The Central Equation

Size: px
Start display at page:

Download "The Central Equation"

Transcription

1 The Central Equation Mervyn Roy May 6, Derivation of the central equation The single particle Schrödinger equation is, ( H E nk ψ nk = 0, ) ( + v s(r) E nk ψ nk = 0. (1) We can solve Eq. (1) at given wavevector, k, and band index, n, to find the energy, E nk, and the single particle wavefunction, ψ nk. In a crystal, the eigenstates, ψ nk, obey Bloch s theorem, and ψ nk (r) = e ik r u nk (r), () where u nk has the periodicity of the lattice. So u nk (r + T) = u nk (r) if the translation vector, T = n 1 a 1 + n a + n 3 a 3 is a sum over unit cell vectors, a 1, a, a 3, of the crystal. As the u nk have the periodicity of the lattice we can expand them as a Fourier series, u nk = c (k)e i r, so that ψ nk = c (k)e i(k+) r, (3) where are reciprocal lattice vectors of the crystal, and the c (k) are the expansion coefficients of the single particle wavefunction at each k. The potential, v s (r), must also have the periodicity of the lattice, so v s (r) = V e i r. (4) 1

2 Before substituting into the Schrödinger equation (Eq. (1)) we note that, and ψ nk = v s (r)ψ nk = k + c e i(k+) r, (5) V c Q (k)e i( +Q+k) r. (6) Q Then, in Eq. (1), we have ( ) k + E nk e i(k+) r + V c Q (k)e i( +Q+k) r = 0. (7) It is now advantageous to rearrange the double sum involving V so that the plane wave part in the double sum becomes e i(k+) r. To do this, we write Q in terms of another reciprocal lattice vector, = + Q and replace Q with. Because the sums are over an infinite set of reciprocal lattice vectors, for each fixed, we can replace the infinite sum over Q with an infinite sum over the equivalent set of vectors,. Then, ( ) k + E nk c (k)e i(k+) r + V c (k)e i(+k) r = 0, (8) or, { ( k ) + e i(k+) r E nk c (k) + } V c (k) = 0. (9) The left hand side of this equation can only be zero if, for each, the term inside the curly brackets {...} is zero. Hence, ( ) k + E nk c (k) + V c (k) = 0. (10) Equation (10) is called the central equation. The form above is similar to that given by Tanner (Introduction to the physics of electrons in solids). We can also rearrange the central equation in a number of different ways. To obtain the form used by Martin (Electronic Structure) we must rewrite the infinite sum over reciprocal lattice vectors in Eq. (10). We choose a new reciprocal lattice vector, =, and replace the infinite sum over with an equivalent infinite sum over. Then, ( ) k + E nk c (k) + V c (k) = 0. (11) Q

3 Because both terms on the left now contain a coefficient that looks like c Q we can place both terms within the sum over and factorise out the c. [( k + ) ] E nk δ( ) + V c (k) = 0, (1) where the delta function δ( ) ensures we only get the required = terms in the first term in the sum over. Solving the central equation From Eq. (1) it should be clear that the central equation is an infinite set of coupled simultaneous equations - with one equation for each possible reciprocal lattice vector. We can solve the central equation numerically or, in some very simple cases, analytically. In whatever scheme we use we must truncate the infinite sum over reciprocal lattice vectors at some point. When solving the central equation it is common to take V 0 = 0. The V 0 Fourier component is the average value of the potential and we can always set the average of the potential to zero by adding or subtracting a constant offset to the energies..1 Truncating the series: example with 3 terms To explicitly see how Eq. (1) becomes a set of coupled simultaneous equations let us imagine that the infinite sum over reciprocal lattice vectors is restricted to just three possibilities, g, 0, and g. In this case in Eq. (1) has three possible values ( g, 0, g) and, in the sum over reciprocal lattice vectors, must sum over the three possible values g, 0, g. The central equation will therefore give us three simultaneous equations each containing three terms. For example, if we select = g we can write the first of the three simultaneous equations as, [( k + ) ] E nk δ( g ) + V g c (k) = 0. (13) = g,0,g In the first term in the sum, = g and, because we have picked = g, we get a contribution from the part of the equation containing the delta 3

4 function. In this case, when g, we obviously only retain the terms containing the Fourier components of the potential V. Remembering that V 0 = 0 we can therefore write Eq. (13) as, ( ) k g E nk c g (k) + V g c 0 (k) + V g c g (k) = 0. (14) Similarly, we can write down another equation for the case when = 0. In this case we obviously do not get a contribution from the delta function term if = g or = g, and ( ) k V g c g (k) + E nk c 0 (k) + V g c g (k) = 0. (15) Finally, we get the third equation in the set by choosing = g, ( ) k + g V g c g (k) + V g c 0 (k) + E c g (k) = 0. (16) We can write this set of simultaneous equations as a matrix equation, ( 1 k ) g E nk ( V g V g V 1 ) c g (k) g k E nk ( V g V g V 1 g k + ) c 0 (k) = 0,(17) g E nk c g(k) and this only has non-trivial solutions if the determinant, ( 1 k ) g E nk V g V g ( V 1 ) g k E nk V g ( V g V 1 g k + ) = 0. (18) g E nk. eneral form In shorthand form we can write our matrix equation (Eq. (17)) as, [H EI] c = 0, (19) where I is the unit matrix and E are the eigenvalues E nk. From our previous example (with the sum restricted to 3 reciprocal lattice vectors) H is the hamiltonian matrix, ( 1 k g ) V g V g H = ( V 1 g k ) ( V g V g V 1 g k + g ) 4, (0)

5 and c is the eigenvector that contains the expansion coefficients, c g (k) c = c 0 (k). (1) c g (k) The notation in Eq. (19) is completely general. So, to find the single particle energies, we must always find the values of E so that the determinant, H EI = 0. () In our previous example H was a 3 3 matrix, but we could have restricted the infinite series in the central equation to any number of terms. For example, if we had included N reciprocal lattice vectors we would have an N N hamiltonian matrix..3 The origin of band gaps at the Brillouin zone boundary.3.1 The empty lattice If we set v s (r) = 0 then all of the off-diagonal terms in the hamiltonian matrix are zero and we get a simple set of uncoupled equations that immediately give us the allowed energies, E nk = 1 k + n. (3) These are essentially the familiar free electron solutions, E = p /m, but, in a periodic crystal wavevectors k and k + are equivalent. We can use this equivalence to simplify the way in which we represent the states: any wavevector k that is larger than a reciprocal lattice vector,, can be represented by a shorter wavevector inside the first Brillouin zone, k = k, because of the periodicity of the reciprocal lattice. In the reduced zone scheme we represent all of the possible E nk in terms of wavevectors within the first Brillouin zone. This is illustrated schematically in Fig Weak periodic potential: solution at k = g/ First we assume that the potential is weak and periodic such that v s (r) = V cos(g r), only the V g Fourier components of the potential are non-zero, and V g = V g. Then, as V is small, we might imagine that the wavefunctions ψ nk = c e i(k+) r will be similar to the free electron solutions, ψ nk = 5

6 3.5 g Energy (ev) g 0 -g -g -g/ Γ g/ g g Figure 1: Illustration of the reduced zone scheme. The parts of the E-k curve outside the first Brillouin zone are folded back into the first Brillouin zone by translating by an integer number of reciprocal lattice vectors. The dotted vertical lines denote the edges of the first Brillouin zone at g/ and g/. k e ik r and it should therefore be possible to restrict the infinite sum in Eq. (1) to just a few terms. As we are interested in solutions near the Brillouin zone boundary, where k = g/ we can restrict this sum to cover just two reciprocal lattice vectors. Near k = g/ we assume that the = 0 and = g components are the most important so that, ψ nk = c 0 e ik r + c g e i(k g) r. (4) The hamiltonian matrix is then just a matrix and, by retaining only the = g and = 0 terms in Eq. (17) we can find the allowed energies from, ( 1 k ) g E nk V g ( V 1 ) g k E nk = 0. (5) If we use the shorthand λ k = 1 k then the allowed energies are obtained by solving the resultant quadratic equation (λ k g E)(λ k E) Vg = 0. The solutions for the allowed energies near k = g/ are then, E = 1 (λ k + λ k g ) ± 1 [ ] 1/ (λ k λ k g ) + 4Vg. (6) At the zone boundary, k = g/ and λ k = λ k g = g /8. So, at the zone boundary there are two possible values of the energy, E = g /8 ± V g. (7) 6

7 A periodic potential, no matter how small, therefore opens up a gap at the Brillouin zone boundary of V g. This is illustrated in figure. Energy 3g /8 g /8 V g Figure : E(k) relation in the presence of a weak periodic potential (solid red line). The faint dotted line shows the empty lattice solutions. The weak periodic potential introduces a gap of V g at the Brillouin zone boundary where k = g/. Γ g/ k.4 Numerical solution In principle, from Eq. (1), the hamiltonian matrix is infinite in extent, but to solve the central equation we must always truncate the sum over reciprocal lattice vectors at some point. By doing this we restrict the reciprocal lattice vectors in our Fourier expansion of the single-particle wavefunction (Eq. 3) to be less than some maximum length max, ψ nk = c (k)e i(k+) r. (8) < max As with any Fourier series, we can include more and more terms in the expansion until the wavefunction is as accurate as we need it to be. How do we know how many terms to include? As always, we can use the variational theorem to help us decide. The variational theorem tells us that each E nk will decrease as max increases and our approximate form for the wavefunction improves. We can therefore examine the convergence of E nk with max to determine how many reciprocal lattice vectors we must include to obtain the single-particle energies to a given accuracy (see, for example, figure 3). Many computer codes have been developed to solve systems of equations, like the central equation, numerically. To solve Eq. (1) we must essentially give our computer code just two pieces of information. First we need to specify how many reciprocal lattice vectors we would like to include in our 7

8 expansion of the single particle wavefunction (this sets the size of the N N hamiltonian in Eq. (19)). Second we need to supply the Fourier components of the potential, V, that set each element of the hamiltonian matrix in Eq. (19). There exist many sophisticated numerical routines which will then diagonalise this matrix - essentially, calculate and report the values of E that satisfy H EI = Link to density functional theory In a density functional theory (DFT) calculation the single particle Schrödinger equations (Eq. (1)) are the equations for the fictitious Kohn-Sham orbitals. These orbitals give the real electron density of the system by n(r) = nk ψ nk, where the sum is over the occupied single particle energy levels. This density can then be used to calculate the total energy, E = T s [n] + v s [n] = T s [n] + v(r)n(r)dr + E H [n] + E XC [n], (9) where T s is the kinetic energy functional, E H is the Hartree energy, and E XC is the exchange and correlation energy. As the variational theorem tells us that the total energy, E, must decrease as we increase max, we can examine the convergence of E with max to determine how many Fourier components we need to retain in the expansion Eq. (3). In a DFT calculation it is common to use a plane wave cut-off energy, E cut, to specify the maximum number of reciprocal lattice vectors to be included in the calculation at each k point. The cut-off energy, E cut sets max according to, E cut = 1 k + max. (30) 8

9 -8.58 Total Energy, E (H) E(E cut )-E(4) E cut (H) E cut (H) Figure 3: Example calculation showing total energy, E in Hartrees (H) against the plane wave cut-off energy, E cut, which determines the number of plane waves in the expansion, Eq. (3). The faint horizontal line denotes the converged energy of E = H at E cut = 4. The inset shows the difference between the total energy calculated at each E cut and the converged energy calculated at E cut = 4 H. 9

The quantum mechanics of particles in a periodic potential: Bloch s theorem

The quantum mechanics of particles in a periodic potential: Bloch s theorem Handout 2 The quantum mechanics of particles in a periodic potential: Bloch s theorem 2.1 Introduction and health warning We are going to set up the formalism for dealing with a periodic potential; this

More information

Plate waves in phononic crystals slabs

Plate waves in phononic crystals slabs Acoustics 8 Paris Plate waves in phononic crystals slabs J.-J. Chen and B. Bonello CNRS and Paris VI University, INSP - 14 rue de Lourmel, 7515 Paris, France chen99nju@gmail.com 41 Acoustics 8 Paris We

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

DFT in practice : Part I. Ersen Mete

DFT in practice : Part I. Ersen Mete plane wave expansion & the Brillouin zone integration Department of Physics Balıkesir University, Balıkesir - Turkey August 13, 2009 - NanoDFT 09, İzmir Institute of Technology, İzmir Outline Plane wave

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

A Beginner s Guide to Materials Studio and DFT Calculations with Castep. P. Hasnip (pjh503@york.ac.uk)

A Beginner s Guide to Materials Studio and DFT Calculations with Castep. P. Hasnip (pjh503@york.ac.uk) A Beginner s Guide to Materials Studio and DFT Calculations with Castep P. Hasnip (pjh503@york.ac.uk) September 18, 2007 Materials Studio collects all of its files into Projects. We ll start by creating

More information

An Introduction to Hartree-Fock Molecular Orbital Theory

An Introduction to Hartree-Fock Molecular Orbital Theory An Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2000 1 Introduction Hartree-Fock theory is fundamental

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

9.2 Summation Notation

9.2 Summation Notation 9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

More information

= N 2 = 3π2 n = k 3 F. The kinetic energy of the uniform system is given by: 4πk 2 dk h2 k 2 2m. (2π) 3 0

= N 2 = 3π2 n = k 3 F. The kinetic energy of the uniform system is given by: 4πk 2 dk h2 k 2 2m. (2π) 3 0 Chapter 1 Thomas-Fermi Theory The Thomas-Fermi theory provides a functional form for the kinetic energy of a non-interacting electron gas in some known external potential V (r) (usually due to impurities)

More information

5 Homogeneous systems

5 Homogeneous systems 5 Homogeneous systems Definition: A homogeneous (ho-mo-jeen -i-us) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x +... + a n x n =.. a m

More information

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function. 7. DYNAMIC LIGHT SCATTERING 7. First order temporal autocorrelation function. Dynamic light scattering (DLS) studies the properties of inhomogeneous and dynamic media. A generic situation is illustrated

More information

Factoring Quadratic Expressions

Factoring Quadratic Expressions Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

More information

The degree of a polynomial function is equal to the highest exponent found on the independent variables.

The degree of a polynomial function is equal to the highest exponent found on the independent variables. DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

More information

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

CHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules

CHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules CHEM6085: Density Functional Theory Lecture 2 Hamiltonian operators for molecules C.-K. Skylaris 1 The (time-independent) Schrödinger equation is an eigenvalue equation operator for property A eigenfunction

More information

The Quantum Harmonic Oscillator Stephen Webb

The Quantum Harmonic Oscillator Stephen Webb The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems

More information

Social Media Mining. Network Measures

Social Media Mining. Network Measures Klout Measures and Metrics 22 Why Do We Need Measures? Who are the central figures (influential individuals) in the network? What interaction patterns are common in friends? Who are the like-minded users

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

Core Maths C1. Revision Notes

Core Maths C1. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

More information

LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to,

LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to, LINEAR INEQUALITIES When we use the equal sign in an equation we are stating that both sides of the equation are equal to each other. In an inequality, we are stating that both sides of the equation are

More information

TRIGONOMETRY Compound & Double angle formulae

TRIGONOMETRY Compound & Double angle formulae TRIGONOMETRY Compound & Double angle formulae In order to master this section you must first learn the formulae, even though they will be given to you on the matric formula sheet. We call these formulae

More information

LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL

LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables

More information

5 Numerical Differentiation

5 Numerical Differentiation D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Copyrighted Material. Chapter 1 DEGREE OF A CURVE Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

More information

Row Echelon Form and Reduced Row Echelon Form

Row Echelon Form and Reduced Row Echelon Form These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

More information

Year 9 set 1 Mathematics notes, to accompany the 9H book.

Year 9 set 1 Mathematics notes, to accompany the 9H book. Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H

More information

LS.6 Solution Matrices

LS.6 Solution Matrices LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

More information

The Characteristic Polynomial

The Characteristic Polynomial Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

FURTHER VECTORS (MEI)

FURTHER VECTORS (MEI) Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics

More information

The Application of Density Functional Theory in Materials Science

The Application of Density Functional Theory in Materials Science The Application of Density Functional Theory in Materials Science Slide 1 Outline Atomistic Modelling Group at MUL Density Functional Theory Numerical Details HPC Cluster at the MU Leoben Applications

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 51 First Exam January 29, 2015 Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

More information

FYS3410 - Vår 2016 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v16/index.html

FYS3410 - Vår 2016 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v16/index.html FYS3410 - Vår 2016 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v16/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17, 18,

More information

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P. MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

More information

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

More information

If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

More information

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system 1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Integrating algebraic fractions

Integrating algebraic fractions Integrating algebraic fractions Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fraction as the sum of its partial fractions. In this unit we will illustrate

More information

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

Accuracy of the coherent potential approximation for a onedimensional array with a Gaussian distribution of fluctuations in the on-site potential

Accuracy of the coherent potential approximation for a onedimensional array with a Gaussian distribution of fluctuations in the on-site potential Accuracy of the coherent potential approximation for a onedimensional array with a Gaussian distribution of fluctuations in the on-site potential I. Avgin Department of Electrical and Electronics Engineering,

More information

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

More information

Vectors 2. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996.

Vectors 2. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996. Vectors 2 The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996. Launch Mathematica. Type

More information

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method 578 CHAPTER 1 NUMERICAL METHODS 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

Equations, Inequalities & Partial Fractions

Equations, Inequalities & Partial Fractions Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

More information

FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html

FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html Pensum: Solid State Physics by Philip Hofmann (Chapters 1-7 and 11) Andrej Kuznetsov delivery

More information

3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS 3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

More information

FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

More information

Vocabulary Words and Definitions for Algebra

Vocabulary Words and Definitions for Algebra Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

More information

Properties of Real Numbers

Properties of Real Numbers 16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004 PHY464 Introduction to Quantum Mechanics Fall 4 Practice Test 3 November, 4 These problems are similar but not identical to the actual test. One or two parts will actually show up.. Short answer. (a) Recall

More information

CHAPTER 2. Eigenvalue Problems (EVP s) for ODE s

CHAPTER 2. Eigenvalue Problems (EVP s) for ODE s A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL EQUATIONS

More information

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them

More information

Linear Algebra and TI 89

Linear Algebra and TI 89 Linear Algebra and TI 89 Abdul Hassen and Jay Schiffman This short manual is a quick guide to the use of TI89 for Linear Algebra. We do this in two sections. In the first section, we will go over the editing

More information

Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:

Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers: Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules

More information

Vector and Matrix Norms

Vector and Matrix Norms Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

More information

Structure of the Root Spaces for Simple Lie Algebras

Structure of the Root Spaces for Simple Lie Algebras Structure of the Root Spaces for Simple Lie Algebras I. Introduction A Cartan subalgebra, H, of a Lie algebra, G, is a subalgebra, H G, such that a. H is nilpotent, i.e., there is some n such that (H)

More information

arxiv:1603.01211v1 [quant-ph] 3 Mar 2016

arxiv:1603.01211v1 [quant-ph] 3 Mar 2016 Classical and Quantum Mechanical Motion in Magnetic Fields J. Franklin and K. Cole Newton Department of Physics, Reed College, Portland, Oregon 970, USA Abstract We study the motion of a particle in a

More information

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

This is a square root. The number under the radical is 9. (An asterisk * means multiply.) Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

More information

Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

C3: Functions. Learning objectives

C3: Functions. Learning objectives CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the

More information

SIGNAL PROCESSING & SIMULATION NEWSLETTER

SIGNAL PROCESSING & SIMULATION NEWSLETTER 1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

Pre-Calculus Math 12 First Assignment

Pre-Calculus Math 12 First Assignment Name: Pre-Calculus Math 12 First Assignment This assignment consists of two parts, a review of function notation and an introduction to translating graphs of functions. It is the first work for the Pre-Calculus

More information

Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions

Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions Jennifer Zhao, 1 Weizhong Dai, Tianchan Niu 1 Department of Mathematics and Statistics, University of Michigan-Dearborn,

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same

More information

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

Second Order Linear Partial Differential Equations. Part I

Second Order Linear Partial Differential Equations. Part I Second Order Linear Partial Differential Equations Part I Second linear partial differential equations; Separation of Variables; - point boundary value problems; Eigenvalues and Eigenfunctions Introduction

More information

A Concrete Introduction. to the Abstract Concepts. of Integers and Algebra using Algebra Tiles

A Concrete Introduction. to the Abstract Concepts. of Integers and Algebra using Algebra Tiles A Concrete Introduction to the Abstract Concepts of Integers and Algebra using Algebra Tiles Table of Contents Introduction... 1 page Integers 1: Introduction to Integers... 3 2: Working with Algebra Tiles...

More information

Number Patterns, Cautionary Tales and Finite Differences

Number Patterns, Cautionary Tales and Finite Differences Learning and Teaching Mathematics, No. Page Number Patterns, Cautionary Tales and Finite Differences Duncan Samson St Andrew s College Number Patterns I recently included the following question in a scholarship

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

6 J - vector electric current density (A/m2 )

6 J - vector electric current density (A/m2 ) Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J - vector electric current density (A/m2 ) M - vector magnetic current density (V/m 2 ) Some problems

More information

9 MATRICES AND TRANSFORMATIONS

9 MATRICES AND TRANSFORMATIONS 9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the

More information

3. Solve the equation containing only one variable for that variable.

3. Solve the equation containing only one variable for that variable. Question : How do you solve a system of linear equations? There are two basic strategies for solving a system of two linear equations and two variables. In each strategy, one of the variables is eliminated

More information

5.1 Radical Notation and Rational Exponents

5.1 Radical Notation and Rational Exponents Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

More information

5.61 Physical Chemistry 25 Helium Atom page 1 HELIUM ATOM

5.61 Physical Chemistry 25 Helium Atom page 1 HELIUM ATOM 5.6 Physical Chemistry 5 Helium Atom page HELIUM ATOM Now that we have treated the Hydrogen like atoms in some detail, we now proceed to discuss the next simplest system: the Helium atom. In this situation,

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

LINEAR EQUATIONS IN TWO VARIABLES

LINEAR EQUATIONS IN TWO VARIABLES 66 MATHEMATICS CHAPTER 4 LINEAR EQUATIONS IN TWO VARIABLES The principal use of the Analytic Art is to bring Mathematical Problems to Equations and to exhibit those Equations in the most simple terms that

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

More information

Factorization Theorems

Factorization Theorems Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization

More information

Lecture Notes 2: Matrices as Systems of Linear Equations

Lecture Notes 2: Matrices as Systems of Linear Equations 2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably

More information

Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Chapter 10. Key Ideas Correlation, Correlation Coefficient (r), Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables

More information