# A COMPUTATIONAL METHOD FOR FUZZY ARITHMETIC OPERATIONS

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 8 DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 4, ISSUE, JANUARY 009 A COMPUTATIONAL METHOD FOR FUZZY ARITHMETIC OPERATIONS Thowhida Akther and Sanwar Uddin Ahmad Faculty of Science and Information Technology Daffodil International University, Dhaka, Bangladesh Department of Mathematics University of Dhaka, Dhaka, Bangladesh and Abstract: In this paper, a computer implementation to evaluate the arithmetic operations on two fuzzy numbers with linear membership functions has been developed The fuzzy arithmetic approached by the interval arithmetic is used here The algorithm of the developed method with a numerical eample is also provided Using this method four basic arithmetic operations between any two TFNs can be evaluated without compleity Keywords: Fuzzy arithmetic, Fuzzy number, Membership Function, Interval arithmetic, - cut Introduction The fuzzy numbers were introduced by [] and frequently arise in decision making, control theory, fuzzy systems and approimate reasoning problems The fuzzy arithmetic was developed by several later authors, eg [ 4] In recent years some research on the application of the fuzzy set theory [5] in education, based on the concepts of fuzzy numbers and fuzzy arithmetic has begun eg, [6, 7] Fuzzy numbers are also used in statistics, computer programming, engineering (especially communications), and eperimental science In calculations generally for computational efficiency many applications limit the membership functions of the fuzzy numbers to triangular or trapezoidal fuzzy numbers Using the inverse function [4] the implementation of arithmetic operations on fuzzy numbers is computationally comple and the implementation of the etension principle [5] is equivalent to solving a nonlinear programming problem A direct, fast and accurate way of computing the arithmetic operations on fuzzy numbers has engaged researchers and students of many fields and became the motivation to produce the proposed computational method The users can evaluate the eact form of the membership functions of the resultant fuzzy numbers in a simple and accurate implementation on computer using MATHEMATICA In this paper the triangular fuzzy numbers (TFN) are considered The fuzzy arithmetic approached by interval arithmetic for fuzzy numbers has been used in this paper In recent times [8] proposed a method using spreadsheet to evaluate the arithmetic operations on fuzzy numbers and [9] proposed a method using MATHEMATICA to evaluate the multiplication on fuzzy numbers In this paper the method proposed in [9] is etended for all the four basic arithmetic operations on fuzzy numbers and evaluate the eact forms of the membership functions of the fuzzy results Fuzzy Intervals and Numbers The universe of discourse on which fuzzy numbers are defined is the set of real numbers and its subsets (eg, integers or natural numbers), its membership function should assign the degree of to the central value and degrees to other numbers that reflects their proimity to the central value according to some rule therefore the membership functions ought to be normal and conve The membership should thus decrease from to 0 on both sides of the central value Fuzzy sets of this kind are known as fuzzy numbers Membership functions that conform to this intuitive conception must be epressed in the general form [0],

2 DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 4, ISSUE, JANUARY f ( ), for [ a, b], for [ b, c] A( ) g( ), for [ c, 0, where a b c d, f is increasing and rightcontinuous function on [a, b], and g is decreasing and left-continuous function on [c, If b = c then A is a fuzzy number it is known as fuzzy interval When a d f ( ) = and g( ) = the fuzzy b a d c number A is a trapezoidal fuzzy number When f and g are as before and b = c then A is a triangular fuzzy number (TFN) 0 c Fig A trapezoidal fuzzy number 0 a b = c Fig A triangular fuzzy number The TFN A is denoted by A =< a, b, d > The -cuts of the TFN A are [ a + ( b a), d ( d b)], [0,] () 3 Standard Fuzzy Arithmetic Operations The essential properties for defining meaningful arithmetic operations on fuzzy numbers are, (a) Fuzzy numbers are normal fuzzy sets, ie X st A ( ) = (b) The -cuts of every fuzzy number are closed intervals of real numbers (0,] (c) The support of every fuzzy number, S(A) = Supp(A) = { IR > 0} is bounded (d) Fuzzy numbers are conve fuzzy sets ie for all, X, A( λ + ( λ) ) min( A( ), A( )) For computing the four basic arithmetic operations on fuzzy numbers we represent the d d numbers by their -cuts and employ interval arithmetic to the -cuts Consider two arbitrary fuzzy numbers A and B, and let denote any of the four arithmetic operations Then, for each (0, ], the -cut of A B is defined in terms of the -cuts of A and B by the formula ( A B) = A B () which is not applicable when is division and 0 B for any (0,] Once the -cuts ( A B) are determined, the resulting fuzzy number A B is readily epressed by the decomposition theorem of fuzzy sets as, A B = ( A B) (3) [0,] Since every fuzzy set is uniquely represented by its -cuts and these are closed intervals of real numbers, arithmetic operations on fuzzy numbers can defined in terms of arithmetic operation on closed intervals of real numbers which are described in the net section 4 Interval Arithmetic The arithmetic operations for intervals [, ], based on the respective real arithmetic operations at the etremes of the intervals are defined as follows, Let T = [a, b] and S = [c, be two closed intervals of real numbers, then T S = {: there is some y in T, and some z in S, such that = y z}, where is the arithmetic operations ecept division (/), which is not defined if 0 S The arithmetic operations on intervals are defined in the ends of their intervals, as is shown below [], Addition (+): T + S = [ a, b] + [ c, = [ a + c, b + Subtraction ( ): T - S = [ a, b] [ c, = [ a d, b c] Multiplication (): T S = [a, b] [c, = [min{ac, ad, bc, bd}, ma{ac, ad, bc, bd}] More precisely the etremes of the multiplied interval is provided in the following table Division (/): a b [ a, b]/[ c, = [min(,,, ), c d c d a b ma(,,, )], provided 0 [ c, c d c d The etremes of the resultant interval are given in the following table

3 0 AKTHER ET AL: A COMPUTATIONAL METHOD FOR FUZZY ARITHMETIC OPERATIONS Table Table for computing the etremes of the product of two closed intervals T = [ a, b] S = [ c, T S 0 a b 0 c d [ac, b c 0 d [bc, b c d 0 [bc, a 0 c d [ad, c a 0 b c 0 d [min(ad, bc), ma(ac, bd)] c d 0 [bc, ac] 0 c d [ad, bc] a b 0 c 0 d [ad, ac] c d 0 [bd, ac] Table Table for computing the etremes of the division of two closed intervals T = [a, b] S = [ c, T / S 0 a b a 0 b a b 0 d c b a d c c c b a d d c d b b c d 5 Algorithm for the proposed method In this section the algorithm of the developed MATHEMATICA code for the fuzzy arithmetic of two TFNs which evaluate the membership function of the resultant fuzzy number is provided Given A = <a, f A, b, g A, c >, B = <a, f B, b, g B, c > Input: The real numbers a, b, c, a, b, c The functions f A (), [ a, b ], g A (), [ b, c ], f B (), [ a, b ], g B (), [ b, c ] Output: Evaluate the analytical form of the membership function of (A+B)(), (A B)(), (AB)(), (A/B)() Step Find A = [ A, A ], B = B, B ] in terms of [ If = Addition, Then ( A + B) = [ A + B, A + B ] by Section 4 and go to Step If = Subtraction, Then ( A B) = [ A B, A B ] by Section 4 and go to Step Step Using backward transformation technique, compute the membership functions of (A B)() in terms of for ( A B) (0), ( A ) ()] and [ B [ ( A B) (0), ( A B) ()] respectively If = Division and 0 [ B, B ] Then go to Step3 Else Output Division is not defined End If If = Multiplication [9] Then go to Step3 Step 3 Define functions to compute the etremes ( A B), ( A B) of ( A B), for [ m, n] in terms of, m, n Step 4 Define functions using backward transformation technique, which compute the membership functions of (A B)() in terms of for ( A B) ( m), ( A B) ( )] and [ n [ ( A B) ( m), ( A B) ( n Step 5 Let K = Min{A(0), B(0)} and K = Ma{A(0), B(0)} )] respectively If = Division go to Step 5 If = Multiplication [9] go to Step 6 Step 6 Case If K = 0 or K = Compute (A/B)() for 0 < < Case If 0 < K < Compute (A/B)() for 0 < < K and K < < respectively Step 7 Case If K = 0 and 0 < K < Compute (AB)() for 0 < < K, and K < < respectively Case If (K = 0 and K = ) or K = 0 Compute (AB)() for 0 < < Case3 If K > 0 and 0 < K < Compute (AB)() for 0 < < K, K < < K and K < < respectively Case4 If K =

4 DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 4, ISSUE, JANUARY 009 Compute (AB)() for 0 < < Case5 If 0 < K < and K = Compute (AB)() by Case3 6 Numerical Eample Consider two TFN s with membership functions +, 3 A( ), 3, 0,, 3 5 and B( ), 3 5 0, Fig 3 Membership functions of and B() The membership function for the addition of, 9 < 3 addab ( ), B() Fig 4 Membership function of (A + B)() The membership function for the subtraction of, < 3 subab ( ) 0 +, Fig 5 Membership function of (A - B)() The membership function for the product of ( ), 0 8 AB ( ) ( ), 0 < 35 4 ( ), 0 < Fig 6 Membership function of (AB)() The membership function for the division of 3( + ), divab ( ), < , 0 < 7 + 5

### A New Operation on Triangular Fuzzy Number for. Solving Fuzzy Linear Programming Problem

Applied Mathematical Sciences, Vol. 6, 2012, no. 11, 525 532 A New Operation on Triangular Fuzzy Number for Solving Fuzzy Linear Programming Problem A. Nagoor Gani PG and Research Department of Mathematics

### Polynomial Degree and Finite Differences

CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

### Arithmetic Operations on Generalized Trapezoidal Fuzzy Number and its Applications

TJFS: Turkish Journal of Fuzzy Systems (eissn: 1309 1190) An Official Journal of Turkish Fuzzy Systems Association Vol.3, No.1, pp. 16-44, 2012. Arithmetic Operations on Generalized Trapezoidal Fuzzy Number

### PROBABILISTIC AND FUZZY FAULT-TREE ANALYSES FOR MODELLING CAVE-IN ACCIDENTS

H.M. Al-Humaidi, Int. J. of Safety and Security Eng., Vol. 3, No. 3 (2013) 165 173 PROBABILISTIC AND FUZZY FAULT-TREE ANALYSES FOR MODELLING CAVE-IN ACCIDENTS H.M. AL-HUMAIDI Kuwait University, Kuwait.

### Finding K Derrick Smith

Finding K Derrick Smith Introduction The error bounds for the integration approimation techniques you learned in class need you to find a value of K such that f ( ) K, f ( ) K or f ( ) K for all in [ a,

### Fuzzy State Space Model of Multivariable Control Systems

Fuzzy State Space Model of Multivariable Control Systems R. Ismail Faculty of Information Technology and Quantitative Sciences Universiti Teknologi MARA 40450 Shah Alam, Selangor, Malaysia Tel: 60-3-5544-2090

### Solving Linear Programming Problem with Fuzzy Right Hand Sides: A Penalty Method

Solving Linear Programming Problem with Fuzzy Right Hand Sides: A Penalty Method S.H. Nasseri and Z. Alizadeh Department of Mathematics, University of Mazandaran, Babolsar, Iran Abstract Linear programming

### Why Product of Probabilities (Masses) for Independent Events? A Remark

Why Product of Probabilities (Masses) for Independent Events? A Remark Vladik Kreinovich 1 and Scott Ferson 2 1 Department of Computer Science University of Texas at El Paso El Paso, TX 79968, USA, vladik@cs.utep.edu

### Optimization of Fuzzy Inventory Models under Fuzzy Demand and Fuzzy Lead Time

Tamsui Oxford Journal of Management Sciences, Vol. 0, No. (-6) Optimization of Fuzzy Inventory Models under Fuzzy Demand and Fuzzy Lead Time Chih-Hsun Hsieh (Received September 9, 00; Revised October,

### Roots of Equations (Chapters 5 and 6)

Roots of Equations (Chapters 5 and 6) Problem: given f() = 0, find. In general, f() can be any function. For some forms of f(), analytical solutions are available. However, for other functions, we have

### Fuzzy regression model with fuzzy input and output data for manpower forecasting

Fuzzy Sets and Systems 9 (200) 205 23 www.elsevier.com/locate/fss Fuzzy regression model with fuzzy input and output data for manpower forecasting Hong Tau Lee, Sheu Hua Chen Department of Industrial Engineering

### Non-linear arithmetic operation on generalized triangular intuitionistic fuzzy numbers

Notes on Intuitionistic Fuzzy Sets ISSN 1310 4926 Vol. 20, 2014, No. 1, 9 19 Non-linear arithmetic operation on generalized triangular intuitionistic fuzzy numbers Sankar Prasad Mondal * and Tapan Kumar

### SECTION 1-4 Absolute Value in Equations and Inequalities

1-4 Absolute Value in Equations and Inequalities 37 SECTION 1-4 Absolute Value in Equations and Inequalities Absolute Value and Distance Absolute Value in Equations and Inequalities Absolute Value and

### Algebra Concept-Readiness Test, Form A

Algebra Concept-Readiness Test, Form A Concept : The Distributive Property Study the concept, and then answer the test questions on the net page. You can use the distributive property to simplify an epression

### SECTION A-3 Polynomials: Factoring

A-3 Polynomials: Factoring A-23 thick, write an algebraic epression in terms of that represents the volume of the plastic used to construct the container. Simplify the epression. [Recall: The volume 4

### Real Roots of Quadratic Interval Polynomials 1

Int. Journal of Math. Analysis, Vol. 1, 2007, no. 21, 1041-1050 Real Roots of Quadratic Interval Polynomials 1 Ibraheem Alolyan Mathematics Department College of Science, King Saud University P.O. Box:

### Interactive Fuzzy Interval Reasoning for smart Web shopping

Applied Soft Computing 5 (2005) 433 439 www.elsevier.com/locate/asoc Interactive Fuzzy Interval Reasoning for smart Web shopping Fuyu Liu, Hongli Geng, Yan-Qing Zhang* Department of Computer Science, Georgia

### MARCIN DETYNIECKI LIP6 - CNRS -University of Paris VI 4, place Jussieu Paris, France

vol. 8 (5), pp. 573-592, 2. RANKING FUZZY NUMBERS USING -WEIGHTED VALUATIONS MARCIN DETYNIECKI LIP6 - CNRS -University of Paris VI 4, place Jussieu 755 Paris, France Marcin.Detyniecki@lip6.fr RONALD R.

### Mathematics 31 Pre-calculus and Limits

Mathematics 31 Pre-calculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals

### A PARAMETRIC REPRESENTATION OF FUZZY NUMBERS AND THEIR ARITHMETIC OPERATORS

A PARAMETRIC REPRESENTATION OF FUZZY NUMBERS AND THEIR ARITHMETIC OPERATORS Ronald E. Giachetti Manufacturing Systems Integration Division National Institute of Standards and Technology Bldg. 304, Rm.

### 7.7 Solving Rational Equations

Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate

### Math 2331 Linear Algebra

2.2 The Inverse of a Matrix Math 2331 Linear Algebra 2.2 The Inverse of a Matrix Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math2331 Jiwen He, University

### Optimization under fuzzy if-then rules

Optimization under fuzzy if-then rules Christer Carlsson christer.carlsson@abo.fi Robert Fullér rfuller@abo.fi Abstract The aim of this paper is to introduce a novel statement of fuzzy mathematical programming

### Chapter 1 POLYNOMIAL FUNCTIONS

Chapter POLYNOMIAL FUNCTIONS Have you ever wondered how computer graphics software is able to so quickly draw the smooth, life-like faces that we see in video games and animated movies? Or how in architectural

### Section 2-2 Linear Equations and Inequalities

2-2 Linear Equations and Inequalities 92. Petroleum Consumption. Analyzing data from the United States Energy Department for the period between 1920 and 1960 reveals that petroleum consumption as a percentage

### 1-3 Absolute Value in Equations and Inequalities

SECTION 1 3 Absolute Value in Equations and Inequalities 103 1-3 Absolute Value in Equations and Inequalities Z Relating Absolute Value and Distance Z Solving Absolute Value Equations and Inequalities

9. Operations with Radicals (9 1) 87 9. OPERATIONS WITH RADICALS In this section Adding and Subtracting Radicals Multiplying Radicals Conjugates In this section we will use the ideas of Section 9.1 in

### INTRODUCTORY MATHEMATICS FOR ECONOMICS MSC S. LECTURE 1: DIFFRENTIATION. HUW DAVID DIXON CARDIFF BUSINESS SCHOOL. SEPTEMBER 2009.

INTRODUCTORY MATHEMATICS FOR ECONOMICS MSC S. LECTURE 1: DIFFRENTIATION. HUW DAVID DIXON CARDIFF BUSINESS SCHOOL. SEPTEMBER 009. 1.1 1. Some Definitions. An Integer: A positive or negative whole number,

### CSE 1400 Applied Discrete Mathematics Conversions Between Number Systems

CSE 400 Applied Discrete Mathematics Conversions Between Number Systems Department of Computer Sciences College of Engineering Florida Tech Fall 20 Conversion Algorithms: Decimal to Another Base Conversion

### Introduction to Fuzzy Control

Introduction to Fuzzy Control Marcelo Godoy Simoes Colorado School of Mines Engineering Division 1610 Illinois Street Golden, Colorado 80401-1887 USA Abstract In the last few years the applications of

### EFFECT OF GRAPHICAL METHOD FOR SOLVING MATHEMATICAL PROGRAMMING PROBLEM

DODIL INTERNTIONL UNIVERSITY JOURNL O SCIENCE ND TECHNOLOGY VOLUME 5 ISSUE JNURY 9 EECT O GRPHICL METHOD OR SOLVING MTHEMTICL PROGRMMING PROLEM imal Chandra Das Department of Tetile Engineering Daffodil

### Theorem 2. If x Q and y R \ Q, then. (a) x + y R \ Q, and. (b) xy Q.

Math 305 Fall 011 The Density of Q in R The following two theorems tell us what happens when we add and multiply by rational numbers. For the first one, we see that if we add or multiply two rational numbers

### A.1 Radicals and Rational Exponents

APPENDIX A. Radicals and Rational Eponents 779 Appendies Overview This section contains a review of some basic algebraic skills. (You should read Section P. before reading this appendi.) Radical and rational

### Work as the Area Under a Graph of Force vs. Displacement

Work as the Area Under a Graph of vs. Displacement Situation A. Consider a situation where an object of mass, m, is lifted at constant velocity in a uniform gravitational field, g. The applied force is

### A FUZZY LOGIC APPROACH FOR SALES FORECASTING

A FUZZY LOGIC APPROACH FOR SALES FORECASTING ABSTRACT Sales forecasting proved to be very important in marketing where managers need to learn from historical data. Many methods have become available for

### Arithmetic Operations. The real numbers have the following properties: In particular, putting a 1 in the Distributive Law, we get

Review of Algebra REVIEW OF ALGEBRA Review of Algebra Here we review the basic rules and procedures of algebra that you need to know in order to be successful in calculus. Arithmetic Operations The real

### A study of cash flows in projects with fuzzy activity durations

icccbe 2010 Nottingham University Press Proceedings of the International Conference on Computing in Civil and Building Engineering W Tizani (Editor) A study of cash flows in projects with fuzzy activity

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### Fuzzy Inventory Model without Shortages Using Signed Distance Method

Applied Mathematics & Information Sciences 1(2)(2007), 203-209 An International Journal c 2007 Dixie W Publishing Corporation, U. S. A. Fuzzy Inventory Model without Shortages Using Signed Distance Method

### Applications of interval arithmetic in solving polynomial equations by Wu s elimination method

1260 Science in China Ser. A Mathematics 2005 Vol.48 No.9 1260 1273 Applications of interval arithmetic in solving polynomial equations by Wu s elimination method CHEN Falai & YANG Wu Department of Mathematics,

### Hawkes Learning Systems: College Algebra

Hawkes Learning Systems: College Algebra Section 1.2: The Arithmetic of Algebraic Expressions Objectives o Components and terminology of algebraic expressions. o The field properties and their use in algebra.

### Exponential and Logarithmic Functions

Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

### A Fuzzy AHP based Multi-criteria Decision-making Model to Select a Cloud Service

Vol.8, No.3 (2014), pp.175-180 http://dx.doi.org/10.14257/ijsh.2014.8.3.16 A Fuzzy AHP based Multi-criteria Decision-making Model to Select a Cloud Service Hong-Kyu Kwon 1 and Kwang-Kyu Seo 2* 1 Department

### Selection of Database Management System with Fuzzy-AHP for Electronic Medical Record

I.J. Information Engineering and Electronic Business, 205, 5, -6 Published Online September 205 in MECS (http://www.mecs-press.org/) DOI: 0.585/ijieeb.205.05.0 Selection of Database Management System with

### Rising Algebra 2 Honors

Rising Algebra Honors Complete the following packet and return it on the first da of school. You will be tested on this material the first week of class. 50% of the test grade will be completion of this

### Real vector space with scalar product of quasi-triangular fuzzy numbers

Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 51 71 Real vector space with scalar product of uasi-triangular fuzzy numbers Zoltán Makó Department of Mathematics and Computer Science Sapientia University,

### Equivalence Relations

Equivalence Relations Definition An equivalence relation on a set S, is a relation on S which is reflexive, symmetric and transitive. Examples: Let S = Z and define R = {(x,y) x and y have the same parity}

### The Distributive Property

Mastering algebra is an important requisite of understanding calculus. The motivation for this review is to refresh algebraic concepts that might not have been encountered for some time, and to try to

### 4. MATRICES Matrices

4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:

### CHAPTER 13. Definite Integrals. Since integration can be used in a practical sense in many applications it is often

7 CHAPTER Definite Integrals Since integration can be used in a practical sense in many applications it is often useful to have integrals evaluated for different values of the variable of integration.

### Section A-3 Polynomials: Factoring APPLICATIONS. A-22 Appendix A A BASIC ALGEBRA REVIEW

A- Appendi A A BASIC ALGEBRA REVIEW C In Problems 53 56, perform the indicated operations and simplify. 53. ( ) 3 ( ) 3( ) 4 54. ( ) 3 ( ) 3( ) 7 55. 3{[ ( )] ( )( 3)} 56. {( 3)( ) [3 ( )]} 57. Show by

### Chapter 4: Binary Operations and Relations

c Dr Oksana Shatalov, Fall 2014 1 Chapter 4: Binary Operations and Relations 4.1: Binary Operations DEFINITION 1. A binary operation on a nonempty set A is a function from A A to A. Addition, subtraction,

### THE normalized low-pass filter magnitude specifications

780 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 54, NO. 9, SEPTEMBER 2007 Optimal Use of Some Classical Approximations in Filter Design Hercules G. Dimopoulos Abstract The classical,

### Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations

56 Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations Florin-Cătălin ENACHE

### Equations Involving Fractions

. Equations Involving Fractions. OBJECTIVES. Determine the ecluded values for the variables of an algebraic fraction. Solve a fractional equation. Solve a proportion for an unknown NOTE The resulting equation

### Course: Math 7. engage in problem solving, communicating, reasoning, connecting, and representing

Course: Math 7 Decimals and Integers 1-1 Estimation Strategies. Estimate by rounding, front-end estimation, and compatible numbers. Prentice Hall Textbook - Course 2 7.M.0 ~ Measurement Strand ~ Students

### Elementary Number Theory We begin with a bit of elementary number theory, which is concerned

CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,

### Roots of equation fx are the values of x which satisfy the above expression. Also referred to as the zeros of an equation

LECTURE 20 SOLVING FOR ROOTS OF NONLINEAR EQUATIONS Consider the equation f = 0 Roots of equation f are the values of which satisfy the above epression. Also referred to as the zeros of an equation f()

### A New Method for Multi-Objective Linear Programming Models with Fuzzy Random Variables

383838383813 Journal of Uncertain Systems Vol.6, No.1, pp.38-50, 2012 Online at: www.jus.org.uk A New Method for Multi-Objective Linear Programming Models with Fuzzy Random Variables Javad Nematian * Department

### Fuzzy Set Theory : Soft Computing Course Lecture 29 34, notes, slides RC Chakraborty, Aug.

Fuzzy Set Theory : Soft Computing Course Lecture 29 34, notes, slides www.myreaders.info/, RC Chakraborty, e-mail rcchak@gmail.com, Aug. 10, 2010 http://www.myreaders.info/html/soft_computing.html www.myreaders.info

### Any Improved Trapezoidal Approximation to Intersection (Fusion) of Trapezoidal Fuzzy Numbers Leads to Non-Associativity: A Theorem

Any Improved Trapezoidal Approximation to Intersection (Fusion) of Trapezoidal Fuzzy Numbers Leads to Non-Associativity: A Theorem Gang Xiang and Vladik Kreinovich, Senior Member, IEEE Abstract In some

### Chapter Prove or disprove: A (B C) = (A B) (A C). Ans: True, since

Chapter 2 1. Prove or disprove: A (B C) = (A B) (A C)., since A ( B C) = A B C = A ( B C) = ( A B) ( A C) = ( A B) ( A C). 2. Prove that A B= A B by giving a containment proof (that is, prove that the

### An Evaluation Model for Determining Insurance Policy Using AHP and Fuzzy Logic: Case Studies of Life and Annuity Insurances

Proceedings of the 8th WSEAS International Conference on Fuzzy Systems, Vancouver, British Columbia, Canada, June 19-21, 2007 126 An Evaluation Model for Determining Insurance Policy Using AHP and Fuzzy

### A MEMBERSHIP FUNCTION SOLUTION APPROACH TO FUZZY QUEUE WITH ERLANG SERVICE MODEL

International Journal of Mathematical Sciences and Applications Vol. No. (May, 0) Copyright Mind Reader Publications www.ijmsa.yolasite.com A MEMBERSHIP FNCTION SOTION APPROACH TO FZZY QEE WITH ERANG SERVICE

### Mathematics of Cryptography Modular Arithmetic, Congruence, and Matrices. A Biswas, IT, BESU SHIBPUR

Mathematics of Cryptography Modular Arithmetic, Congruence, and Matrices A Biswas, IT, BESU SHIBPUR McGraw-Hill The McGraw-Hill Companies, Inc., 2000 Set of Integers The set of integers, denoted by Z,

### Homework 5 Solutions

Homework 5 Solutions 4.2: 2: a. 321 = 256 + 64 + 1 = (01000001) 2 b. 1023 = 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = (1111111111) 2. Note that this is 1 less than the next power of 2, 1024, which

### 2.5 Complex Eigenvalues

1 25 Complex Eigenvalues Real Canonical Form A semisimple matrix with complex conjugate eigenvalues can be diagonalized using the procedure previously described However, the eigenvectors corresponding

### Lecture 1: Elementary Number Theory

Lecture 1: Elementary Number Theory The integers are the simplest and most fundamental objects in discrete mathematics. All calculations by computers are based on the arithmetical operations with integers

### Section 1-4 Functions: Graphs and Properties

44 1 FUNCTIONS AND GRAPHS I(r). 2.7r where r represents R & D ependitures. (A) Complete the following table. Round values of I(r) to one decimal place. r (R & D) Net income I(r).66 1.2.7 1..8 1.8.99 2.1

### NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling

1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information

### Homework 2 Solutions

Homework Solutions 1. (a) Find the area of a regular heagon inscribed in a circle of radius 1. Then, find the area of a regular heagon circumscribed about a circle of radius 1. Use these calculations to

### 1. R In this and the next section we are going to study the properties of sequences of real numbers.

+a 1. R In this and the next section we are going to study the properties of sequences of real numbers. Definition 1.1. (Sequence) A sequence is a function with domain N. Example 1.2. A sequence of real

### Project Scheduling to Maximize Fuzzy Net Present Value

, July 6-8, 2011, London, U.K. Project Scheduling to Maximize Fuzzy Net Present Value İrem UÇAL and Dorota KUCHTA Abstract In this paper a fuzzy version of a procedure for project scheduling is proposed

### Conventional Sets and Fuzzy Sets

Conventional Sets and Conventional Sets A set is a collection of things, for example the room temperature, the set of all real numbers, etc. 2 Conventional Sets Such collection of things are called the

### October 2007. ENSEEIHT-IRIT, Team APO collaboration with GREM 3 -LAPLACE, Toulouse. Design of Electrical Rotating Machines using

using IBBA using ENSEEIHT-IRIT, Team APO collaboration with GREM 3 -LAPLACE, Toulouse October 2007 Collaborations with the GREM 3 Team (LAPLACE-ENSEEIHT) using IBBA Bertrand Nogarede, Professor : Director

### Chapter 3. Exponential and Logarithmic Functions. Selected Applications

Chapter 3 Eponential and Logarithmic Functions 3. Eponential Functions and Their Graphs 3.2 Logarithmic Functions and Their Graphs 3.3 Properties of Logarithms 3.4 Solving Eponential and Logarithmic Equations

### POSITIVE INTEGERS, INTEGERS AND RATIONAL NUMBERS OBTAINED FROM THE AXIOMS OF THE REAL NUMBER SYSTEM

MAT 1011 TECHNICAL ENGLISH I 03.11.2016 Dokuz Eylül University Faculty of Science Department of Mathematics Instructor: Engin Mermut Course assistant: Zübeyir Türkoğlu web: http://kisi.deu.edu.tr/engin.mermut/

### Students Currently in Algebra 2 Maine East Math Placement Exam Review Problems

Students Currently in Algebra Maine East Math Placement Eam Review Problems The actual placement eam has 100 questions 3 hours. The placement eam is free response students must solve questions and write

### Functions in Economics

chapter one Functions in Economics OBJECTIVES In this chapter you learn to n Appreciate why economists use mathematics n Plot points on graphs and handle negative values n Epress relationships using linear

### Online EFFECTIVE AS OF JANUARY 2013

2013 A and C Session Start Dates (A-B Quarter Sequence*) 2013 B and D Session Start Dates (B-A Quarter Sequence*) Quarter 5 2012 1205A&C Begins November 5, 2012 1205A Ends December 9, 2012 Session Break

### PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS

PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS A ver important set of curves which has received considerabl attention in recent ears in connection with the factoring of large numbers

### Polynomial and Rational Functions

Chapter Section.1 Quadratic Functions Polnomial and Rational Functions Objective: In this lesson ou learned how to sketch and analze graphs of quadratic functions. Course Number Instructor Date Important

### SECTION 9-1 Matrices: Basic Operations

9 Matrices and Determinants In this chapter we discuss matrices in more detail. In the first three sections we define and study some algebraic operations on matrices, including addition, multiplication,

### Zero and Negative Exponents and Scientific Notation. a a n a m n. Now, suppose that we allow m to equal n. We then have. a am m a 0 (1) a m

0. E a m p l e 666SECTION 0. OBJECTIVES. Define the zero eponent. Simplif epressions with negative eponents. Write a number in scientific notation. Solve an application of scientific notation We must have

### MATH 102 College Algebra

FACTORING Factoring polnomials ls is simpl the reverse process of the special product formulas. Thus, the reverse process of special product formulas will be used to factor polnomials. To factor polnomials

### Methods to Solve Quadratic Equations

Methods to Solve Quadratic Equations We have been learning how to factor epressions. Now we will apply factoring to another skill you must learn solving quadratic equations. a b c 0 is a second-degree

### The Collapsing Method of Defuzzification for Discretised Interval Type-2 Fuzzy Sets

The Collapsing Method of Defuzzification for Discretised Interval Tpe- Fuzz Sets Sarah Greenfield, Francisco Chiclana, Robert John, Simon Coupland Centre for Computational Intelligence De Montfort niversit

### POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

### 1 Determine whether an. 2 Solve systems of linear. 3 Solve systems of linear. 4 Solve systems of linear. 5 Select the most efficient

Section 3.1 Systems of Linear Equations in Two Variables 163 SECTION 3.1 SYSTEMS OF LINEAR EQUATIONS IN TWO VARIABLES Objectives 1 Determine whether an ordered pair is a solution of a system of linear

### SECTION P.5 Factoring Polynomials

BLITMCPB.QXP.0599_48-74 /0/0 0:4 AM Page 48 48 Chapter P Prerequisites: Fundamental Concepts of Algebra Technology Eercises Critical Thinking Eercises 98. The common cold is caused by a rhinovirus. The

### Define the set of rational numbers to be the set of equivalence classes under #.

Rational Numbers There are four standard arithmetic operations: addition, subtraction, multiplication, and division. Just as we took differences of natural numbers to represent integers, here the essence

### 2.2 Absolute Value Functions

. Absolute Value Functions 7. Absolute Value Functions There are a few was to describe what is meant b the absolute value of a real number. You ma have been taught that is the distance from the real number

### A Quick Algebra Review

1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals

### Chapter 2 Goal Programming Variants

Chapter 2 Goal Programming Variants This chapter introduces the major goal programming variants. The purpose and underlying philosophy of each variant are given. The three major variants in terms of underlying