S on n elements. A good way to think about permutations is the following. Consider the A = 1,2,3, 4 whose elements we permute with the P =

Size: px
Start display at page:

Download "S on n elements. A good way to think about permutations is the following. Consider the A = 1,2,3, 4 whose elements we permute with the P ="

Transcription

1 Section 6. 1 Section 6. Groups of Permutations: : The Symmetric Group Purpose of Section: To introduce the idea of a permutation and show how the set of all permutations of a set of n elements, equipped with the composition of permutations as an operation, form a group, called the symmetric group S on n elements. Permutations and Their Products In Section. we introduced the concept of a permutation (or arrangement) of a set of objects. We now return to the subject, but now the focus is different, instead of thinking of a permutation as an arrangement of objects (which it is of course), we think of a permutation as a one-to-one function (bijection) from a set onto itself. For example, a permutation of A = 1,,,..., n is thought of a one-to-one mapping of this elements of the set { } set onto itself, which we represent by 1 k n P = 1 P P k P n P p which gives the image k of each element k A in the first row as the element directly below in the second row. A good way to think about permutations is the following. Consider the A = 1,,, 4 whose elements we permute with the set of four elements { } permutation 1 4 P = 4 1 Carrying out the shuffles described by P, what will be the new arrangement of the numbers { 1,,,4 }? Many beginning students do not interpret this permutation correctly, so we give you a simple explanation. A good way to think about this permutation is to think of four boxes labeled 1.,, and 4 where initially inside each box contains a marble labeled with the same number; that is, box 1 contains a ball labeled 1, box contains a marble labeled, and so on. The permutation P shuffles the marbles as shown in Figure 1. That is, the marble in box 1 moves to box, the marble in box moves to box, the marble in box moves to box 4, and the marble in box 4 moves to box 1. The boxes stay fixed, the marbles inside the boxes move n

2 Section 6. according to the permutation, the net result being the permutation moves members of A according to not (,,4,1 ). P : ( 1,,,4 ) ( 4,1,, ) Illustration of a Permutation Function Figure 1 Another way to interpret this permutation is with a directed graph as drawn in Figure. Four people are standing, say from top to bottom, on four stair steps of a stairs, where the permutation results in a rotational movement, the top three people moving down one step, and the person at the bottom moving all the way to the top step.

3 Section 6. Visualization of a Permutation Figure Product of Permutations We now introduce a second permutation 1 4 Q = 1 4 and carry out permutation P followed by permutation Q. In other words, the composition of two functions; permutation P followed by permutation Q, which gives a reshuffling of a reshuffling which defines the product of two permutations. Definition: The composition of two permutations of a set, P followed by Q is defined as the (permutation) product of P and Q, denoted 1 by PQ. In this example, the product of the compositions is 1 In compositions of functions ( f g )( x) = f [ g( x) ] we evaluate from right to left, evaluating the function g first and f second. Here, in the case of permutation functions, we have decided to evaluate from left to right to keep things in the spirit of products of members of a group which one generally things of multiplying from left to right.

4 Section PQ = So now, how do the four marbles in the four boxes end up after two shuffles? Figure illustrates the movement of the marbles in the boxes. Product (composition) of Two Permutations Figure A second visualization of this product is shown in Figure 4. The four marbles end up in order 1,4,,. (Don t confuse boxes with marbles, the marbles move, the boxes stay fixed. The numbers in the permutations refer to the boxes, not the marbles.

5 Section 6. 5 Another Representation of the Product of Permutations Figure 4 Example 1 Find the product PQ where P =, Q = Solution: Figure 5 illustrates this product. Note P :1 4 followed by Q : 4, the net result being PQ :1. In other words, we have or ( ) ( ) ( ) ( ) PQ 1 =, PQ = 4, PQ = 1, PQ 4 = Product of Permutations Figure 5

6 Section 6. 6 The graph illustration of the product is shown in Figure 6. Inverses of Permutations Composition of Two Permutations Figure 6 If a permutation P maps k into P k, then the inverse permutation P 1 inverse permutation P maps k back into k. In other words, the inverse of a permutation can be found by simply interchanging the top and bottom rows of the permutation P and (for convenience in reading) reordering the top row in numerical order 1,, n. For example Q P = Q = 1 = P = The reader can verify that PP = QQ = 1 4. Cycle Notation for Permutations A more streamlined way to display permutations is by the use of cycle (or cyclic) notation. To illustrate how this works, consider the permutation Sometimes only the bottom row of the permutation is given since the first row is ambiguous. Hence, the permutation listed here could be expressed as {5614}.

7 Section P = To write this permutation in cyclic notation, we start at the upper left-hand corner with 1 and write (1 and then follow it with its image 1 P =, that is (1. Next, note that P maps into 5, so we write (15. Then P maps 5 back into the original 1 so we have our first cycle ( 15 ). We then continue on with (next unused element in the first row) and observe that P maps into itself. Finally, we see that P maps 4 into 6 so we write so we have a 1-cycle ( ) (46 and since 6 maps back into 4 we have our final cycle, the -cycle ( 46 ). Hence P is written in what is called the product of three cycles; a -cycle, a 1-cycle, and a -cycle, P = ( 15)( )( 46) = ( 15)( 46) where we dropped the 1-cycle (), which is often done in order to streamline the notation. Let s now see if we can go backwards from cycle notation to recover the original form of the permutation. For example, consider ( 14)( ) 1 4 = 4 1 We start with the left-most cycle, where we see that 1 maps into 4 and 4 maps back into 1. This will fill in two columns of P. If the first cycle does not exhaust the elements of the set, where in this example we still have the cycle (), we continue the same process and then continue until all cycles have been used. This process will reconstruct the permutation P from its cycle notation, except we must know if any 1-cycles were dropped in the cycle notation. Margin Note If you wanted to dial the telephone number but accidentally dialed , then you permuted the digits according to ( 5)( 4 ). Example The following permutations are displayed both in function and cycle notation. Make sure you can go both ways in these equations.

8 Section 6. 8 a ) ( 1456)( ) b) = ( 14)( ) 4 1 c ) = 45 d 1 ) ( 1) 1 e 1 ) ( 1)( )( ) ( ) 1 ( )( )( ) ( ) Note the identity permutation in Example 1 e ) is sometimes written ( ). Margin Note: The cycle notation was introduced by the French mathematician Cauchy in The notation has the advantage that many properties of permutations can be seen from an glance. Example (Product of Permutations in Cycle Form) Solution Find the product PQ if (15)(4) P = ( 1)( 45) Q =. Applying (in succession) the permutation P first, then Q second, we see that 1 gets mapped into by P, then into itself by Q, and hence the composition maps 1 into. Next, the number gets mapped into 5 by P and then into 4 by Q, and so the composition maps into 4, and so on. Carrying out this process, we arrive at the composition in cycle form PQ = ( 14)( 5) = Transpositions A permutation that interchanges two elements of a set and leaves all others unchanged is called a transposition. For example

9 Section = = (,4) (,) are all transpositions. What may not be obvious is that any permutation is the product of transpositions. In other words, any permutation of elements of a set can be carried out by repeated interchanges of two elements. For example, Figure 7 shows Donald Duck, Minnie Mouse, Mickey Mouse, and Daisy Duck lined up from left to right waiting to get their picture taken. The photographer asks the three on the left to move one place to their right, and Daisy Duck to move to the left position, which is a result of the following permutation. P 1 4 = = 4 1 ( 14) Rotation Permutation Figure 7 The question then arises, is it possible to carry out this maneuver by repeated interchanges of members two at a time? The answer is yes, and the answer is ( 14) = ( 1 ),( 1 ),( 14) To see how this works, watch how they move.

10 Section ( 1 ) ( 1 ) ( 14 )

11 Section Example 4: The following permutations are written as the product of transpositions, but not necessarily in the same way. The reader can check these out. ( 14 n) = ( 1)( 1)( 14) ( 1n ) ( 41) = ( 4)( 4)( 41) ( 154) = ( 15)( 1)( 1)( 14) Symmetric Group S n We now see that the set of n! permutations of a set of n elements, where the product of two permutations is taken as their compositions, is a group, called the symmetric group S n. Theorem 1 If A is a set of n elements, then the set of all permutations of the set is a group, where the group product of two permutations P and Q is defined as the composition of P followed by Q, and denoted PQ. The group is called the symmetric group S n on n elements, and the order of the group is = n!. Sn Proof: Group multiplication is closed since each permutation (or shuffling) is a A = 1,,..., n onto itself, so repeated one-to-one mapping from { } permutations PQ is also a one-to-one mapping of { 1,,...,n } onto itself. The identity of the group is the identity mapping, i.e. the permutation that doesn t change anything. Also, every permutation has a unique inverse since permutations are one-to-one mappings from { 1,,...,n } onto itself. Also, multiplication is associative since the composition of two functions is associative. Hence, the axioms of a group are satisfied. Symmetric Group S In Section 6. we constructed the group of rotational and reflective symmetries of an equilateral triangle, called the dihedral group D. What we didn t realize at the time was that this dihedral group can also be interpreted as the symmetric group S of all permutations of the three vertices { A, B, C } of the triangle. Figure 5 shows the relation between the symmetries of an equilateral triangle and the permutations of the vertices. Note that the Normally, the composition of two functions, P followed by Q, is denoted Q P (read right to left), but since we are focusing on group products we write the composition in product form PQ.

12 Section 6. 1 composition (i.e. multiplication) of permutations acts exactly like the composition of symmetries of an equilateral triangle. When the elements of two groups can be placed in a one-to-one correspondence where the multiplication in one group is analogous to the multiplication in the other group, the groups are called abstractly equal or isomorphic. Group of Permutations A, B, C of { } Group of Symmetries of an Equilateral Triangle Interpretation A B C P1 = A B C A B C ( )( )( ) Do nothing A B C P = B C A ( ABC ) Counterclockwise 0 rotation of 10 A B C P = C A B ( ACB ) Counterclockwise 0 rotation of 40 A B C P4 = A C B A BC ( )( ) A B C P5 = C B A AC B ( )( ) Flip through vertex A Flip through vertex B A B C P6 = B A C AB C ( )( ) Flip through vertex C Abstract Equivalence of S and D Figure 5

13 Section 6. 1 Cayley Table for S. The six permutations of a set of three elements A = { 1,,}, written in cycle notation are listed in Table 1. Permutation Cyclic Notation P :1 1 e = ( ) P :1 1 ( ) P :1 1 ( 1 ) P :1 1 ( 1 ) P :1 1 ( 1 ) P :1 1 ( 1 ) Elements of S Table 1 The product PQ is the composition of P followed by Q. For example the product PQ = ( )( 1) is found by performing P = ( ) first and Q = ( 1) second. Since P :1 1 and Q :1 and so PQ :1. Also P : followed by Q : and so PQ :. Finally P : and Q : 1 and PQ. In other words ( )( 1) ( 1) so : 1 PQ = = as illustrated Table, where as customary we suppress the writing of single cycles. P PQ e = ( ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( ) e = ( ) e ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( ) ( 1 ) ( 1 ) ( 1 ) e ( ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) e ( 1 ) ( 1 ) ( ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( ) e ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( ) ( 1 ) ( 1 ) e ( 1 ) ( ) ( ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) e Q Symmetric Group S Table

14 Section Problems 1. Given the permutations find: P =, Q = a) PQ b) c) d) P 1 QP 1 P = PP e) ( PQ) 1. For permutations a b c d e f g h P =, Q = A B C D E F G H PQ = Q P. prove or disprove ( ) Find the permutation P =????? represented by the following cyclic products a) (1)(1) b) (1)(45)(15)(45) c) (14) d) (1)()(5)(4) e) (15)(4) 4. (Composition of Permutations) For the following permutations P =, Q =, R =

15 Section a) Show that PQ QP b) Verify ( PQ) R = P ( QR) PQ = Q P c) Verify ( ) (Subgroup of S ) For the group S of permutations of a set of three { } elements drawn in Table, select the subset,( 1 ),( 1) e and show that this set with the same product rule also forms a group, called a subgroup of S. Using the interpretation that the permutations in S also represents the symmetries of an equilateral triangle, what is the interpretation of this subgroup? Are there any other subgroups of S? 6. (Cycles as the Product of -cycles) elements of a set, such as the permutation ( ) A two-cycle is an exchange of two of interchanging and, leaving the other elements of the set unchanged. Every permutation of a finite set can be written (not uniquely) as the product of -cycles. Write the permutation ( 145 ) as the product or composition of -cycles. 7. (Symmetric Group S ) Given the set A = { 1, }. a) Construct the Cayley table for the group of permutations on A. b) What is the order of this group? c) Is the group Abelian? d) What is the inverse of each element of the group? 8. (Transpositions) Verify the products ( ) = ( )( )( ) ( ) ( ) = ( )( ) = ( )( ) ( ) = ( )( )( ) ( ) = ( )( )( )( ) a) 14 n n b) c) d) (Even and Odd Transpositions) In any symmetric group, the permutations can be factored as into an even or odd number of transitions. If the number of transitions is even, the permutation is called an even permutation, if the number of transpositions is odd the permutation is called odd. The symmetric group S has six elements. There are three even and three odd permutations,

16 Section Find them. Hint: The identity permutation has 0 transitions, hence it is called an even permutation. 10. (Subgroups of S ) The dihedral group D of symmetries of an equilateral triangle, which is the same as the symmetric group S of permutations of objects, is displayed in the Cayley table in Figure 6. There are four subgroups of order in this group, and one subgroup of order. Can you find them? Hint: We have denoted counterclockwise rotation of 10 degrees by r, hence r is 40 degree rotation, and flips through the three vertices by A, B, C. P PQ e = ( ) r e = ( ) e r r r Q r A B C r A B C r r e C A B r e r B C A A A B C e r B B C A r e r C C A B r r e Figure 6 r Six Symmetries of an Equilateral Triangle

Chapter 7. Permutation Groups

Chapter 7. Permutation Groups Chapter 7 Permutation Groups () We started the study of groups by considering planar isometries In the previous chapter, we learnt that finite groups of planar isometries can only be cyclic or dihedral

More information

1 Symmetries of regular polyhedra

1 Symmetries of regular polyhedra 1230, notes 5 1 Symmetries of regular polyhedra Symmetry groups Recall: Group axioms: Suppose that (G, ) is a group and a, b, c are elements of G. Then (i) a b G (ii) (a b) c = a (b c) (iii) There is an

More information

Geometric Transformations

Geometric Transformations Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted

More information

(Q, ), (R, ), (C, ), where the star means without 0, (Q +, ), (R +, ), where the plus-sign means just positive numbers, and (U, ),

(Q, ), (R, ), (C, ), where the star means without 0, (Q +, ), (R +, ), where the plus-sign means just positive numbers, and (U, ), 2 Examples of Groups 21 Some infinite abelian groups It is easy to see that the following are infinite abelian groups: Z, +), Q, +), R, +), C, +), where R is the set of real numbers and C is the set of

More information

Permutation Groups. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles April 2, 2003

Permutation Groups. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles April 2, 2003 Permutation Groups Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles April 2, 2003 Abstract This paper describes permutations (rearrangements of objects): how to combine them, and how

More information

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

More information

Abstract Algebra Cheat Sheet

Abstract Algebra Cheat Sheet Abstract Algebra Cheat Sheet 16 December 2002 By Brendan Kidwell, based on Dr. Ward Heilman s notes for his Abstract Algebra class. Notes: Where applicable, page numbers are listed in parentheses at the

More information

GROUPS ACTING ON A SET

GROUPS ACTING ON A SET GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for

More information

Elements of Abstract Group Theory

Elements of Abstract Group Theory Chapter 2 Elements of Abstract Group Theory Mathematics is a game played according to certain simple rules with meaningless marks on paper. David Hilbert The importance of symmetry in physics, and for

More information

4. FIRST STEPS IN THE THEORY 4.1. A

4. FIRST STEPS IN THE THEORY 4.1. A 4. FIRST STEPS IN THE THEORY 4.1. A Catalogue of All Groups: The Impossible Dream The fundamental problem of group theory is to systematically explore the landscape and to chart what lies out there. We

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers

More information

So let us begin our quest to find the holy grail of real analysis.

So let us begin our quest to find the holy grail of real analysis. 1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

More information

Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.

Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S. Definition 51 Let S be a set bijection f : S S 5 Permutation groups A permutation of S is simply a Lemma 52 Let S be a set (1) Let f and g be two permutations of S Then the composition of f and g is a

More information

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A. 1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called

More information

Chapter 3. Distribution Problems. 3.1 The idea of a distribution. 3.1.1 The twenty-fold way

Chapter 3. Distribution Problems. 3.1 The idea of a distribution. 3.1.1 The twenty-fold way Chapter 3 Distribution Problems 3.1 The idea of a distribution Many of the problems we solved in Chapter 1 may be thought of as problems of distributing objects (such as pieces of fruit or ping-pong balls)

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

CONSEQUENCES OF THE SYLOW THEOREMS

CONSEQUENCES OF THE SYLOW THEOREMS CONSEQUENCES OF THE SYLOW THEOREMS KEITH CONRAD For a group theorist, Sylow s Theorem is such a basic tool, and so fundamental, that it is used almost without thinking, like breathing. Geoff Robinson 1.

More information

Lecture 16 : Relations and Functions DRAFT

Lecture 16 : Relations and Functions DRAFT CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence

More information

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors 1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

PUZZLES WITH POLYHEDRA AND PERMUTATION GROUPS

PUZZLES WITH POLYHEDRA AND PERMUTATION GROUPS PUZZLES WITH POLYHEDRA AND PERMUTATION GROUPS JORGE REZENDE. Introduction Consider a polyhedron. For example, a platonic, an arquemidean, or a dual of an arquemidean polyhedron. Construct flat polygonal

More information

GENERATING SETS KEITH CONRAD

GENERATING SETS KEITH CONRAD GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors

More information

Assignment 8: Selected Solutions

Assignment 8: Selected Solutions Section 4.1 Assignment 8: Selected Solutions 1. and 2. Express each permutation as a product of disjoint cycles, and identify their parity. (1) (1,9,2,3)(1,9,6,5)(1,4,8,7)=(1,4,8,7,2,3)(5,9,6), odd; (2)

More information

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

Pigeonhole Principle Solutions

Pigeonhole Principle Solutions Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such

More information

Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN. Part II: Group Theory

Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN. Part II: Group Theory Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN Part II: Group Theory No rights reserved. Any part of this work can be reproduced or transmitted in any form or by any means. Version: 1.1 Release: Jan 2013

More information

MODERN APPLICATIONS OF PYTHAGORAS S THEOREM

MODERN APPLICATIONS OF PYTHAGORAS S THEOREM UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented

More information

INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

Math 475, Problem Set #13: Answers. A. A baton is divided into five cylindrical bands of equal length, as shown (crudely) below.

Math 475, Problem Set #13: Answers. A. A baton is divided into five cylindrical bands of equal length, as shown (crudely) below. Math 475, Problem Set #13: Answers A. A baton is divided into five cylindrical bands of equal length, as shown (crudely) below. () ) ) ) ) ) In how many different ways can the five bands be colored if

More information

Notes on Algebraic Structures. Peter J. Cameron

Notes on Algebraic Structures. Peter J. Cameron Notes on Algebraic Structures Peter J. Cameron ii Preface These are the notes of the second-year course Algebraic Structures I at Queen Mary, University of London, as I taught it in the second semester

More information

Chapter 7: Products and quotients

Chapter 7: Products and quotients Chapter 7: Products and quotients Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 7: Products

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 6 Permutation Groups Let S be a nonempty set and M(S be the collection of all mappings from S into S. In this section,

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

THE SIGN OF A PERMUTATION

THE SIGN OF A PERMUTATION THE SIGN OF A PERMUTATION KEITH CONRAD 1. Introduction Throughout this discussion, n 2. Any cycle in S n is a product of transpositions: the identity (1) is (12)(12), and a k-cycle with k 2 can be written

More information

This puzzle is based on the following anecdote concerning a Hungarian sociologist and his observations of circles of friends among children.

This puzzle is based on the following anecdote concerning a Hungarian sociologist and his observations of circles of friends among children. 0.1 Friend Trends This puzzle is based on the following anecdote concerning a Hungarian sociologist and his observations of circles of friends among children. In the 1950s, a Hungarian sociologist S. Szalai

More information

Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

More information

Group Theory via Rubik s Cube

Group Theory via Rubik s Cube Group Theory via Rubik s Cube Tom Davis tomrdavis@earthlink.net http://www.geometer.org ROUGH DRAFT!!! December 6, 2006 Abstract A group is a mathematical object of great importance, but the usual study

More information

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce

More information

Group Theory. Contents

Group Theory. Contents Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

More information

Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations

Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations Math Buddies -Grade 4 13-1 Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations Goal: Identify congruent and noncongruent figures Recognize the congruence of plane

More information

Math 223 Abstract Algebra Lecture Notes

Math 223 Abstract Algebra Lecture Notes Math 223 Abstract Algebra Lecture Notes Steven Tschantz Spring 2001 (Apr. 23 version) Preamble These notes are intended to supplement the lectures and make up for the lack of a textbook for the course

More information

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections

More information

ABEL S THEOREM IN PROBLEMS AND SOLUTIONS

ABEL S THEOREM IN PROBLEMS AND SOLUTIONS TeAM YYePG Digitally signed by TeAM YYePG DN: cn=team YYePG, c=us, o=team YYePG, ou=team YYePG, email=yyepg@msn.com Reason: I attest to the accuracy and integrity of this document Date: 2005.01.23 16:28:19

More information

Group Fundamentals. Chapter 1. 1.1 Groups and Subgroups. 1.1.1 Definition

Group Fundamentals. Chapter 1. 1.1 Groups and Subgroups. 1.1.1 Definition Chapter 1 Group Fundamentals 1.1 Groups and Subgroups 1.1.1 Definition A group is a nonempty set G on which there is defined a binary operation (a, b) ab satisfying the following properties. Closure: If

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

Baltic Way 1995. Västerås (Sweden), November 12, 1995. Problems and solutions

Baltic Way 1995. Västerås (Sweden), November 12, 1995. Problems and solutions Baltic Way 995 Västerås (Sweden), November, 995 Problems and solutions. Find all triples (x, y, z) of positive integers satisfying the system of equations { x = (y + z) x 6 = y 6 + z 6 + 3(y + z ). Solution.

More information

Graph Theory Problems and Solutions

Graph Theory Problems and Solutions raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

More information

2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?

2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE? MATH 206 - Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of

More information

Computing the Symmetry Groups of the Platonic Solids With the Help of Maple

Computing the Symmetry Groups of the Platonic Solids With the Help of Maple Computing the Symmetry Groups of the Platonic Solids With the Help of Maple Patrick J. Morandi Department of Mathematical Sciences New Mexico State University Las Cruces NM 88003 USA pmorandi@nmsu.edu

More information

Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013

Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013 Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Geometry 1. Unit 3: Perpendicular and Parallel Lines

Geometry 1. Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples

More information

DESARGUES THEOREM DONALD ROBERTSON

DESARGUES THEOREM DONALD ROBERTSON DESARGUES THEOREM DONALD ROBERTSON Two triangles ABC and A B C are said to be in perspective axially when no two vertices are equal and when the three intersection points AC A C, AB A B and BC B C are

More information

ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS

ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS John A. Beachy Northern Illinois University 2014 ii J.A.Beachy This is a supplement to Abstract Algebra, Third Edition by John A. Beachy and William D. Blair

More information

Trigonometric Functions and Equations

Trigonometric Functions and Equations Contents Trigonometric Functions and Equations Lesson 1 Reasoning with Trigonometric Functions Investigations 1 Proving Trigonometric Identities... 271 2 Sum and Difference Identities... 276 3 Extending

More information

Introduction to Modern Algebra

Introduction to Modern Algebra Introduction to Modern Algebra David Joyce Clark University Version 0.0.6, 3 Oct 2008 1 1 Copyright (C) 2008. ii I dedicate this book to my friend and colleague Arthur Chou. Arthur encouraged me to write

More information

Chapter 5.1 and 5.2 Triangles

Chapter 5.1 and 5.2 Triangles Chapter 5.1 and 5.2 Triangles Students will classify triangles. Students will define and use the Angle Sum Theorem. A triangle is formed when three non-collinear points are connected by segments. Each

More information

Outline 2.1 Graph Isomorphism 2.2 Automorphisms and Symmetry 2.3 Subgraphs, part 1

Outline 2.1 Graph Isomorphism 2.2 Automorphisms and Symmetry 2.3 Subgraphs, part 1 GRAPH THEORY LECTURE STRUCTURE AND REPRESENTATION PART A Abstract. Chapter focuses on the question of when two graphs are to be regarded as the same, on symmetries, and on subgraphs.. discusses the concept

More information

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

CONTENTS 1. Peter Kahn. Spring 2007

CONTENTS 1. Peter Kahn. Spring 2007 CONTENTS 1 MATH 304: CONSTRUCTING THE REAL NUMBERS Peter Kahn Spring 2007 Contents 2 The Integers 1 2.1 The basic construction.......................... 1 2.2 Adding integers..............................

More information

Properties of Real Numbers

Properties of Real Numbers 16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

More information

Mathematics Geometry Unit 1 (SAMPLE)

Mathematics Geometry Unit 1 (SAMPLE) Review the Geometry sample year-long scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This

More information

Unified Lecture # 4 Vectors

Unified Lecture # 4 Vectors Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

More information

Kenken For Teachers. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 27, 2010. Abstract

Kenken For Teachers. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 27, 2010. Abstract Kenken For Teachers Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 7, 00 Abstract Kenken is a puzzle whose solution requires a combination of logic and simple arithmetic skills.

More information

Just the Factors, Ma am

Just the Factors, Ma am 1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

Algebra of the 2x2x2 Rubik s Cube

Algebra of the 2x2x2 Rubik s Cube Algebra of the 2x2x2 Rubik s Cube Under the direction of Dr. John S. Caughman William Brad Benjamin. Introduction As children, many of us spent countless hours playing with Rubiks Cube. At the time it

More information

Line Segments, Rays, and Lines

Line Segments, Rays, and Lines HOME LINK Line Segments, Rays, and Lines Family Note Help your child match each name below with the correct drawing of a line, ray, or line segment. Then observe as your child uses a straightedge to draw

More information

You know from calculus that functions play a fundamental role in mathematics.

You know from calculus that functions play a fundamental role in mathematics. CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.

More information

Combinatorial Proofs

Combinatorial Proofs Combinatorial Proofs Two Counting Principles Some proofs concerning finite sets involve counting the number of elements of the sets, so we will look at the basics of counting. Addition Principle: If A

More information

GROUP ACTIONS KEITH CONRAD

GROUP ACTIONS KEITH CONRAD GROUP ACTIONS KEITH CONRAD 1. Introduction The symmetric groups S n, alternating groups A n, and (for n 3) dihedral groups D n behave, by their very definition, as permutations on certain sets. The groups

More information

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0. Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability

More information

Geometer s Sketchpad. Discovering the incenter of a triangle

Geometer s Sketchpad. Discovering the incenter of a triangle Geometer s Sketchpad Discovering the incenter of a triangle Name: Date: 1.) Open Geometer s Sketchpad (GSP 4.02) by double clicking the icon in the Start menu. The icon looks like this: 2.) Once the program

More information

Georg Cantor (1845-1918):

Georg Cantor (1845-1918): Georg Cantor (845-98): The man who tamed infinity lecture by Eric Schechter Associate Professor of Mathematics Vanderbilt University http://www.math.vanderbilt.edu/ schectex/ In papers of 873 and 874,

More information

This chapter is all about cardinality of sets. At first this looks like a

This chapter is all about cardinality of sets. At first this looks like a CHAPTER Cardinality of Sets This chapter is all about cardinality of sets At first this looks like a very simple concept To find the cardinality of a set, just count its elements If A = { a, b, c, d },

More information

Galois Theory. Richard Koch

Galois Theory. Richard Koch Galois Theory Richard Koch April 2, 2015 Contents 1 Preliminaries 4 1.1 The Extension Problem; Simple Groups.................... 4 1.2 An Isomorphism Lemma............................. 5 1.3 Jordan Holder...................................

More information

Notes on finite group theory. Peter J. Cameron

Notes on finite group theory. Peter J. Cameron Notes on finite group theory Peter J. Cameron October 2013 2 Preface Group theory is a central part of modern mathematics. Its origins lie in geometry (where groups describe in a very detailed way the

More information

Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.

Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that

More information

T ( a i x i ) = a i T (x i ).

T ( a i x i ) = a i T (x i ). Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

More information

6 Commutators and the derived series. [x,y] = xyx 1 y 1.

6 Commutators and the derived series. [x,y] = xyx 1 y 1. 6 Commutators and the derived series Definition. Let G be a group, and let x,y G. The commutator of x and y is [x,y] = xyx 1 y 1. Note that [x,y] = e if and only if xy = yx (since x 1 y 1 = (yx) 1 ). Proposition

More information

Lecture 13 - Basic Number Theory.

Lecture 13 - Basic Number Theory. Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted

More information

WRITING PROOFS. Christopher Heil Georgia Institute of Technology

WRITING PROOFS. Christopher Heil Georgia Institute of Technology WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this

More information

V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography

V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography 3 Congruence Congruences are an important and useful tool for the study of divisibility. As we shall see, they are also critical

More information

G. GRAPHING FUNCTIONS

G. GRAPHING FUNCTIONS G. GRAPHING FUNCTIONS To get a quick insight int o how the graph of a function looks, it is very helpful to know how certain simple operations on the graph are related to the way the function epression

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9 Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a

More information

Toothpick Squares: An Introduction to Formulas

Toothpick Squares: An Introduction to Formulas Unit IX Activity 1 Toothpick Squares: An Introduction to Formulas O V E R V I E W Rows of squares are formed with toothpicks. The relationship between the number of squares in a row and the number of toothpicks

More information

Book Review of Rosenhouse, The Monty Hall Problem. Leslie Burkholder 1

Book Review of Rosenhouse, The Monty Hall Problem. Leslie Burkholder 1 Book Review of Rosenhouse, The Monty Hall Problem Leslie Burkholder 1 The Monty Hall Problem, Jason Rosenhouse, New York, Oxford University Press, 2009, xii, 195 pp, US $24.95, ISBN 978-0-19-5#6789-8 (Source

More information

12. Finite figures. Example: Let F be the line segment determined by two points P and Q.

12. Finite figures. Example: Let F be the line segment determined by two points P and Q. 12. Finite figures We now look at examples of symmetry sets for some finite figures, F, in the plane. By finite we mean any figure that can be contained in some circle of finite radius. Since the symmetry

More information

Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj

Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj Section 5. l j v j = [ u u j u m ] l jj = l jj u j + + l mj u m. l mj Section 5. 5.. Not orthogonal, the column vectors fail to be perpendicular to each other. 5..2 his matrix is orthogonal. Check that

More information