abc ade afg bdf beg cdg cef

Size: px
Start display at page:

Download "abc ade afg bdf beg cdg cef"

Transcription

1 5. Kirkman s Schoolgirl Problem In a boarding school there are fifteen schoolgirls who always take their daily walks in row of threes. How can it be arranged so that each schoolgirl walks in the same row with every other schoolgirl exactly once a week? This extraordinary problem was posed in the Lady s and Gentleman s Diary for 1850, by the English mathematician T.P. Kirkman. We give two solutions of the many that have been found. One is by the English minister Andrew Frost ("General Solution and Extension of the Problem of the 15 Schoolgirls", Quarterly Journal of Pure and Applied Mathematics, vol. XI, 1871) and the other is that of B. Pierce ("Cyclic Solutions of the Schoolgirl Puzzle", The Astronomical Journal, vol. VI, ). (Dörrie asserts that Sylvester thought Pierce s solution the best, but does not state how many solutions he examined.) Frost s Solution The problem consists of arranging the 15 elements x, a 1,a 2,b 1,b 2,c 1, c 2,d 1,d 2, e 1,e 2, f 1,f 2, g 1,g 2 in seven columns of five triplets each in such a way that any two elements always occur in one and only one of the 35 triplets. We shall select xa 1 a 2 xb 1 b 2 xc 1 c 2 xd 1 d 2 xe 1 e 2 xf 1 f 2 xg 1 g 2 as the initial triplets of the seven columns. Then we only have to distribute the 14 elements a 1, a 2, b 1, b 2,...,g 1, g 2 over the other four lines of our system. Using the seven letters a,b,c, d, e,f, we form groups of triplets in which each pair of letters occurs exactly once: abc ade afg bdf beg cdg cef From this group we can take exactly four triplets for each column that contain all the letters except for those in the first line of the column. If we put the triplets in alphabetical order in each column, we get the following preliminary arrangement: bdf ade ade abc abc abc abc beg afg afg afg afg ade ade cdg cdg bdf beg bdf beg bdf cef cef beg cef cdg cdg cef Now we have to index the triplets bdf,beg,cdg,cef,ade,afg,abc, i.e., provide them with indices of 1 or 2. We index them in the order just mentioned, i.e., first all triplets bdf, then 1

2 all triplets beg, etc., observing the following three rules: 1. When a letter in one column has been indexed, the next time that letter occurs in the same column, it gets the other index number. 2. If two letters of a triplet have already been indexed, these two index numbers must not be used in the same sequence for the same letters in other triplets. 3. If the index number of a letter is not determined by the first two rules, the letter is assigned the index number 1. The letters will be indexed in three steps: First step. The triplets bdf, beg,cdg,cef and all the letters aside from a that can be indexed by rules 1, 2 and 3 are successively indexed. (Note: ALL bdfs in the order b 1 d 1 f 1, b 1 d 2 f 2, b 2 d 1 f 2, b 2 d 2 f 1 are done first, then all begs, etc.) The result is: b 1 d 1 f 1 ad 2 e 2 ad 1 e 1 ab 2 c 2 ab 1 c 1 ab 2 c 1 ab 1 c 2 b 2 e 1 g 1 af 2 g 2 af 1 g 1 af 2 g 1 af 1 g 2 ad 2 e 1 ad 1 e 2 (The reader is advised to do this on his/her own.) Second step. The missing indices for a in the triplets ade and afg and for the last two as in line 2 are assigned. The result is: b 1 d 1 f 1 a 1 d 2 e 2 a 1 d 1 e 1 ab 2 c 2 ab 1 c 1 a 1 b 2 c 1 a 1 b 1 c 2 b 2 e 1 g 1 a 2 f 2 g 2 a 2 f 1 g 1 af 2 g 1 af 1 g 2 a 2 d 2 e 1 a 2 d 1 e 2 Third step. The still missing indices on a in columns 4 and 5 are inserted, in accordance with the rules above. The final result is: 2

3 b 1 d 1 f 1 a 1 d 2 e 2 a 1 d 1 e 1 a 2 b 2 c 2 a 2 b 1 c 1 a 1 b 2 c 1 a 1 b 1 c 2 b 2 e 1 g 1 a 2 f 2 g 2 a 2 f 1 g 1 a 1 f 2 g 1 a 1 f 1 g 2 a 2 d 2 e 1 a 2 d 1 e 2 Pierce s Solution Designate one girl as ', whol walks in the middle of the same row all seven days of the week; divide the other girls into two groups of 7, the girls in the first group designated by 1, 2, 3, 4,5, 6, 7 or by a,b, c,d, e, f, g and the second group designated by I,II,III, IV,V, VI, VII or by A, B,C,D, E,F, G. We also designate the days of the week Sunday, Monday,..., Saturday by 0, 1, 2,...,6. Let the Sunday arrangement have the form: a ) A b * B c + C d ' D E F G Add the same number r R, e.g. 1 and I, 2 and II, etc. to each number mod 7 to get a r ) r A R b r * r B R c r + r C R d r ' D R E R F R G R for the r th weekday. The arrangements so obtained provide a solution to the problem if the following three conditions are satisfied: 1. ) " a 1, * " b 2 and + " c The seven differences A " a, A " ), B " b, B " *, C " c, C " + and D " d mod7 equal 0,1, 2,3, 4, 5, 6 in some order. 3. F " E 1, G " F 2 and G " E 3. Proof. 1. We show first that every girl x of the first group walks with every other girl y of the first group. By 1., x " y q oÿa " ), oÿb " *, or oÿc " + mod 7, and just one of them, say x " y q * " bmod 7, or x " * q y " b q rmod7, with r 0,1,...,6. Then 3

4 x q * rmod 7 and y q b rmod 7 so girls x and y walk in the same row on day r. 2. Next we show that every girl x of the first group walks with every girl X of the second group. By 2., X " x is congruent mod 7 to just one of A " a, A " ), B " b, B " *, C " c, C " + or D " d, say X " x q C " + mod 7, or X " C q x " + q smod7 with s 0, 1,...,6. Then X q C Smod 7 and x q + smod7 so girls X and x walk in the same row on day s. (Here S is the Roman numeral for s.) 3. Finally we show that every girl X of the second group walks exactly once with every other girl Y of the second group. By 3., X " Y q oÿf " E, oÿg " F, or oÿg " E mod 7, and just one of them, say X " Y q G " Fmod 7, or X " G q Y " F q Rmod7, with R VII,I,...,VI. Then X q G Rmod7 and Y q F R mod7 so girls X and Y walk in the same row on day R. R Thus, we need only satisfy conditions 1,2 and 3 to obtain the Sunday arrangement. a 1, b 3, c 4, d 6, ) 2, * 5, + 7 and A I, B VI,C II,D III,E IV, F V and G VII satisfy all the conditions. The differences in 2. are 0, "1, 3, 1, "2, "5, "3 q 0, 6,3, 1, 5,2,4mod 7.b The Sunday arrangement is therefore and the weekday rows are: 1 2 I 3 5 VI 4 7 II 6 ' III IV V VII 2 3 II 3 4 III 4 5 V 4 6 VII 5 7 I 6 1 II 5 1 III 6 2 IV 7 3 V 7 ' IV 1 ' V 2 ' VI V VI I, VI VII II, VII I III, 4

5 5 6 V 6 7 VI 7 1 VII 7 2 III 1 3 IV 2 4 V 1 4 VI 2 5 VII 3 6 I 3 ' V 4 ' 1 5 ' II I II IV, II III V, III IV VI. [Kirkman s schoolgirl problem is an example of a problem in combinatorial design theory. The solution is an example of a resolvable Ÿ35, 15,7, 3, 1 design. See for example Introductory Combinatorics ( ) by Kenneth P. Bogart, Harcourt, 2000.] 5

Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter 4 described a mathematical system

Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter 4 described a mathematical system CHAPTER Number Theory FIGURE FIGURE FIGURE Plus hours Plus hours Plus hours + = + = + = FIGURE. Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter described a mathematical

More information

Binary Representation

Binary Representation Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must tbe able to handle more than just values for real world problems

More information

Playing with Numbers

Playing with Numbers PLAYING WITH NUMBERS 249 Playing with Numbers CHAPTER 16 16.1 Introduction You have studied various types of numbers such as natural numbers, whole numbers, integers and rational numbers. You have also

More information

Fixture List 2018 FIFA World Cup Preliminary Competition

Fixture List 2018 FIFA World Cup Preliminary Competition Fixture List 2018 FIFA World Cup Preliminary Competition MATCHDAY 1 4-6 September 2016 4 September Sunday 18:00 Group C 4 September Sunday 20:45 Group C 4 September Sunday 20:45 Group C 4 September Sunday

More information

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i.

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i. New York, NY, USA: Basic Books, 2013. p i. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=2 New York, NY, USA: Basic Books, 2013. p ii. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=3 New

More information

26 Ideals and Quotient Rings

26 Ideals and Quotient Rings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 26 Ideals and Quotient Rings In this section we develop some theory of rings that parallels the theory of groups discussed

More information

Lesson 18: Looking More Carefully at Parallel Lines

Lesson 18: Looking More Carefully at Parallel Lines Student Outcomes Students learn to construct a line parallel to a given line through a point not on that line using a rotation by 180. They learn how to prove the alternate interior angles theorem using

More information

Mathematical Induction

Mathematical Induction Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Fractions to decimals

Fractions to decimals Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Regular Languages and Finite State Machines

Regular Languages and Finite State Machines Regular Languages and Finite State Machines Plan for the Day: Mathematical preliminaries - some review One application formal definition of finite automata Examples 1 Sets A set is an unordered collection

More information

Squaring the Circle. A Case Study in the History of Mathematics Part II

Squaring the Circle. A Case Study in the History of Mathematics Part II Squaring the Circle A Case Study in the History of Mathematics Part II π It is lost in the mists of pre-history who first realized that the ratio of the circumference of a circle to its diameter is a constant.

More information

Notes on Algebraic Structures. Peter J. Cameron

Notes on Algebraic Structures. Peter J. Cameron Notes on Algebraic Structures Peter J. Cameron ii Preface These are the notes of the second-year course Algebraic Structures I at Queen Mary, University of London, as I taught it in the second semester

More information

1) A 2) B 3) C 4) D 5) A & B 6) C & D

1) A 2) B 3) C 4) D 5) A & B 6) C & D LEVEL 1, PROBLEM 1 How many rectangles are there in the figure below? 9 A B C D If we divide the rectangle, into 4 regions A, B, C, D, the 9 rectangles are as follows: 1) A 2) B 3) C 4) D 5) A & B 6) C

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

More information

Fuld Skolerapport for Søhusskolen, i Odense kommune, for skoleår 2013/2014 for klassetrin(ene) 9. med reference Tilsvarende klassetrin i kommunen

Fuld Skolerapport for Søhusskolen, i Odense kommune, for skoleår 2013/2014 for klassetrin(ene) 9. med reference Tilsvarende klassetrin i kommunen Side 1 af 41 Side 2 af 41 Side 3 af 41 Side 4 af 41 Side 5 af 41 Side 6 af 41 Side 7 af 41 Side 8 af 41 Side 9 af 41 Side 10 af 41 Side 11 af 41 Side 12 af 41 Side 13 af 41 Side 14 af 41 Side 15 af 41

More information

Fuld Skolerapport for Hunderupskolen, i Odense kommune, for skoleår 2013/2014 for klassetrin(ene) 7. med reference Tilsvarende klassetrin i kommunen

Fuld Skolerapport for Hunderupskolen, i Odense kommune, for skoleår 2013/2014 for klassetrin(ene) 7. med reference Tilsvarende klassetrin i kommunen Side 1 af 43 Side 2 af 43 Side 3 af 43 Side 4 af 43 Side 5 af 43 Side 6 af 43 Side 7 af 43 Side 8 af 43 Side 9 af 43 Side 10 af 43 Side 11 af 43 Side 12 af 43 Side 13 af 43 Side 14 af 43 Side 15 af 43

More information

Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

More information

One positive experience I've had in the last 24 hours: Exercise today:

One positive experience I've had in the last 24 hours: Exercise today: Name - Day 1 of 21 Sunday, June 29, 2014 3:34 PM journal template Page 1 Name - Day 1 of 21 Sunday, June 29, 2014 3:34 PM journal template Page 2 Name - Day 2 of 21 2:27 PM journal template Page 3 Name

More information

NIM with Cash. Abstract. loses. This game has been well studied. For example, it is known that for NIM(1, 2, 3; n)

NIM with Cash. Abstract. loses. This game has been well studied. For example, it is known that for NIM(1, 2, 3; n) NIM with Cash William Gasarch Univ. of MD at College Park John Purtilo Univ. of MD at College Park Abstract NIM(a 1,..., a k ; n) is a -player game where initially there are n stones on the board and the

More information

Kenken For Teachers. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 27, 2010. Abstract

Kenken For Teachers. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 27, 2010. Abstract Kenken For Teachers Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 7, 00 Abstract Kenken is a puzzle whose solution requires a combination of logic and simple arithmetic skills.

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

More information

Math 223 Abstract Algebra Lecture Notes

Math 223 Abstract Algebra Lecture Notes Math 223 Abstract Algebra Lecture Notes Steven Tschantz Spring 2001 (Apr. 23 version) Preamble These notes are intended to supplement the lectures and make up for the lack of a textbook for the course

More information

HOW TO SOLVE LOGIC TABLE PUZZLES

HOW TO SOLVE LOGIC TABLE PUZZLES HOW TO SOLVE LOGIC TABLE PUZZLES Dear Solver, Here we introduce an alternative to solving logic problems with a conventional crosshatch solving chart, using instead a table-style solving chart. We provide

More information

The common ratio in (ii) is called the scaled-factor. An example of two similar triangles is shown in Figure 47.1. Figure 47.1

The common ratio in (ii) is called the scaled-factor. An example of two similar triangles is shown in Figure 47.1. Figure 47.1 47 Similar Triangles An overhead projector forms an image on the screen which has the same shape as the image on the transparency but with the size altered. Two figures that have the same shape but not

More information

Tilings of the sphere with right triangles III: the asymptotically obtuse families

Tilings of the sphere with right triangles III: the asymptotically obtuse families Tilings of the sphere with right triangles III: the asymptotically obtuse families Robert J. MacG. Dawson Department of Mathematics and Computing Science Saint Mary s University Halifax, Nova Scotia, Canada

More information

Settling a Question about Pythagorean Triples

Settling a Question about Pythagorean Triples Settling a Question about Pythagorean Triples TOM VERHOEFF Department of Mathematics and Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands E-Mail address:

More information

Chapter 11 Number Theory

Chapter 11 Number Theory Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications

More information

Triangle Congruence and Similarity A Common-Core-Compatible Approach

Triangle Congruence and Similarity A Common-Core-Compatible Approach Triangle Congruence and Similarity A Common-Core-Compatible Approach The Common Core State Standards for Mathematics (CCSSM) include a fundamental change in the geometry program in grades 8 to 10: geometric

More information

MEI Structured Mathematics. Practice Comprehension Task - 2. Do trains run late?

MEI Structured Mathematics. Practice Comprehension Task - 2. Do trains run late? MEI Structured Mathematics Practice Comprehension Task - 2 Do trains run late? There is a popular myth that trains always run late. Actually this is far from the case. All train companies want their trains

More information

Primes in Sequences. Lee 1. By: Jae Young Lee. Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov

Primes in Sequences. Lee 1. By: Jae Young Lee. Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov Lee 1 Primes in Sequences By: Jae Young Lee Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov Lee 2 Jae Young Lee MA341 Number Theory PRIMES IN SEQUENCES

More information

The Triangle and its Properties

The Triangle and its Properties THE TRINGLE ND ITS PROPERTIES 113 The Triangle and its Properties Chapter 6 6.1 INTRODUCTION triangle, you have seen, is a simple closed curve made of three line segments. It has three vertices, three

More information

Courses in Mathematics (2015-2016)

Courses in Mathematics (2015-2016) Courses in Mathematics (2015-2016) This document gives a brief description of the various courses in calculus and some of the intermediate level courses in mathematics. It provides advice and pointers

More information

Squaring, Cubing, and Cube Rooting

Squaring, Cubing, and Cube Rooting Squaring, Cubing, and Cube Rooting Arthur T. Benjamin Harvey Mudd College Claremont, CA 91711 benjamin@math.hmc.edu I still recall my thrill and disappointment when I read Mathematical Carnival [4], by

More information

Symmetry of Nonparametric Statistical Tests on Three Samples

Symmetry of Nonparametric Statistical Tests on Three Samples Symmetry of Nonparametric Statistical Tests on Three Samples Anna E. Bargagliotti Donald G. Saari Department of Mathematical Sciences Institute for Math. Behavioral Sciences University of Memphis University

More information

Ohio Edison, Cleveland Electric Illuminating, Toledo Edison Load Profile Application

Ohio Edison, Cleveland Electric Illuminating, Toledo Edison Load Profile Application Ohio Edison, Cleveland Electric Illuminating, Toledo Edison Load Profile Application I. General The Company presents the raw equations utilized in process of determining customer hourly loads. These equations

More information

Keyboard Basics. By Starling Jones, Jr. http://www.starlingsounds.com& http://www.smoothchords.com

Keyboard Basics. By Starling Jones, Jr. http://www.starlingsounds.com& http://www.smoothchords.com Keyboard Basics By Starling Jones, Jr. In starting on the piano I recommend starting on weighted keys. I say this as your fingers will be adjusted to the stiffness of the keys. When you then progress to

More information

4. How many integers between 2004 and 4002 are perfect squares?

4. How many integers between 2004 and 4002 are perfect squares? 5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started

More information

Algebraic Properties and Proofs

Algebraic Properties and Proofs Algebraic Properties and Proofs Name You have solved algebraic equations for a couple years now, but now it is time to justify the steps you have practiced and now take without thinking and acting without

More information

INTERSECTION MATH And more! James Tanton

INTERSECTION MATH And more! James Tanton INTERSECTION MATH And more! James Tanton www.jamestanton.com The following represents a sample activity based on the December 2006 newsletter of the St. Mark s Institute of Mathematics (www.stmarksschool.org/math).

More information

Basic Components of an LP:

Basic Components of an LP: 1 Linear Programming Optimization is an important and fascinating area of management science and operations research. It helps to do less work, but gain more. Linear programming (LP) is a central topic

More information

Just the Factors, Ma am

Just the Factors, Ma am 1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

More information

Grade 4 Mathematics Patterns, Relations, and Functions: Lesson 1

Grade 4 Mathematics Patterns, Relations, and Functions: Lesson 1 Grade 4 Mathematics Patterns, Relations, and Functions: Lesson 1 Read aloud to the students the material that is printed in boldface type inside the boxes. Information in regular type inside the boxes

More information

k, then n = p2α 1 1 pα k

k, then n = p2α 1 1 pα k Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

More information

Continued Fractions. Darren C. Collins

Continued Fractions. Darren C. Collins Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history

More information

6.1 Basic Right Triangle Trigonometry

6.1 Basic Right Triangle Trigonometry 6.1 Basic Right Triangle Trigonometry MEASURING ANGLES IN RADIANS First, let s introduce the units you will be using to measure angles, radians. A radian is a unit of measurement defined as the angle at

More information

Regular Languages and Finite Automata

Regular Languages and Finite Automata Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a

More information

1 A duality between descents and connectivity.

1 A duality between descents and connectivity. The Descent Set and Connectivity Set of a Permutation 1 Richard P. Stanley 2 Department of Mathematics, Massachusetts Institute of Technology Cambridge, MA 02139, USA rstan@math.mit.edu version of 16 August

More information

Observation on Sums of Powers of Integers Divisible by Four

Observation on Sums of Powers of Integers Divisible by Four Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2219-2226 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4140 Observation on Sums of Powers of Integers Divisible by Four Djoko Suprijanto

More information

Chapter 2 Remodulization of Congruences Proceedings NCUR VI. è1992è, Vol. II, pp. 1036í1041. Jeærey F. Gold Department of Mathematics, Department of Physics University of Utah Don H. Tucker Department

More information

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

More information

CMPSCI 250: Introduction to Computation. Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013

CMPSCI 250: Introduction to Computation. Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013 CMPSCI 250: Introduction to Computation Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013 Regular Expressions and Their Languages Alphabets, Strings and Languages

More information

Hill Ciphers and Modular Linear Algebra

Hill Ciphers and Modular Linear Algebra Hill Ciphers and Modular Linear Algebra Murray Eisenberg November 3, 1999 Hill ciphers are an application of linear algebra to cryptology (the science of making and breaking codes and ciphers). Below we

More information

Vocabulary. Term Page Definition Clarifying Example. biconditional statement. conclusion. conditional statement. conjecture.

Vocabulary. Term Page Definition Clarifying Example. biconditional statement. conclusion. conditional statement. conjecture. CHAPTER Vocabulary The table contains important vocabulary terms from Chapter. As you work through the chapter, fill in the page number, definition, and a clarifying example. biconditional statement conclusion

More information

2004 Solutions Ga lois Contest (Grade 10)

2004 Solutions Ga lois Contest (Grade 10) Canadian Mathematics Competition An activity of The Centre for Education in Ma thematics and Computing, University of W aterloo, Wa terloo, Ontario 2004 Solutions Ga lois Contest (Grade 10) 2004 Waterloo

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level S2 of challenge: B/C S2 Mathematical goals Starting points Materials required Time needed Evaluating probability statements To help learners to: discuss and clarify some common misconceptions about

More information

10-4-10 Year 9 mathematics: holiday revision. 2 How many nines are there in fifty-four?

10-4-10 Year 9 mathematics: holiday revision. 2 How many nines are there in fifty-four? DAY 1 Mental questions 1 Multiply seven by seven. 49 2 How many nines are there in fifty-four? 54 9 = 6 6 3 What number should you add to negative three to get the answer five? 8 4 Add two point five to

More information

XPRESS DUBAI All Rates inclusive of Colour

XPRESS DUBAI All Rates inclusive of Colour 2 0 1 5 XPRESS DUBAI All Rates inclusive of Colour Column No. 1 2 3 4 5 6 Size/Insertions (USD Incl. Colour) 1 2 to 5 6 to 11 12 to 25 26 to 40 41 + DPS 6,858 6,172 5,829 5,486 5,143 4,458 Full Page 4,000

More information

Ummmm! Definitely interested. She took the pen and pad out of my hand and constructed a third one for herself:

Ummmm! Definitely interested. She took the pen and pad out of my hand and constructed a third one for herself: Sum of Cubes Jo was supposed to be studying for her grade 12 physics test, but her soul was wandering. Show me something fun, she said. Well I wasn t sure just what she had in mind, but it happened that

More information

Current Yield Calculation

Current Yield Calculation Current Yield Calculation Current yield is the annual rate of return that an investor purchasing a security at its market price would realize. Generally speaking, it is the annual income from a security

More information

Factorizations: Searching for Factor Strings

Factorizations: Searching for Factor Strings " 1 Factorizations: Searching for Factor Strings Some numbers can be written as the product of several different pairs of factors. For example, can be written as 1, 0,, 0, and. It is also possible to write

More information

12. Parallels. Then there exists a line through P parallel to l.

12. Parallels. Then there exists a line through P parallel to l. 12. Parallels Given one rail of a railroad track, is there always a second rail whose (perpendicular) distance from the first rail is exactly the width across the tires of a train, so that the two rails

More information

SUBSTITUTING CHORDS. B C D E F# G Row 4 D E F# G A B Row 5

SUBSTITUTING CHORDS. B C D E F# G Row 4 D E F# G A B Row 5 SUBSTITUTING CHORDS By Karen Daniels Simply put, chord substitution is the use of one chord in place of another chord and using them is one way to give your music interest and a change in sound. Many chord

More information

3 Some Integer Functions

3 Some Integer Functions 3 Some Integer Functions A Pair of Fundamental Integer Functions The integer function that is the heart of this section is the modulo function. However, before getting to it, let us look at some very simple

More information

Automata and Formal Languages

Automata and Formal Languages Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,

More information

S on n elements. A good way to think about permutations is the following. Consider the A = 1,2,3, 4 whose elements we permute with the P =

S on n elements. A good way to think about permutations is the following. Consider the A = 1,2,3, 4 whose elements we permute with the P = Section 6. 1 Section 6. Groups of Permutations: : The Symmetric Group Purpose of Section: To introduce the idea of a permutation and show how the set of all permutations of a set of n elements, equipped

More information

Row Echelon Form and Reduced Row Echelon Form

Row Echelon Form and Reduced Row Echelon Form These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

More information

Patterns in Pascal s Triangle

Patterns in Pascal s Triangle Pascal s Triangle Pascal s Triangle is an infinite triangular array of numbers beginning with a at the top. Pascal s Triangle can be constructed starting with just the on the top by following one easy

More information

Chapter 3. if 2 a i then location: = i. Page 40

Chapter 3. if 2 a i then location: = i. Page 40 Chapter 3 1. Describe an algorithm that takes a list of n integers a 1,a 2,,a n and finds the number of integers each greater than five in the list. Ans: procedure greaterthanfive(a 1,,a n : integers)

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

The BBP Algorithm for Pi

The BBP Algorithm for Pi The BBP Algorithm for Pi David H. Bailey September 17, 2006 1. Introduction The Bailey-Borwein-Plouffe (BBP) algorithm for π is based on the BBP formula for π, which was discovered in 1995 and published

More information

2017 US Masters Tour Packages. Exclusive Sports Pty Ltd www.exclusivesports.com.au email: info@exclusivesports.com.au ph: +61 2 9555 5195

2017 US Masters Tour Packages. Exclusive Sports Pty Ltd www.exclusivesports.com.au email: info@exclusivesports.com.au ph: +61 2 9555 5195 2017 US Masters Tour Packages ` Masters Week - Package 1 3 Days at the US Masters + 3 Games of Golf All accommodation close to Augusta National Golf Club 7 nights in private housing from Monday 3 rd to

More information

APPENDIX 1 PROOFS IN MATHEMATICS. A1.1 Introduction 286 MATHEMATICS

APPENDIX 1 PROOFS IN MATHEMATICS. A1.1 Introduction 286 MATHEMATICS 286 MATHEMATICS APPENDIX 1 PROOFS IN MATHEMATICS A1.1 Introduction Suppose your family owns a plot of land and there is no fencing around it. Your neighbour decides one day to fence off his land. After

More information

2 MODEL AND APPLICATION INFORMATION

2 MODEL AND APPLICATION INFORMATION A LOOK AT SERVICE SAFETY 2 MODEL AND APPLICATION INFORMATION I. Compressor Model Number Codes..... 10 II. Condensing Unit Model Number Codes.. 11 III. Serial Label Information.............. 12 IV. Basic

More information

Data Acquisition Module with I2C interface «I2C-FLEXEL» User s Guide

Data Acquisition Module with I2C interface «I2C-FLEXEL» User s Guide Data Acquisition Module with I2C interface «I2C-FLEXEL» User s Guide Sensors LCD Real Time Clock/ Calendar DC Motors Buzzer LED dimming Relay control I2C-FLEXEL PS2 Keyboards Servo Motors IR Remote Control

More information

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections

More information

Sudoku puzzles and how to solve them

Sudoku puzzles and how to solve them Sudoku puzzles and how to solve them Andries E. Brouwer 2006-05-31 1 Sudoku Figure 1: Two puzzles the second one is difficult A Sudoku puzzle (of classical type ) consists of a 9-by-9 matrix partitioned

More information

8 Divisibility and prime numbers

8 Divisibility and prime numbers 8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

More information

Cubes and Cube Roots

Cubes and Cube Roots CUBES AND CUBE ROOTS 109 Cubes and Cube Roots CHAPTER 7 7.1 Introduction This is a story about one of India s great mathematical geniuses, S. Ramanujan. Once another famous mathematician Prof. G.H. Hardy

More information

Combinatorial Proofs

Combinatorial Proofs Combinatorial Proofs Two Counting Principles Some proofs concerning finite sets involve counting the number of elements of the sets, so we will look at the basics of counting. Addition Principle: If A

More information

Welcome to Basic Math Skills!

Welcome to Basic Math Skills! Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots

More information

The thing that started it 8.6 THE BINOMIAL THEOREM

The thing that started it 8.6 THE BINOMIAL THEOREM 476 Chapter 8 Discrete Mathematics: Functions on the Set of Natural Numbers (b) Based on your results for (a), guess the minimum number of moves required if you start with an arbitrary number of n disks.

More information

Session 5 Dissections and Proof

Session 5 Dissections and Proof Key Terms for This Session Session 5 Dissections and Proof Previously Introduced midline parallelogram quadrilateral rectangle side-angle-side (SAS) congruence square trapezoid vertex New in This Session

More information

USB Card Reader Configuration Utility. User Manual. Draft!

USB Card Reader Configuration Utility. User Manual. Draft! USB Card Reader Configuration Utility User Manual Draft! SB Research 2009 The Configuration Utility for USB card reader family: Concept: To allow for field programming of the USB card readers a configuration

More information

MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL 3 - NUMERICAL INTEGRATION METHODS

MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL 3 - NUMERICAL INTEGRATION METHODS MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL - NUMERICAL INTEGRATION METHODS This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle

More information

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9 Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a

More information

AP Physics - Vector Algrebra Tutorial

AP Physics - Vector Algrebra Tutorial AP Physics - Vector Algrebra Tutorial Thomas Jefferson High School for Science and Technology AP Physics Team Summer 2013 1 CONTENTS CONTENTS Contents 1 Scalars and Vectors 3 2 Rectangular and Polar Form

More information

Tamper protection with Bankgirot HMAC Technical Specification

Tamper protection with Bankgirot HMAC Technical Specification Mars 2014 Tamper protection with Bankgirot HMAC Technical Specification Bankgirocentralen BGC AB 2013. All rights reserved. www.bankgirot.se Innehåll 1 General...3 2 Tamper protection with HMAC-SHA256-128...3

More information

Classical theorems on hyperbolic triangles from a projective point of view

Classical theorems on hyperbolic triangles from a projective point of view tmcs-szilasi 2012/3/1 0:14 page 175 #1 10/1 (2012), 175 181 Classical theorems on hyperbolic triangles from a projective point of view Zoltán Szilasi Abstract. Using the Cayley-Klein model of hyperbolic

More information

Guide to the Uniform mark scale (UMS) Uniform marks in A-level and GCSE exams

Guide to the Uniform mark scale (UMS) Uniform marks in A-level and GCSE exams Guide to the Uniform mark scale (UMS) Uniform marks in A-level and GCSE exams This booklet explains why the Uniform mark scale (UMS) is necessary and how it works. It is intended for exams officers and

More information

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

Allen Back. Oct. 29, 2009

Allen Back. Oct. 29, 2009 Allen Back Oct. 29, 2009 Notation:(anachronistic) Let the coefficient ring k be Q in the case of toral ( (S 1 ) n) actions and Z p in the case of Z p tori ( (Z p )). Notation:(anachronistic) Let the coefficient

More information

Maths Workshop for Parents 2. Fractions and Algebra

Maths Workshop for Parents 2. Fractions and Algebra Maths Workshop for Parents 2 Fractions and Algebra What is a fraction? A fraction is a part of a whole. There are two numbers to every fraction: 2 7 Numerator Denominator 2 7 This is a proper (or common)

More information

Warm-up Tangent circles Angles inside circles Power of a point. Geometry. Circles. Misha Lavrov. ARML Practice 12/08/2013

Warm-up Tangent circles Angles inside circles Power of a point. Geometry. Circles. Misha Lavrov. ARML Practice 12/08/2013 Circles ARML Practice 12/08/2013 Solutions Warm-up problems 1 A circular arc with radius 1 inch is rocking back and forth on a flat table. Describe the path traced out by the tip. 2 A circle of radius

More information

Test B. Calculator allowed. Mathematics test. First name. Last name. School. DCSF no. KEY STAGE LEVELS

Test B. Calculator allowed. Mathematics test. First name. Last name. School. DCSF no. KEY STAGE LEVELS Ma KEY STAGE 2 LEVELS 3 5 Mathematics test Test B Calculator allowed First name Last name School DCSF no. 2010 For marker s use only Page 5 7 9 11 13 15 17 19 21 23 TOTAL Marks These three children appear

More information

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint

More information

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a

More information