answers on a separate piece of paper. 1. Why does a cut in the skin threaten the body s nonspecific defenses against disease? a. If a cut bleeds, disease-fighting

More information

Integrated Management & Educational Consultancy

Integrated Management & Educational Consultancy Integrated Management & Educational Consultancy Services MANDEC Radiology Update Seminar for The Dental Team Dr. Richard DeCann & Mr. Tim Reynolds IMECS Radiography Consultants Tel:07855 183117 email:admin@imecs.freeserve.co.uk

More information

Environmental Radiation Risk Assessment

Environmental Radiation Risk Assessment Environmental Radiation Risk Assessment Jerome Puskin, PhD Center for Science & Risk Assessment Radiation Protection Division Office of Radiation and Indoor Air (ORIA) 2 Outline 1. Ionizing radiation definitions,

More information

B2 Revision. Subject Module Date Biology B2 13 TH May (am)

B2 Revision. Subject Module Date Biology B2 13 TH May (am) B2 Revision Subject Module Date Biology B2 13 TH May (am) Useful websites www.aqa.org.uk This website contains the specifications that we follow and also has a large number of past papers and mark schemes

More information

The validation of a tumour control probability (TCP) model for supporting radiotherapy treatment planning.

The validation of a tumour control probability (TCP) model for supporting radiotherapy treatment planning. The validation of a tumour control probability (TCP) model for supporting radiotherapy treatment planning. KAROLINA KOKUREWICZ S U P E R V I S O R S : D I N O J A R O S Z Y N S K I, G I U S E P P E S C

More information

Main properties of atoms and nucleus

Main properties of atoms and nucleus Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom

More information

Treating Thyroid Cancer using I-131 Maximum Tolerable Dose Method

Treating Thyroid Cancer using I-131 Maximum Tolerable Dose Method Treating Thyroid Cancer using I-131 Maximum Tolerable Dose Method Christopher Martel, M.Sc., CHP Lisa Thornhill,, NRRPT, RT(NM) Boston University Medical Center Thyroid Carcinoma New cases and deaths in

More information

48 Practice Problems for Ch. 17 - Chem 1C - Joseph

48 Practice Problems for Ch. 17 - Chem 1C - Joseph 48 Practice Problems for Ch. 17 - Chem 1C - Joseph 1. Which of the following concentration measures will change in value as the temperature of a solution changes? A) mass percent B) mole fraction C) molality

More information

Cellulär och molekylär respons på låga doser av joniserande strålning

Cellulär och molekylär respons på låga doser av joniserande strålning Cellulär och molekylär respons på låga doser av joniserande strålning Bo Stenerlöw Biomedicinsk strålningsvetenskap Rudbecklaboratoriet Uppsala universitet Bo Stenerlöw Biomedical Radiation Sciences Uppsala

More information

Cells, tissues and organs

Cells, tissues and organs Chapter 8: Cells, tissues and organs Cells: building blocks of life Living things are made of cells. Many of the chemical reactions that keep organisms alive (metabolic functions) take place in cells.

More information

What is Glioblastoma? How is GBM classified according to the WHO Grading System? What risk factors pertain to GBM?

What is Glioblastoma? How is GBM classified according to the WHO Grading System? What risk factors pertain to GBM? GBM (English) What is Glioblastoma? Glioblastoma or glioblastoma multiforme is one of the most common brain tumors accounting for approximately 12 to 15 percent of all brain tumors. The name of the tumor

More information

Reproductive System & Development: Practice Questions #1

Reproductive System & Development: Practice Questions #1 Reproductive System & Development: Practice Questions #1 1. Which two glands in the diagram produce gametes? A. glands A and B B. glands B and E C. glands C and F D. glands E and F 2. Base your answer

More information

Chemistry. CHEMISTRY SYLLABUS, ASSESSMENT and UNIT PLANNERS GENERAL AIMS. Students should be able to

Chemistry. CHEMISTRY SYLLABUS, ASSESSMENT and UNIT PLANNERS GENERAL AIMS. Students should be able to i CHEMISTRY SYLLABUS, ASSESSMENT and UNIT PLANNERS GENERAL AIMS Students should be able to - apply and use knowledge and methods that are typical to chemistry - develop experimental and investigative skills,

More information

Principles of dosimetry The ionization chamber

Principles of dosimetry The ionization chamber Principles of dosimetry The ionization chamber FYS-KJM 4710 Audun Sanderud Department of Physics Ionometry 1) Ionometry: the measurement of the number of ionizations in substance The number of ionizations

More information

Biology 12 June 2003 Provincial Examination

Biology 12 June 2003 Provincial Examination Biology 12 June 2003 rovincial Examination ANWER KEY / CORING GUIDE CURRICULUM: Organizers 1. Cell Biology 2. Cell rocesses and Applications 3. Human Biology ub-organizers A, B, C, D E, F, G, H I, J, K,

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Most components of energy conversion systems evolved very early; thus, the most fundamental aspects of energy metabolism tend to be: A. quite different among a diverse group

More information

serum protein and A/ G ratio

serum protein and A/ G ratio serum protein and A/ G ratio Blood plasma contains at least 125 individual proteins. Serum ( as contrasted with plasma) is deficient in those coagulation protein which are consumed during the process of

More information

Composition of the Atmosphere. Outline Atmospheric Composition Nitrogen and Oxygen Lightning Homework

Composition of the Atmosphere. Outline Atmospheric Composition Nitrogen and Oxygen Lightning Homework Molecules of the Atmosphere The present atmosphere consists mainly of molecular nitrogen (N2) and molecular oxygen (O2) but it has dramatically changed in composition from the beginning of the solar system.

More information

A n = 2 to n = 1. B n = 3 to n = 1. C n = 4 to n = 2. D n = 5 to n = 2

A n = 2 to n = 1. B n = 3 to n = 1. C n = 4 to n = 2. D n = 5 to n = 2 North arolina Testing Program EO hemistry Sample Items Goal 4 1. onsider the spectrum for the hydrogen atom. In which situation will light be produced? 3. Which color of light would a hydrogen atom emit

More information

Medical Applications of radiation physics. Riccardo Faccini Universita di Roma La Sapienza

Medical Applications of radiation physics. Riccardo Faccini Universita di Roma La Sapienza Medical Applications of radiation physics Riccardo Faccini Universita di Roma La Sapienza Outlook Introduction to radiation which one? how does it interact with matter? how is it generated? Diagnostics

More information

MCAS Biology. Review Packet

MCAS Biology. Review Packet MCAS Biology Review Packet 1 Name Class Date 1. Define organic. THE CHEMISTRY OF LIFE 2. All living things are made up of 6 essential elements: SPONCH. Name the six elements of life. S N P C O H 3. Elements

More information

www.njctl.org PSI Biology Mitosis & Meiosis

www.njctl.org PSI Biology Mitosis & Meiosis Mitosis and Meiosis Mitosis Classwork 1. Identify two differences between meiosis and mitosis. 2. Provide an example of a type of cell in the human body that would undergo mitosis. 3. Does cell division

More information

Strahlenschutzbelehrung Allgemeiner Teil. Radiation Protection

Strahlenschutzbelehrung Allgemeiner Teil. Radiation Protection 1 Radiation Protection 2 Why radiation protection? - Ionizing radiation (>5eV -> UV; X-rays;α,β,γ-radiation)has physical, chemical and biological effects -> human tissue (70% water!) and genetic material

More information

Mutations: 2 general ways to alter DNA. Mutations. What is a mutation? Mutations are rare. Changes in a single DNA base. Change a single DNA base

Mutations: 2 general ways to alter DNA. Mutations. What is a mutation? Mutations are rare. Changes in a single DNA base. Change a single DNA base Mutations Mutations: 2 general ways to alter DNA Change a single DNA base Or entire sections of DNA can move from one place to another What is a mutation? Any change in the nucleotide sequence of DNA Here

More information

Bone Marrow or Blood Stem Cell Transplants in Children With Certain Rare Inherited Metabolic Diseases *

Bone Marrow or Blood Stem Cell Transplants in Children With Certain Rare Inherited Metabolic Diseases * Bone Marrow or Blood Stem Cell Transplants in Children With Certain Rare Inherited Metabolic Diseases * A Review of the Research for Parents and Caregivers * Wolman Disease, Farber Disease, Niemann-Pick

More information

............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq.

............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq. 1 Strontium-90 decays with the emission of a β-particle to form Yttrium-90. The reaction is represented by the equation 90 38 The decay constant is 0.025 year 1. 90 39 0 1 Sr Y + e + 0.55 MeV. (a) Suggest,

More information

Cell, Tissue and Tumor Kinetics

Cell, Tissue and Tumor Kinetics Cell, issue and umor Kinetics Proliferation Kinetics: rate of growth of a population, change in total cell number. Adult tissues are in homeostasis. Children (and tumors) grow. I. Quantitative Assessment

More information

Energy. Mechanical Energy

Energy. Mechanical Energy Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance

More information

Noble Gases. Outline Nobel Gas Elements Radon and Health Chemistry Homework

Noble Gases. Outline Nobel Gas Elements Radon and Health Chemistry Homework Radon and Other Noble Gases The elements in the last column of the periodic table are all very stable, mono-atomic gases. Until 1962, they were called inert gases because they did not react with other

More information

Proton Nuclear Magnetic Resonance Spectroscopy

Proton Nuclear Magnetic Resonance Spectroscopy Proton Nuclear Magnetic Resonance Spectroscopy Introduction: The NMR Spectrum serves as a great resource in determining the structure of an organic compound by revealing the hydrogen and carbon skeleton.

More information

Acute Myeloid Leukemia

Acute Myeloid Leukemia Acute Myeloid Leukemia Introduction Leukemia is cancer of the white blood cells. The increased number of these cells leads to overcrowding of healthy blood cells. As a result, the healthy cells are not

More information

Introduction. About 10,500 new cases of acute myelogenous leukemia are diagnosed each

Introduction. About 10,500 new cases of acute myelogenous leukemia are diagnosed each Introduction 1.1 Introduction: About 10,500 new cases of acute myelogenous leukemia are diagnosed each year in the United States (Hope et al., 2003). Acute myelogenous leukemia has several names, including

More information

ACUTE MYELOID LEUKEMIA (AML),

ACUTE MYELOID LEUKEMIA (AML), 1 ACUTE MYELOID LEUKEMIA (AML), ALSO KNOWN AS ACUTE MYELOGENOUS LEUKEMIA WHAT IS CANCER? The body is made up of hundreds of millions of living cells. Normal body cells grow, divide, and die in an orderly

More information

ATOMS AND BONDS. Bonds

ATOMS AND BONDS. Bonds ATOMS AND BONDS Atoms of elements are the simplest units of organization in the natural world. Atoms consist of protons (positive charge), neutrons (neutral charge) and electrons (negative charge). The

More information

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9 Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

More information

Chapter 26. Metabolic Rate, Body Heat, and Thermoregulation

Chapter 26. Metabolic Rate, Body Heat, and Thermoregulation Chapter 26 Metabolic Rate, Body Heat, and Thermoregulation Metabolic Rate the amount of energy liberated in the body in a given period of time (kcal/hr or kcal/day) calorimeter a closed chamber with water

More information

Radioactive Ra 223 therapy. Information for patients Weston Park Hospital

Radioactive Ra 223 therapy. Information for patients Weston Park Hospital Radioactive Ra 223 therapy Information for patients Weston Park Hospital page 2 of 8 This leaflet contains information about radioactive Ra 223 therapy. If you have any questions about your treatment,

More information

Introduction to the Monte Carlo method

Introduction to the Monte Carlo method Some history Simple applications Radiation transport modelling Flux and Dose calculations Variance reduction Easy Monte Carlo Pioneers of the Monte Carlo Simulation Method: Stanisław Ulam (1909 1984) Stanislaw

More information

Brain Cancer. This reference summary will help you understand how brain tumors are diagnosed and what options are available to treat them.

Brain Cancer. This reference summary will help you understand how brain tumors are diagnosed and what options are available to treat them. Brain Cancer Introduction Brain tumors are not rare. Thousands of people are diagnosed every year with tumors of the brain and the rest of the nervous system. The diagnosis and treatment of brain tumors

More information

The Immune System. 2 Types of Defense Mechanisms. Lines of Defense. Line of Defense. Lines of Defense

The Immune System. 2 Types of Defense Mechanisms. Lines of Defense. Line of Defense. Lines of Defense The Immune System 2 Types of Defense Mechanisms Immune System the system that fights infection by producing cells to inactivate foreign substances to avoid infection and disease. Immunity the body s ability

More information

Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

More information

Unit 1 Higher Human Biology Summary Notes

Unit 1 Higher Human Biology Summary Notes Unit 1 Higher Human Biology Summary Notes a. Cells tissues organs body systems Division of labour occurs in multicellular organisms (rather than each cell carrying out every function) Most cells become

More information

Introduction, Noncovalent Bonds, and Properties of Water

Introduction, Noncovalent Bonds, and Properties of Water Lecture 1 Introduction, Noncovalent Bonds, and Properties of Water Reading: Berg, Tymoczko & Stryer: Chapter 1 problems in textbook: chapter 1, pp. 23-24, #1,2,3,6,7,8,9, 10,11; practice problems at end

More information

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND #3. Acid - Base Titrations 27 EXPERIMENT 3. ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND Carbonate Equilibria In this experiment a solution of hydrochloric

More information

Human Anatomy & Physiology General

Human Anatomy & Physiology General Human Anatomy & Physiology General Biology is the study of life but, what exactly is life? how are living things different from nonliving things eg. a human from a rock eg. a a human from a robot eg. a

More information

How To Understand The Human Body

How To Understand The Human Body Introduction to Biology and Chemistry Outline I. Introduction to biology A. Definition of biology - Biology is the study of life. B. Characteristics of Life 1. Form and size are characteristic. e.g. A

More information

Human Body Systems Project By Eva McLanahan

Human Body Systems Project By Eva McLanahan Human Body Systems Project By Eva McLanahan Students will work in groups to research one of the eleven body systems as found in Holt, Rinehart, and Winston Modern Biology (2002). Research will focus on

More information

Adjuvant Therapy for Breast Cancer: Questions and Answers

Adjuvant Therapy for Breast Cancer: Questions and Answers CANCER FACTS N a t i o n a l C a n c e r I n s t i t u t e N a t i o n a l I n s t i t u t e s o f H e a l t h D e p a r t m e n t o f H e a l t h a n d H u m a n S e r v i c e s Adjuvant Therapy for Breast

More information

Bone Marrow or Blood Stem Cell Transplants in Children With Severe Forms of Autoimmune Disorders or Certain Types of Cancer

Bone Marrow or Blood Stem Cell Transplants in Children With Severe Forms of Autoimmune Disorders or Certain Types of Cancer Bone Marrow or Blood Stem Cell Transplants in Children With Severe Forms of Autoimmune Disorders or Certain Types of Cancer A Review of the Research for Parents and Caregivers Is This Information Right

More information

ENERGY LOSS OF ALPHA PARTICLES IN GASES

ENERGY LOSS OF ALPHA PARTICLES IN GASES Vilnius University Faculty of Physics Department of Solid State Electronics Laboratory of Applied Nuclear Physics Experiment No. ENERGY LOSS OF ALPHA PARTICLES IN GASES by Andrius Poškus (e-mail: andrius.poskus@ff.vu.lt)

More information

What You Need to Know About Lung Cancer Immunotherapy

What You Need to Know About Lung Cancer Immunotherapy What You Need to Know About Lung Cancer Immunotherapy Lung.org/immunotherapy What is immunotherapy? Immunotherapy for cancer, sometimes called immune-oncology, is a type of medicine that treats cancer

More information

Production of X-rays and Interactions of X-rays with Matter

Production of X-rays and Interactions of X-rays with Matter Production of X-rays and Interactions of X-rays with Matter Goaz and Pharoah. Pages 11-20. Neill Serman Electrons traveling from the filament ( cathode) to the target (anode) convert a small percentage

More information

The chemical reactions inside cells are controlled by enzymes. Cells may be specialised to carry out a particular function.

The chemical reactions inside cells are controlled by enzymes. Cells may be specialised to carry out a particular function. 12.1 What are animals and plants built from? All living things are made up of cells. The structures of different types of cells are related to their functions. to relate the structure of different types

More information

ORGAN SYSTEMS OF THE BODY

ORGAN SYSTEMS OF THE BODY ORGAN SYSTEMS OF THE BODY DEFINITIONS AND CONCEPTS A. Organ a structure made up of two or more kinds of tissues organized in such a way that they can together perform a more complex function that can any

More information

FAT 411: Why you can t live without it

FAT 411: Why you can t live without it FAT 411: Why you can t live without it In the many nutrition talks I have done in the past, I have received numerous questions surrounding the somewhat misunderstood macronutrient of fat. Question range

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

M6-1 NOTE. Each major learning point is clearly identified by boldface type throughout the guide and emphasized in the PowerPoint presentation.

M6-1 NOTE. Each major learning point is clearly identified by boldface type throughout the guide and emphasized in the PowerPoint presentation. Basics of Cancer Treatment Module 6 Basics of Cancer Treatment Target Audience: Community members Staff of Indian health programs, including Community Health Representatives Contents of Learning Module:

More information