# Social Media Mining. Network Measures

Save this PDF as:

Size: px
Start display at page:

## Transcription

1

2 Klout Measures and Metrics 22

3 Why Do We Need Measures? Who are the central figures (influential individuals) in the network? What interaction patterns are common in friends? Who are the like-minded users and how can we find these similar individuals? To answer these and similar questions, one first needs to define measures for quantifying centrality, level of interactions, and similarity, among others. Measures and Metrics 33

4 Centrality Centrality defines how important a node is within a network. Measures and Metrics 44

5 Degree Centrality The degree centrality measure ranks nodes with more connections higher in terms of centrality d i is the degree (number of adjacent edges) for vertex v i In this graph degree centrality for vertex v 1 is d 1 = 8 and for all others is d j = 1, j 1 Measures and Metrics 55

6 Degree Centrality in Directed Graphs In directed graphs, we can either use the indegree, the out-degree, or the combination as the degree centrality value: d out i is the number of outgoing links for vertex v i Measures and Metrics 66

7 Normalized Degree Centrality Normalized by the maximum possible degree Normalized by the maximum degree Normalized by the degree sum Measures and Metrics 77

8 Eigenvector Centrality Having more friends does not by itself guarantee that someone is more important, but having more important friends provides a stronger signal Eigenvector centrality tries to generalize degree centrality by incorporating the importance of the neighbors (undirected) For directed graphs, we can use incoming or outgoing edges C e (v i ): the eigenvector centrality of node v i : some fixed constant Measures and Metrics 8

9 Eigenvector Centrality, cont. Let T This means that C e is an eigenvector of adjacency matrix A and is the corresponding eigenvalue Which eigenvalue-eigenvector pair should we choose? Measures and Metrics 99

10 Eigenvector Centrality, cont. Measures and Metrics 10

11 Eigenvector Centrality: Example = (2.68, -1.74, -1.27, 0.33, 0.00) Eigenvalues Vector max = 2.68 Measures and Metrics 11

12 Katz Centrality A major problem with eigenvector centrality arises when it deals with directed graphs Centrality only passes over outgoing edges and in special cases such as when a node is in a weakly connected component centrality becomes zero even though the node can have many edge connected to it To resolve this problem we add bias term to the centrality values for all nodes Measures and Metrics 12

13 Katz Centrality, cont. Controlling term Bias term Rewriting equation in a vector form Katz centrality: vector of all 1 s Measures and Metrics 13

14 Katz Centrality, cont. When α=0, the eigenvector centrality is removed and all nodes get the same centrality value ᵦ As α gets larger the effect of ᵦ is reduced For the matrix (I- αa T ) to be invertible, we must have det(i- αa T )!=0 By rearranging we get det(a T - α -1 I)=0 This is basically the characteristic equation, which first becomes zero when the largest eigenvalue equals α -1 In practice we select α < 1/λ, where λ is the largest eigenvalue of A T Measures and Metrics 14

15 Katz Centrality Example The Eigenvalues are -1.68, -1.0, 0.35, 3.32 We assume α=0.25 < 1/3.32 ᵦ=0.2 Measures and Metrics 15

16 PageRank Problem with Katz Centrality: in directed graphs, once a node becomes an authority (high centrality), it passes all its centrality along all of its out-links This is less desirable since not everyone known by a well-known person is well-known To mitigate this problem we can divide the value of passed centrality by the number of outgoing links, i.e., out-degree of that node such that each connected neighbor gets a fraction of the source node s centrality Measures and Metrics 16

17 PageRank, cont. What if the degree is zero? Measures and Metrics 17

18 PageRank Example We assume α=0.95 and ᵦ=0.1 Measures and Metrics 18

19 Betweenness Centrality Another way of looking at centrality is by considering how important nodes are in connecting other nodes the number of shortest paths from vertex s to t a.k.a. information pathways the number of shortest paths from s to t that pass through v i Measures and Metrics 19

20 Normalizing Betweenness Centrality In the best case, node v i is on all shortest paths from s to t, hence, Therefore, the maximum value is 2 Betweenness centrality: Measures Network and Measures Metrics 20

21 Betweenness Centrality Example Measures and Metrics 21

22 Closeness Centrality The intuition is that influential and central nodes can quickly reach other nodes These nodes should have a smaller average shortest path length to other nodes Closeness centrality: Measures Network and Measures Metrics 22

23 Compute Closeness Centrality Measures Network and Measures Metrics 23

24 Group Centrality All centrality measures defined so far measure centrality for a single node. These measures can be generalized for a group of nodes. A simple approach is to replace all nodes in a group with a super node The group structure is disregarded. Let S denote the set of nodes in the group and V- S the set of outsiders Measures Network and Measures Metrics 24

25 Group Centrality Group Degree Centrality We can normalize it by dividing it by V-S Group Betweeness Centrality We can normalize it by dividing it by 2 Measures and Metrics 25

26 Group Centrality Group Closeness Centrality It is the average distance from non-members to the group One can also utilize the maximum distance or the average distance Measures Network and Measures Metrics 26

27 Group Centrality Example Consider S={v2,v3} Group degree centrality=3 Group betweenness centrality = 3 Group closeness centrality = 1 Measures and Metrics 27

28 Transitivity and Reciprocity Measures Network and Measures Metrics 28

29 Transitivity Mathematic representation: For a transitive relation R: In a social network: Transitivity is when a friend of my friend is my friend Transitivity in a social network leads to a denser graph, which in turn is closer to a complete graph We can determine how close graphs are to the complete graph by measuring transitivity Measures Network and Measures Metrics 29

30 [Global] Clustering Coefficient Clustering coefficient analyzes transitivity in an undirected graph We measure it by counting paths of length two and check whether the third edge exists When counting triangles, since every triangle has 6 closed paths of length 2: In undirected networks: Measures Network and Measures Metrics 30

31 [Global] Clustering Coefficient: Example Measures and Metrics 31

32 Local Clustering Coefficient Local clustering coefficient measures transitivity at the node level Commonly employed for undirected graphs, it computes how strongly neighbors of a node v (nodes adjacent to v) are themselves connected In an undirected graph, the denominator can be rewritten as: Measures Network and Measures Metrics 32

33 Local Clustering Coefficient: Example Thin lines depict connections to neighbors Dashed lines are the missing connections among neighbors Solid lines indicate connected neighbors When none of neighbors are connected C=0 When all neighbors are connected C=1 Measures Network and Measures Metrics 33

34 Reciprocity If you become my friend, I ll be yours Reciprocity is a more simplified version of transitivity as it considers closed loops of length 2 If node v is connected to node u, u by connecting to v, exhibits reciprocity Measures Network and Measures Metrics 34

35 Reciprocity: Example Reciprocal nodes: v 1, v 2 Measures and Metrics 35

36 Balance and Status Measuring stability based on an observed network Measures Network and Measures Metrics 36

37 Social Balance Theory Social balance theory discusses consistency in friend/foe relationships among individuals. Informally, social balance theory says friend/foe relationships are consistent when In the network Positive edges demonstrate friendships (w ij =1) Negative edges demonstrate being enemies (w ij =-1) Triangle of nodes i, j, and k, is balanced, if and only if w ij denotes the value of the edge between nodes i and j Measures and Metrics 37

38 Social Balance Theory: Possible Combinations For any cycle if the multiplication of edge values become positive, then the cycle is socially balanced Measures Network and Measures Metrics 38

39 Social Status Theory Status defines how prestigious an individual is ranked within a society Social status theory measures how consistent individuals are in assigning status to their neighbors Measures Network and Measures Metrics 39

40 Social Status Theory: Example Unstable configuration Stable configuration A directed + edge from node X to node Y shows that Y has a higher status than X and a - one shows vice versa Measures Network and Measures Metrics 40

41 Similarity How similar are two nodes in a network? Measures and Metrics 41

42 Structural Equivalence In structural equivalence, we look at the neighborhood shared by two nodes; the size of this neighborhood defines how similar two nodes are. For instance, two brothers have in common sisters, mother, father, grandparents, etc. This shows that they are similar, whereas two random male or female individuals do not have much in common and are not similar. Measures Network and Measures Metrics 42

43 Structural Equivalence: Definitions Vertex similarity Jaccard Similarity: Cosine Similarity: In general, the definition of neighborhood N(v) excludes the node itself v. Nodes that are connected and do not share a neighbor will be assigned zero similarity This can be rectified by assuming nodes to be included in their neighborhoods Measures and Metrics 43

44 Similarity: Example Measures Network and Measures Metrics 44

45 Normalized Similarity Comparing the calculated similarity value with its expected value where vertices pick their neighbors at random For vertices i and j with degrees d i and d j this expectation is d i d j /n Measures and Metrics 45

46 Normalized Similarity, cont. Measures Network and Measures Metrics 46

47 Normalized Similarity, cont. Covariance between A i and A j Covariance can be normalized by the multiplication of Standard deviations: Pearson correlation coefficient: [-1,1] Measures and Metrics 47

48 Regular Equivalence In regular equivalence, we do not look at neighborhoods shared between individuals, but how neighborhoods themselves are similar For instance, athletes are similar not because they know each other in person, but since they know similar individuals, such as coaches, trainers, other players, etc. Measures Network and Measures Metrics 48

49 Regular Equivalence v i, v j are similar when their neighbors v k and v l are similar The equation (left figure) is hard to solve since it is self referential so we relax our definition using the right figure Measures Network and Measures Metrics 49

50 Regular Equivalence v i, v j are similar when v j is similar to v i s neighbors v k In vector format A vertex is highly similar to itself, we guarantee this by adding an identity matrix to the equation Measures Network and Measures Metrics 50

51 Regular Equivalence v i, v j are similar when v j is similar to v i s neighbors v k In vector format A vertex is highly similar to itself, we guarantee this by adding an identity matrix to the equation Measures and Metrics 51

52 Regular Equivalence: Example The largest eigenvalue of A is 2.43 Set α = 0.4 < 1/2.43 Any row/column of this matrix shows the similarity to other vertices We can see that vertex 1 is most similar (other than itself) to vertices 2 and 3 Nodes 2 and 3 have the highest similarity Measures and Metrics 52

### Practical Graph Mining with R. 5. Link Analysis

Practical Graph Mining with R 5. Link Analysis Outline Link Analysis Concepts Metrics for Analyzing Networks PageRank HITS Link Prediction 2 Link Analysis Concepts Link A relationship between two entities

### DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

### SGL: Stata graph library for network analysis

SGL: Stata graph library for network analysis Hirotaka Miura Federal Reserve Bank of San Francisco Stata Conference Chicago 2011 The views presented here are my own and do not necessarily represent the

### Social Media Mining. Graph Essentials

Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures

### USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS

USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA natarajan.meghanathan@jsums.edu

### Lesson 3. Algebraic graph theory. Sergio Barbarossa. Rome - February 2010

Lesson 3 Algebraic graph theory Sergio Barbarossa Basic notions Definition: A directed graph (or digraph) composed by a set of vertices and a set of edges We adopt the convention that the information flows

### Part 2: Community Detection

Chapter 8: Graph Data Part 2: Community Detection Based on Leskovec, Rajaraman, Ullman 2014: Mining of Massive Datasets Big Data Management and Analytics Outline Community Detection - Social networks -

### General Network Analysis: Graph-theoretic. COMP572 Fall 2009

General Network Analysis: Graph-theoretic Techniques COMP572 Fall 2009 Networks (aka Graphs) A network is a set of vertices, or nodes, and edges that connect pairs of vertices Example: a network with 5

### Mining Social-Network Graphs

342 Chapter 10 Mining Social-Network Graphs There is much information to be gained by analyzing the large-scale data that is derived from social networks. The best-known example of a social network is

### Linear Programming I

Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

### Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis

Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.0, steen@cs.vu.nl Chapter 06: Network analysis Version: April 8, 04 / 3 Contents Chapter

### Sociology and CS. Small World. Sociology Problems. Degree of Separation. Milgram s Experiment. How close are people connected? (Problem Understanding)

Sociology Problems Sociology and CS Problem 1 How close are people connected? Small World Philip Chan Problem 2 Connector How close are people connected? (Problem Understanding) Small World Are people

### 6.042/18.062J Mathematics for Computer Science October 3, 2006 Tom Leighton and Ronitt Rubinfeld. Graph Theory III

6.04/8.06J Mathematics for Computer Science October 3, 006 Tom Leighton and Ronitt Rubinfeld Lecture Notes Graph Theory III Draft: please check back in a couple of days for a modified version of these

### Walk-Based Centrality and Communicability Measures for Network Analysis

Walk-Based Centrality and Communicability Measures for Network Analysis Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, Georgia, USA Workshop on Innovative Clustering

### Asking Hard Graph Questions. Paul Burkhardt. February 3, 2014

Beyond Watson: Predictive Analytics and Big Data U.S. National Security Agency Research Directorate - R6 Technical Report February 3, 2014 300 years before Watson there was Euler! The first (Jeopardy!)

### USE OF EIGENVALUES AND EIGENVECTORS TO ANALYZE BIPARTIVITY OF NETWORK GRAPHS

USE OF EIGENVALUES AND EIGENVECTORS TO ANALYZE BIPARTIVITY OF NETWORK GRAPHS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA natarajan.meghanathan@jsums.edu ABSTRACT This

### Identifying Leaders and Followers in Online Social Networks

Identifying Leaders and Followers in Online Social Networks M. Zubair Shafiq, Student Member, IEEE, Muhammad U. Ilyas, Member, IEEE, Alex X. Liu, Member, IEEE, Hayder Radha, Fellow, IEEE Abstract Identifying

### most influential member(s) of a social network; key infrastructure nodes; in an urban network; super-spreaders of disease;...

Ranking in Networks http://en.wikipedia.org/wiki/centralityi Question: Given a communication network N, how to discover important nodes? How to define the importance of members of the network? The answer

### Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like

### In the following we will only consider undirected networks.

Roles in Networks Roles in Networks Motivation for work: Let topology define network roles. Work by Kleinberg on directed graphs, used topology to define two types of roles: authorities and hubs. (Each

### Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis. Contents. Introduction. Maarten van Steen. Version: April 28, 2014

Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R.0, steen@cs.vu.nl Chapter 0: Version: April 8, 0 / Contents Chapter Description 0: Introduction

### Predicting Influentials in Online Social Networks

Predicting Influentials in Online Social Networks Rumi Ghosh Kristina Lerman USC Information Sciences Institute WHO is IMPORTANT? Characteristics Topology Dynamic Processes /Nature of flow What are the

### Social network analysis with R sna package

Social network analysis with R sna package George Zhang iresearch Consulting Group (China) bird@iresearch.com.cn birdzhangxiang@gmail.com Social network (graph) definition G = (V,E) Max edges = N All possible

### 15.062 Data Mining: Algorithms and Applications Matrix Math Review

.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

### Social and Technological Network Analysis. Lecture 3: Centrality Measures. Dr. Cecilia Mascolo (some material from Lada Adamic s lectures)

Social and Technological Network Analysis Lecture 3: Centrality Measures Dr. Cecilia Mascolo (some material from Lada Adamic s lectures) In This Lecture We will introduce the concept of centrality and

### Graph Processing and Social Networks

Graph Processing and Social Networks Presented by Shu Jiayu, Yang Ji Department of Computer Science and Engineering The Hong Kong University of Science and Technology 2015/4/20 1 Outline Background Graph

### 618 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS/SUPPLEMENT, VOL. 31, NO. 9, SEPTEMBER 2013

618 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS/SUPPLEMENT, VOL. 31, NO. 9, SEPTEMBER 2013 Identifying Leaders and Followers in Online Social Networks M. Zubair Shafiq, Student Member, IEEE, MuhammadU.Ilyas,Member,

### Graph theoretic approach to analyze amino acid network

Int. J. Adv. Appl. Math. and Mech. 2(3) (2015) 31-37 (ISSN: 2347-2529) Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics Graph theoretic approach to

### Mechanism Design without Money I: House Allocation, Kidney Exchange, Stable Matching

Algorithmic Game Theory Summer 2015, Week 12 Mechanism Design without Money I: House Allocation, Kidney Exchange, Stable Matching ETH Zürich Peter Widmayer, Paul Dütting Looking at the past few lectures

### Graphs and Network Flows IE411 Lecture 1

Graphs and Network Flows IE411 Lecture 1 Dr. Ted Ralphs IE411 Lecture 1 1 References for Today s Lecture Required reading Sections 17.1, 19.1 References AMO Chapter 1 and Section 2.1 and 2.2 IE411 Lecture

### Healthcare Analytics. Aryya Gangopadhyay UMBC

Healthcare Analytics Aryya Gangopadhyay UMBC Two of many projects Integrated network approach to personalized medicine Multidimensional and multimodal Dynamic Analyze interactions HealthMask Need for sharing

### ! E6893 Big Data Analytics Lecture 10:! Linked Big Data Graph Computing (II)

E6893 Big Data Analytics Lecture 10: Linked Big Data Graph Computing (II) Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science Mgr., Dept. of Network Science and

### Course on Social Network Analysis Graphs and Networks

Course on Social Network Analysis Graphs and Networks Vladimir Batagelj University of Ljubljana Slovenia V. Batagelj: Social Network Analysis / Graphs and Networks 1 Outline 1 Graph...............................

### Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph

V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer

### Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network

, pp.273-284 http://dx.doi.org/10.14257/ijdta.2015.8.5.24 Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network Gengxin Sun 1, Sheng Bin 2 and

### The Big Picture. Correlation. Scatter Plots. Data

The Big Picture Correlation Bret Hanlon and Bret Larget Department of Statistics Universit of Wisconsin Madison December 6, We have just completed a length series of lectures on ANOVA where we considered

### Planar Tree Transformation: Results and Counterexample

Planar Tree Transformation: Results and Counterexample Selim G Akl, Kamrul Islam, and Henk Meijer School of Computing, Queen s University Kingston, Ontario, Canada K7L 3N6 Abstract We consider the problem

### Why? A central concept in Computer Science. Algorithms are ubiquitous.

Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online

### Mining Social Network Graphs

Mining Social Network Graphs Debapriyo Majumdar Data Mining Fall 2014 Indian Statistical Institute Kolkata November 13, 17, 2014 Social Network No introduc+on required Really? We s7ll need to understand

### The PageRank Citation Ranking: Bring Order to the Web

The PageRank Citation Ranking: Bring Order to the Web presented by: Xiaoxi Pang 25.Nov 2010 1 / 20 Outline Introduction A ranking for every page on the Web Implementation Convergence Properties Personalized

### GRAPH THEORY and APPLICATIONS. Trees

GRAPH THEORY and APPLICATIONS Trees Properties Tree: a connected graph with no cycle (acyclic) Forest: a graph with no cycle Paths are trees. Star: A tree consisting of one vertex adjacent to all the others.

### Ranking on Data Manifolds

Ranking on Data Manifolds Dengyong Zhou, Jason Weston, Arthur Gretton, Olivier Bousquet, and Bernhard Schölkopf Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany {firstname.secondname

### IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti

### A Network Approach to Define Modularity of Components in Complex Products

Manuel E. Sosa INSEAD Fontainebleau, France manuel.sosa@insead.edu Steven D. Eppinger MIT Cambridge, MA, USA eppinger@mit.edu Craig M. Rowles Pratt and Whitney East Hartford, CT, USA rowles@alum.mit.edu

### Complex Networks Analysis: Clustering Methods

Complex Networks Analysis: Clustering Methods Nikolai Nefedov Spring 2013 ISI ETH Zurich nefedov@isi.ee.ethz.ch 1 Outline Purpose to give an overview of modern graph-clustering methods and their applications

### 3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

### Bindel, Fall 2012 Matrix Computations (CS 6210) Week 8: Friday, Oct 12

Why eigenvalues? Week 8: Friday, Oct 12 I spend a lot of time thinking about eigenvalue problems. In part, this is because I look for problems that can be solved via eigenvalues. But I might have fewer

### Approximation Algorithms

Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

### Nodes, Ties and Influence

Nodes, Ties and Influence Chapter 2 Chapter 2, Community Detec:on and Mining in Social Media. Lei Tang and Huan Liu, Morgan & Claypool, September, 2010. 1 IMPORTANCE OF NODES 2 Importance of Nodes Not

### Performance Metrics for Graph Mining Tasks

Performance Metrics for Graph Mining Tasks 1 Outline Introduction to Performance Metrics Supervised Learning Performance Metrics Unsupervised Learning Performance Metrics Optimizing Metrics Statistical

### 1. Write the number of the left-hand item next to the item on the right that corresponds to it.

1. Write the number of the left-hand item next to the item on the right that corresponds to it. 1. Stanford prison experiment 2. Friendster 3. neuron 4. router 5. tipping 6. small worlds 7. job-hunting

### 1.204 Final Project Network Analysis of Urban Street Patterns

1.204 Final Project Network Analysis of Urban Street Patterns Michael T. Chang December 21, 2012 1 Introduction In this project, I analyze road networks as a planar graph and use tools from network analysis

### Introduction to Flocking {Stochastic Matrices}

Supelec EECI Graduate School in Control Introduction to Flocking {Stochastic Matrices} A. S. Morse Yale University Gif sur - Yvette May 21, 2012 CRAIG REYNOLDS - 1987 BOIDS The Lion King CRAIG REYNOLDS

### Strong and Weak Ties

Strong and Weak Ties Web Science (VU) (707.000) Elisabeth Lex KTI, TU Graz April 11, 2016 Elisabeth Lex (KTI, TU Graz) Networks April 11, 2016 1 / 66 Outline 1 Repetition 2 Strong and Weak Ties 3 General

### Analysis of Algorithms, I

Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications

### Graph. Consider a graph, G in Fig Then the vertex V and edge E can be represented as:

Graph A graph G consist of 1. Set of vertices V (called nodes), (V = {v1, v2, v3, v4...}) and 2. Set of edges E (i.e., E {e1, e2, e3...cm} A graph can be represents as G = (V, E), where V is a finite and

### Network (Tree) Topology Inference Based on Prüfer Sequence

Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 vanniarajanc@hcl.in,

### Electrical Resistances in Products of Graphs

Electrical Resistances in Products of Graphs By Shelley Welke Under the direction of Dr. John S. Caughman In partial fulfillment of the requirements for the degree of: Masters of Science in Teaching Mathematics

### Notes on Matrix Multiplication and the Transitive Closure

ICS 6D Due: Wednesday, February 25, 2015 Instructor: Sandy Irani Notes on Matrix Multiplication and the Transitive Closure An n m matrix over a set S is an array of elements from S with n rows and m columns.

### The Central Equation

The Central Equation Mervyn Roy May 6, 015 1 Derivation of the central equation The single particle Schrödinger equation is, ( H E nk ψ nk = 0, ) ( + v s(r) E nk ψ nk = 0. (1) We can solve Eq. (1) at given

### Distance Degree Sequences for Network Analysis

Universität Konstanz Computer & Information Science Algorithmics Group 15 Mar 2005 based on Palmer, Gibbons, and Faloutsos: ANF A Fast and Scalable Tool for Data Mining in Massive Graphs, SIGKDD 02. Motivation

### The degree of a polynomial function is equal to the highest exponent found on the independent variables.

DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

### Graph Theory and Complex Networks: An Introduction. Chapter 08: Computer networks

Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl Chapter 08: Computer networks Version: March 3, 2011 2 / 53 Contents

### Graph definition Degree, in, out degree, oriented graph. Complete, regular, bipartite graph. Graph representation, connectivity, adjacency.

Mária Markošová Graph definition Degree, in, out degree, oriented graph. Complete, regular, bipartite graph. Graph representation, connectivity, adjacency. Isomorphism of graphs. Paths, cycles, trials.

### arxiv:1201.3120v3 [math.na] 1 Oct 2012

RANKING HUBS AND AUTHORITIES USING MATRIX FUNCTIONS MICHELE BENZI, ERNESTO ESTRADA, AND CHRISTINE KLYMKO arxiv:1201.3120v3 [math.na] 1 Oct 2012 Abstract. The notions of subgraph centrality and communicability,

### COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact

### Manifold Learning Examples PCA, LLE and ISOMAP

Manifold Learning Examples PCA, LLE and ISOMAP Dan Ventura October 14, 28 Abstract We try to give a helpful concrete example that demonstrates how to use PCA, LLE and Isomap, attempts to provide some intuition

### The Characteristic Polynomial

Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

### Social network and smoking: a pilotstudyamonghigh-schoolstudents

2013 Italian Stata Users Group meeting Social network and smoking: a pilotstudyamonghigh-schoolstudents Bruno Federico Firenze, 14 novembre 2013 The social pattern of smoking Smoking is an important risk

### Option 1: empirical network analysis. Task: find data, analyze data (and visualize it), then interpret.

Programming project Task Option 1: empirical network analysis. Task: find data, analyze data (and visualize it), then interpret. Obtaining data This project focuses upon cocktail ingredients. Data was

### NETZCOPE - a tool to analyze and display complex R&D collaboration networks

The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots NETZCOPE - a tool to analyze and display complex R&D collaboration networks L. Streit & O. Strogan BiBoS, Univ.

### Social Networks and Social Media

Social Networks and Social Media Social Media: Many-to-Many Social Networking Content Sharing Social Media Blogs Microblogging Wiki Forum 2 Characteristics of Social Media Consumers become Producers Rich

### Foundations of Chemical Kinetics. Lecture 20: The master equation

Foundations of Chemical Kinetics Lecture 20: The master equation Marc R. Roussel Department of Chemistry and Biochemistry Transition rates Suppose that Ps (t) is the probability that a system is in a state

### Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

### CMPSCI611: Approximating MAX-CUT Lecture 20

CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to

### Multicast Group Management for Interactive Distributed Applications

Multicast Group Management for Interactive Distributed Applications Carsten Griwodz griff@simula.no September 25, 2008 based on the thesis work of Knut-Helge Vik, knuthelv@simula.no Group communication

### Gephi Network Statistics

Gephi Network Statistics Google Summer of Code 2009 Project Proposal Patrick J. McSweeney pjmcswee@syr.edu 1 Introduction My name is Patrick J. McSweeney and I am a fourth year PhD candidate in computer

### B490 Mining the Big Data. 2 Clustering

B490 Mining the Big Data 2 Clustering Qin Zhang 1-1 Motivations Group together similar documents/webpages/images/people/proteins/products One of the most important problems in machine learning, pattern

### Statistical and computational challenges in networks and cybersecurity

Statistical and computational challenges in networks and cybersecurity Hugh Chipman Acadia University June 12, 2015 Statistical and computational challenges in networks and cybersecurity May 4-8, 2015,

### Network-Based Tools for the Visualization and Analysis of Domain Models

Network-Based Tools for the Visualization and Analysis of Domain Models Paper presented as the annual meeting of the American Educational Research Association, Philadelphia, PA Hua Wei April 2014 Visualizing

### Lecture 9. 1 Introduction. 2 Random Walks in Graphs. 1.1 How To Explore a Graph? CS-621 Theory Gems October 17, 2012

CS-62 Theory Gems October 7, 202 Lecture 9 Lecturer: Aleksander Mądry Scribes: Dorina Thanou, Xiaowen Dong Introduction Over the next couple of lectures, our focus will be on graphs. Graphs are one of

### CSE 20: Discrete Mathematics for Computer Science. Prof. Miles Jones. Today s Topics: Graphs. The Internet graph

Today s Topics: CSE 0: Discrete Mathematics for Computer Science Prof. Miles Jones. Graphs. Some theorems on graphs. Eulerian graphs Graphs! Model relations between pairs of objects The Internet graph!

### The mathematics of networks

The mathematics of networks M. E. J. Newman Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109 1040 In much of economic theory it is assumed that economic agents interact,

### Topological Entropy of Golden Mean Lookalike Shift Spaces

International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 4767 P-ISSN: 2321-4759 Volume 2 Issue 7 July 2014 PP-05-10 Topological Entropy of Golden Mean Lookalike Shift Spaces Khundrakpam

### Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Piyush Rai CS5350/6350: Machine Learning October 25, 2011 Recap: Linear Dimensionality Reduction Linear Dimensionality Reduction: Based on a linear projection of the

### SAMPLES OF HIGHER RATED WRITING: LAB 5

SAMPLES OF HIGHER RATED WRITING: LAB 5 1. Task Description Lab report 5. (April 14) Graph Coloring. Following the guidelines, and keeping in mind the assessment criteria, using where appropriate experimental

### Collecting Network Data in Surveys

Collecting Network Data in Surveys Arun Advani and Bansi Malde September 203 We gratefully acknowledge funding from the ESRC-NCRM Node Programme Evaluation for Policy Analysis Grant reference RES-576-25-0042.

### Introduction to Networks and Business Intelligence

Introduction to Networks and Business Intelligence Prof. Dr. Daning Hu Department of Informatics University of Zurich Sep 17th, 2015 Outline Network Science A Random History Network Analysis Network Topological

### CSV886: Social, Economics and Business Networks. Lecture 2: Affiliation and Balance. R Ravi ravi+iitd@andrew.cmu.edu

CSV886: Social, Economics and Business Networks Lecture 2: Affiliation and Balance R Ravi ravi+iitd@andrew.cmu.edu Granovetter s Puzzle Resolved Strong Triadic Closure holds in most nodes in social networks

### 2.1: Determinants by Cofactor Expansion. Math 214 Chapter 2 Notes and Homework. Evaluate a Determinant by Expanding by Cofactors

2.1: Determinants by Cofactor Expansion Math 214 Chapter 2 Notes and Homework Determinants The minor M ij of the entry a ij is the determinant of the submatrix obtained from deleting the i th row and the

### Network Analysis of a Large Scale Open Source Project

2014 40th Euromicro Conference on Software Engineering and Advanced Applications Network Analysis of a Large Scale Open Source Project Alma Oručević-Alagić, Martin Höst Department of Computer Science,

### Francesco Sorrentino Department of Mechanical Engineering

Master stability function approaches to analyze stability of the synchronous evolution for hypernetworks and of synchronized clusters for networks with symmetries Francesco Sorrentino Department of Mechanical

### Moore Catholic High School Math Department COLLEGE PREP AND MATH CONCEPTS

Moore Catholic High School Math Department COLLEGE PREP AND MATH CONCEPTS The following is a list of terms and properties which are necessary for success in Math Concepts and College Prep math. You will

### Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables

### Network Analysis Basics and applications to online data

Network Analysis Basics and applications to online data Katherine Ognyanova University of Southern California Prepared for the Annenberg Program for Online Communities, 2010. Relational data Node (actor,

### Network Analysis For Sustainability Management

Network Analysis For Sustainability Management 1 Cátia Vaz 1º Summer Course in E4SD Outline Motivation Networks representation Structural network analysis Behavior network analysis 2 Networks Over the