Torsion of Circular Sections

Size: px
Start display at page:

Download "Torsion of Circular Sections"

Transcription

1 7 orsion of Circular Sections 7 1

2 Lecture 7: ORSION OF CIRCULR SECIONS BLE OF CONENS Page 7.1. Introduction Problem Description erminology, Notation, Coordinate Systems Deformation of orqued Shaft Stress and Strain Distributions he Stress Formula he wist Rate nd ngle Formulas orsion Failure Modes Principal Stresses and Maimum Shear Material Failure: Ductile Versus Brittle

3 7.2 PROBLEM DESCRIPION 7.1. Introduction he present lecture begins a set of three classes on torsion. his topic is presented now to provide timely theoretical support for the first eperimental Lab, which will be demo ed on Friday Sept 21. he first lecture covers circular cross sections. hese can be be treated by elementary (Mechanics of Materials) methods that nonetheless provide the eact elasticity solution. he net two lectures deal with hin Wall (W) cross sections of important in erospace. For these approimate methods are necessary. y (+) (a) (+) y (b) z z (+) (+) Figure 7.1. orsion of a circular shaft: (a) Single-headed arrow (a.k.a. harpoon ) representation and (b) double-headed arrow vector representation for torque. Both symbols are used in this course Problem Description his Section introduces the problem of a torqued member (shaft) of circular cross section (solid or annular), and presents the necessary terminology erminology, Notation, Coordinate Systems We consider a bar-like, straight, prismatic structural member of constant cross section subjected to applied torque about its long ais, as pictured in Figure 7.1(a). his kind of member, designed primarily to transmit torque, is called a shaft. is is directed along the longitudinal shaft dimension. he applied torque is shown as a moment about that ais. It is positive when it acts as indicated, complying with the right-hand screw rule along the direction. es y and z lie on a cross section conventionally taken as origin. Figure 7.1(b) shows an alternative picture of the torque as a double-headed arrow vector. We will use this representation whenever it leads to a more convenient visualization. n important use of shafts is to transmit power between parallel planes, as in automobile power trains, electrical machinery, aircraft engines or helicopter rotors. See Figure 7.2. In this lecture we restrict consideration to shafts of circular cross section that may be either solid or hollow (annular, tubular), as pictured in Figure 7.3(a,b). If the shaft is solid, its radius is R. If hollow, the eterior and interior radius are denoted by R e and R i, respectively. In addition to the (, y, z) Rectangular Cartesian Coordinate (RCC) system of Figure 7.1 we shall also use often the cylindrical coordinate system (,,θ) depicted in Figure 7.3(c) for a typical 7 3

4 Lecture 7: ORSION OF CIRCULR SECIONS Figure 7.2. ransfering power between planes via torqued shafts. (a) (b) y (c) P(,,θ) θ 2R 2R 2R z i e Cross sections considered in this lecture Point P referred to cylindrical coordinate system (looking at cross section from + down) Figure 7.3. Circular cross sections considered in this Lecture, and coordinate systems. (a) (b) Figure 7.4. Visualizing deformations produced by torque. 7 4

5 7.2 PROBLEM DESCRIPION cross section. he position coordinates of an arbitrary shaft point P are, y, z in RCC and,,θ in cylindrical coordinates. Here is the radial coordinate (not a happy notation choice because of potential confusion with density, but it is the symbol used in most Mechanics of Materials tetbooks) and θ the angular coordinate, taken positive CCW from y as shown. Note that y = cos θ, z = sin θ. (7.1) Deformation of orqued Shaft o visualize what happens when a circular shaft is torqued, consider first the undeformed state under zero torque. rectangular-like mesh is marked on the surface as shown in Figure 7.4(a). he rectangles have sides parallel to the longitudinal ais and the circumferential direction θ. pply torque to the end sections. Rectangles marked in Figure 7.4(b) shear into parallelograms, as illustrated in Figure 7.4(b). his diagram displays the main effect: shear stresses and associated shear strains develop over the cylinders = constant. Net subsection goes into more details Stress and Strain Distributions z y (a) Material element aligned with cylindrical coordinate aes θ radial direction (b) ll other stress components are zero τ θ longitudinal direction circumferential direction θ τ θ we will often call τ = τ = τ θ θ Figure 7.5. Etracting a (,,θ)-aligned material element. he only nonzero stresses are τ θ = τ θ. material element aligned with the cylindrical coordinate aes is cut out as shown in Figure 7.5(a). he element is magnified in Figure 7.5(b), which plainly shows that the only nonzero stress component on its faces is the shear stress τ θ = τ θ. It follows that the stress and strain matrices referred to the cylindrical coordinate system have the form [ τθ ] τ θ Hooke s law 7 5 [ γθ ] γ θ (7.2)

6 Lecture 7: ORSION OF CIRCULR SECIONS d = d dθ θ τ θ τ θ τ=τ θ θ 9 τ=τ θ d dθ θ Figure 7.6. Integration over the cross section of the elementary moment produced by the shear stress component τ = τ θ will balance the internal torque. he aes have been reordered as (,θ,)for convenience in identifying with plane stress and strain later. In the sequel we often call τ = τ θ = τ θ, and γ = γ θ = γ θ to reduce subscript clutter. Stresses and strains in (7.2) are connected at each material point by Hooke s shear law τ = G γ, γ = τ G, (7.3) in which G is the shear modulus. Because of circular symmetry τ and γ do not depend on θ. hey may depend on if either the cross section radius or the internal torque change along the shaft length, but that variation will not be generally made eplicit. We will assume (subject to a posteriori verification) that τ and γ depend linearly on, and we scale that dependence as follows: τ = R τ ma, γ = R γ ma (7.4) Here τ ma and γ ma are maimum values of the shear stress and strain, respectively, over the cross section. hese occur at = R, the radius of the shaft. (For an annular shaft, R = R e, the eterior or outer radius) 7.3. he Stress Formula Call the internal torque acting on a cross section = constant. he shear stress τ = τ θ acting on an elementary cross section area dproduces an elementary force df = τ dand an elementary moment dm = df = (τ d) about the ais. See Figure 7.6 for the geometric details. Integration of the elementary moment over the cross section must balance the internal torque: = (shear stress elemental area) lever-arm = (τ d) = R τ ma d= τ ma 2 d (7.5) R = τ ma 2 ( d dθ) = τ ma 3 d dθ = τ ma J R R R, 7 6

7 7.4 HE WIS RE ND NGLE FORMULS φ at γ =(γ ) =(γ ) ma θ ma θ ma L B B' φ B Figure 7.7. wist deformation of a torqued circular shaft. Deformations and rotations greatly eaggerated for visualization convenience. in which J = 2 d= 3 d dθ, (7.6) is the polar moment of inertia of the cross section about its center. Solving for τ ma gives the stress formula: τ ma = R J, τ = R τ ma = J (7.7) For a solid circular section of radius R, J = 1 2 π R4. For an annular cross section of eterior radius R e and interior radius R i, J = 1 2 π(r4 e R4 i ) he wist Rate nd ngle Formulas torqued shaft produces a relative rotation of one end respect to the other; see visualization in Figure 7.4(b). his relative rotation is called the twist angle φ. he twist angle per unit of -length is called the twist rate dφ/d. Often the design called for limitation on this rate or angle. It is thus of interest to have epressions for both of them in terms of the applied torque and the properties of the shaft. Geometric quantities used for working out those epressions are defined in Figure 7.7. Note that infinitesimal strains and rotations are assumed; deformations depicted in Figure 7.7 are greatly eaggerated for visibility convenience. For small angles BB R φ B L γ ma.tan arbitrary distance from the fied end, R φ γ ma whence φ = γ ma /R. Consequently the twist rate is But according to Hooke s law (7.3) dφ d = γ ma R = γ so γ = dφ d (7.8) γ = τ G = GJ = dφ d (7.9) 7 7

8 Lecture 7: ORSION OF CIRCULR SECIONS Fied end 6 Material: steel, G = 12 1 psi Solid circular section, R = 1 in L = 5 in B = 5 lbs-in Figure 7.8. Eample calculation of maimum shear stress and twist angle. which yields dφ d = GJ (7.1) his is the twist rate formula. o find the twist angle φ B, where subscripts identify the angle measurement endpoints, integrate along the length of the shaft: φ B = φ B φ = φ B = φ B = If, G and J are constant along the shaft: L dφ = L dφ L d d = GJ d. (7.11) φ B = GJ L d = L GJ (7.12) his is the twist angle formula for a prismatic shaft. Eample 7.1. Data for this eample is provided in Figure 7.8. Find: maimum shear stress τ ma, maimum shear strain γ ma and relative twist angle φ B. τ ma = R J = R 5 = π R = 3183 psi (7.13) γ ma = τ ma G 32 psi = = 265 µ (microradians) (7.14) psi φ B = L GJ = ( 1 2 π 14 ) =.133 rad =.76 (7.15) 7 8

9 7.5 ORSION FILURE MODES (b) (c) (a) Figure 7.9. hree failure modes of a torqued specimen: (a,b): material failure in solid shaft, (c): wall buckling in thin walled tubular shaft orsion Failure Modes Shafts should be designed against possible failure modes. hree practically important ones are sketched in Figure 7.9. Specimen (a) and (b) display two classical material failure modes in a solid shaft, whereas (c) illustrates a wall buckling failure that may occur for hollow shafts if the wall is too thin. Only the first two modes are discussed here, since the last one requires knowledge of shell buckling, which falls outside of the scope of this course Principal Stresses and Maimum Shear s discussed in 7.2.2, the stress matri at a point P(,,θ)referred to a cylindrical coordinate system with aes reordered as (,θ,)takes the simple form [ ] τ τ, τ = τ θ = τ θ = τ ma R, τ ma = R J. (7.16) We can observe that all points are in plate stress because all stresses with a subscript vanish, although the shaft is not a thin plate. It is also in plane strain because the transverse strains (that is, strain components with a subscript): ɛ, γ and γ θ, are zero. Since the shear stress is proportional to, we consider a point on the outer surface = R, where τ = τ ma. he Mohr s circle for stresses in the (,θ)plane passing through P(, R,θ)is shown in Figure 7.1(a). By inspection we see that (a) he principal stresses are σ 1 = τ ma (tension) and σ 2 = τ ma (compression). hese occur at ±45 from the longitudinal direction. (b) he maimum inplane shear is τ ma, which occurs on the shaft cross sections. Consideration of 3D effects does not change these findings because the zero principal stress is the intermediate one. hus the circle plotted in Figure 7.1(a) is the outer one, and the maimum overall shear stress τma overall is the same as the maimum inplane shear stress, that is, τma inplane. 7 9

10 Lecture 7: ORSION OF CIRCULR SECIONS (a) Mohr's circle for (,θ) plane at =R (outer shaft surface) radius of circle is τ ma τ τ ma (b) Material failure surfaces for two etreme cases: ductile vs. brittle 45 ο σ 2 = τ ma σ = τ 1 ma σ τ ma Ductile material failure surface (plane of cross section) Brittle material failure surface (=helicoid) Figure 7.1. By inpection of the Mohr circle, maimum normal and shear stresses at a point on the outer shaft surface determine the kind of material failure Material Failure: Ductile Versus Brittle We are now in a position to eplain the two material failure modes shown in Figure 7.9(a,b). If the material is ductile, it fails by maimum shear τ ma reaching yield, followed by post-yield plastic flow. he failure surface is the cross section, as sketched in Figure 7.9(a). he picture in 7.11(a) shows a mild steel specimen taken to failure by torque. If the material is brittle, it fails by maimum tensile stress, which is σ 1 = τ ma. Since this occurs at 45 from the longitudinal direction, the fracture is more complicated and will look (at least near the shaft outer surface) like a helicoid, as sketched in Figure 7.9(b). he photographs in Figure 7.11 show two fractured specimen fabricated of brittle materials: cast iron and chalk, respectively. (a) Ductile failure by shear (mild steel) (b) Brittle failure by tensile normal stress (cast iron) (c) Brittle failure by tensile normal stress (chalk) Figure ctual material failure observed in torqued specimen. If the material is not isotropic, the failure process can be more involved than the two etreme cases dicussed above. For eample, wood and laminate composites may fail by delamination across layers or fibers. 7 1

Plane Stress Transformations

Plane Stress Transformations 6 Plane Stress Transformations ASEN 311 - Structures ASEN 311 Lecture 6 Slide 1 Plane Stress State ASEN 311 - Structures Recall that in a bod in plane stress, the general 3D stress state with 9 components

More information

Torsion Tests. Subjects of interest

Torsion Tests. Subjects of interest Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test

More information

Stress Strain Relationships

Stress Strain Relationships Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

More information

Introduction to Mechanical Behavior of Biological Materials

Introduction to Mechanical Behavior of Biological Materials Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure

More information

SHAFTS: TORSION LOADING AND DEFORMATION

SHAFTS: TORSION LOADING AND DEFORMATION ECURE hird Edition SHAFS: ORSION OADING AND DEFORMAION A. J. Clark Shool of Engineering Department of Civil and Environmental Engineering 6 Chapter 3.1-3.5 by Dr. Ibrahim A. Assakkaf SPRING 2003 ENES 220

More information

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN COMPLX STRSS TUTORIAL COMPLX STRSS AND STRAIN This tutorial is not part of the decel unit mechanical Principles but covers elements of the following sllabi. o Parts of the ngineering Council eam subject

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

Section 16: Neutral Axis and Parallel Axis Theorem 16-1

Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts

More information

Design Analysis and Review of Stresses at a Point

Design Analysis and Review of Stresses at a Point Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to

More information

Plane Stress Transformations

Plane Stress Transformations 6 Plane Stress Transformations 6 1 Lecture 6: PLANE STRESS TRANSFORMATIONS TABLE OF CONTENTS Page 6.1 Introduction..................... 6 3 6. Thin Plate in Plate Stress................ 6 3 6.3 D Stress

More information

3D Stress Components. From equilibrium principles: τ xy = τ yx, τ xz = τ zx, τ zy = τ yz. Normal Stresses. Shear Stresses

3D Stress Components. From equilibrium principles: τ xy = τ yx, τ xz = τ zx, τ zy = τ yz. Normal Stresses. Shear Stresses 3D Stress Components From equilibrium principles:, z z, z z The most general state of stress at a point ma be represented b 6 components Normal Stresses Shear Stresses Normal stress () : the subscript

More information

Introduction to Plates

Introduction to Plates Chapter Introduction to Plates Plate is a flat surface having considerabl large dimensions as compared to its thickness. Common eamples of plates in civil engineering are. Slab in a building.. Base slab

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following. MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

More information

Elasticity Theory Basics

Elasticity Theory Basics G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold

More information

Analysis of Stresses and Strains

Analysis of Stresses and Strains Chapter 7 Analysis of Stresses and Strains 7.1 Introduction axial load = P / A torsional load in circular shaft = T / I p bending moment and shear force in beam = M y / I = V Q / I b in this chapter, we

More information

Beam Deflections: Second-Order Method

Beam Deflections: Second-Order Method 10 eam Deflections: Second-Order Method 10 1 Lecture 10: EM DEFLECTIONS: SECOND-ORDER METHOD TLE OF CONTENTS Page 10.1 Introduction..................... 10 3 10.2 What is a eam?................... 10 3

More information

Lecture 12: Fundamental Concepts in Structural Plasticity

Lecture 12: Fundamental Concepts in Structural Plasticity Lecture 12: Fundamental Concepts in Structural Plasticity Plastic properties of the material were already introduced briefly earlier in the present notes. The critical slenderness ratio of column is controlled

More information

Force measurement. Forces VECTORIAL ISSUES ACTION ET RÉACTION ISOSTATISM

Force measurement. Forces VECTORIAL ISSUES ACTION ET RÉACTION ISOSTATISM Force measurement Forces VECTORIAL ISSUES In classical mechanics, a force is defined as "an action capable of modifying the quantity of movement of a material point". Therefore, a force has the attributes

More information

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general three-dimensional solid deformable

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL 3 - TORSION

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL 3 - TORSION ENGINEEING COUNCI CETIFICATE EVE ENGINEEING SCIENCE C10 TUTOIA - TOSION You should judge your progress by completing the self assessment exercises. These may be sent for marking or you may request copies

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

Structural Integrity Analysis

Structural Integrity Analysis Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces

More information

Analysis of Stress CHAPTER 1 1.1 INTRODUCTION

Analysis of Stress CHAPTER 1 1.1 INTRODUCTION CHAPTER 1 Analysis of Stress 1.1 INTRODUCTION The basic structure of matter is characterized by nonuniformity and discontinuity attributable to its various subdivisions: molecules, atoms, and subatomic

More information

Lab 7: Rotational Motion

Lab 7: Rotational Motion Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

More information

Module 5 Couplings. Version 2 ME, IIT Kharagpur

Module 5 Couplings. Version 2 ME, IIT Kharagpur Module 5 Couplings Lesson 1 Introduction, types and uses Instructional Objectives At the end of this lesson, the students should have the knowledge of The function of couplings in machinery. Different

More information

1 of 79 Erik Eberhardt UBC Geological Engineering EOSC 433

1 of 79 Erik Eberhardt UBC Geological Engineering EOSC 433 Stress & Strain: A review xx yz zz zx zy xy xz yx yy xx yy zz 1 of 79 Erik Eberhardt UBC Geological Engineering EOSC 433 Disclaimer before beginning your problem assignment: Pick up and compare any set

More information

MATERIALS AND MECHANICS OF BENDING

MATERIALS AND MECHANICS OF BENDING HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL

More information

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads? Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility

More information

Stress Analysis, Strain Analysis, and Shearing of Soils

Stress Analysis, Strain Analysis, and Shearing of Soils C H A P T E R 4 Stress Analysis, Strain Analysis, and Shearing of Soils Ut tensio sic vis (strains and stresses are related linearly). Robert Hooke So I think we really have to, first, make some new kind

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

The Fundamental Principles of Composite Material Stiffness Predictions. David Richardson

The Fundamental Principles of Composite Material Stiffness Predictions. David Richardson The Fundamental Principles of Composite Material Stiffness Predictions David Richardson Contents Description of example material for analysis Prediction of Stiffness using Rule of Mixtures (ROM) ROM with

More information

Thin Walled Pressure Vessels

Thin Walled Pressure Vessels 3 Thin Walled Pressure Vessels 3 1 Lecture 3: THIN WALLED PRESSURE VESSELS TABLE OF CONTENTS Page 3.1. Introduction 3 3 3.2. Pressure Vessels 3 3 3.3. Assumptions 3 4 3.4. Cylindrical Vessels 3 4 3.4.1.

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

Solid Mechanics. Stress. What you ll learn: Motivation

Solid Mechanics. Stress. What you ll learn: Motivation Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain

More information

EQUILIBRIUM STRESS SYSTEMS

EQUILIBRIUM STRESS SYSTEMS EQUILIBRIUM STRESS SYSTEMS Definition of stress The general definition of stress is: Stress = Force Area where the area is the cross-sectional area on which the force is acting. Consider the rectangular

More information

CosmosWorks Centrifugal Loads

CosmosWorks Centrifugal Loads CosmosWorks Centrifugal Loads (Draft 4, May 28, 2006) Introduction This example will look at essentially planar objects subjected to centrifugal loads. That is, loads due to angular velocity and/or angular

More information

ES240 Solid Mechanics Fall 2007. Stress field and momentum balance. Imagine the three-dimensional body again. At time t, the material particle ( x, y,

ES240 Solid Mechanics Fall 2007. Stress field and momentum balance. Imagine the three-dimensional body again. At time t, the material particle ( x, y, S40 Solid Mechanics Fall 007 Stress field and momentum balance. Imagine the three-dimensional bod again. At time t, the material particle,, ) is under a state of stress ij,,, force per unit volume b b,,,.

More information

Stresses in Beam (Basic Topics)

Stresses in Beam (Basic Topics) Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS T dition CHTR MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University Stress and Strain xial oading - Contents Stress & Strain: xial oading

More information

Begin creating the geometry by defining two Circles for the spherical endcap, and Subtract Areas to create the vessel wall.

Begin creating the geometry by defining two Circles for the spherical endcap, and Subtract Areas to create the vessel wall. ME 477 Pressure Vessel Example 1 ANSYS Example: Axisymmetric Analysis of a Pressure Vessel The pressure vessel shown below is made of cast iron (E = 14.5 Msi, ν = 0.21) and contains an internal pressure

More information

Mechanical Properties - Stresses & Strains

Mechanical Properties - Stresses & Strains Mechanical Properties - Stresses & Strains Types of Deformation : Elasic Plastic Anelastic Elastic deformation is defined as instantaneous recoverable deformation Hooke's law : For tensile loading, σ =

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

Lecture L5 - Other Coordinate Systems

Lecture L5 - Other Coordinate Systems S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates

More information

Burst Pressure Prediction of Pressure Vessel using FEA

Burst Pressure Prediction of Pressure Vessel using FEA Burst Pressure Prediction of Pressure Vessel using FEA Nidhi Dwivedi, Research Scholar (G.E.C, Jabalpur, M.P), Veerendra Kumar Principal (G.E.C, Jabalpur, M.P) Abstract The main objective of this paper

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

More information

INTRODUCTION TO BEAMS

INTRODUCTION TO BEAMS CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis

More information

CH 6: Fatigue Failure Resulting from Variable Loading

CH 6: Fatigue Failure Resulting from Variable Loading CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture).

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering

More information

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

CIVL 7/8117 Chapter 3a - Development of Truss Equations 1/80

CIVL 7/8117 Chapter 3a - Development of Truss Equations 1/80 CIV 7/87 Chapter 3a - Development of Truss Equations /8 Development of Truss Equations Having set forth the foundation on which the direct stiffness method is based, we will now derive the stiffness matri

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

3 Concepts of Stress Analysis

3 Concepts of Stress Analysis 3 Concepts of Stress Analysis 3.1 Introduction Here the concepts of stress analysis will be stated in a finite element context. That means that the primary unknown will be the (generalized) displacements.

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS 7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length

More information

FATIGUE CONSIDERATION IN DESIGN

FATIGUE CONSIDERATION IN DESIGN FATIGUE CONSIDERATION IN DESIGN OBJECTIVES AND SCOPE In this module we will be discussing on design aspects related to fatigue failure, an important mode of failure in engineering components. Fatigue failure

More information

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS ENGINEERING COMPONENTS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS Structural members: struts and ties; direct stress and strain,

More information

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING Met E 206 MATERIALS LABORATORY EXPERIMENT 1 Prof. Dr. Rıza GÜRBÜZ Res. Assist. Gül ÇEVİK (Room: B-306) INTRODUCTION TENSION TEST Mechanical testing

More information

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc. Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

More information

Lecture L6 - Intrinsic Coordinates

Lecture L6 - Intrinsic Coordinates S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed

More information

BEAMS: SHEAR AND MOMENT DIAGRAMS (GRAPHICAL)

BEAMS: SHEAR AND MOMENT DIAGRAMS (GRAPHICAL) LECTURE Third Edition BES: SHER ND OENT DIGRS (GRPHICL). J. Clark School of Engineering Department of Civil and Environmental Engineering 3 Chapter 5.3 by Dr. Ibrahim. ssakkaf SPRING 003 ENES 0 echanics

More information

Chapter 22: Electric Flux and Gauss s Law

Chapter 22: Electric Flux and Gauss s Law 22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we

More information

Finite Element Formulation for Plates - Handout 3 -

Finite Element Formulation for Plates - Handout 3 - Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the

More information

CATIA V5 FEA Tutorials Releases 12 & 13

CATIA V5 FEA Tutorials Releases 12 & 13 CATIA V5 FEA Tutorials Releases 12 & 13 Nader G. Zamani University of Windsor SDC PUBLICATIONS Schroff Development Corporation www.schroff.com www.schroff-europe.com Visit our website to learn more about

More information

Section V.2: Magnitudes, Directions, and Components of Vectors

Section V.2: Magnitudes, Directions, and Components of Vectors Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions

More information

Diameter. Swift Lift Round Recess Plug. Note: The diameter of the narrow recess plug is the same as the diameter of the round recess plug.

Diameter. Swift Lift Round Recess Plug. Note: The diameter of the narrow recess plug is the same as the diameter of the round recess plug. P-5 The P-5 is hot forged from carbon steel. The formed head provis spherical seating that the Lifting Eye engages, while a disc-shaped foot is embedd in the concrete. Due to its being a forged part, the

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

Unit 3 (Review of) Language of Stress/Strain Analysis

Unit 3 (Review of) Language of Stress/Strain Analysis Unit 3 (Review of) Language of Stress/Strain Analysis Readings: B, M, P A.2, A.3, A.6 Rivello 2.1, 2.2 T & G Ch. 1 (especially 1.7) Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering

More information

R&DE (Engineers), DRDO. Theories of Failure. rd_mech@yahoo.co.in. Ramadas Chennamsetti

R&DE (Engineers), DRDO. Theories of Failure. rd_mech@yahoo.co.in. Ramadas Chennamsetti heories of Failure ummary Maximum rincial stress theory Maximum rincial strain theory Maximum strain energy theory Distortion energy theory Maximum shear stress theory Octahedral stress theory Introduction

More information

Shell Elements in ABAQUS/Explicit

Shell Elements in ABAQUS/Explicit ABAQUS/Explicit: Advanced Topics Appendix 2 Shell Elements in ABAQUS/Explicit ABAQUS/Explicit: Advanced Topics A2.2 Overview ABAQUS/Explicit: Advanced Topics ABAQUS/Explicit: Advanced Topics A2.4 Triangular

More information

Unified Lecture # 4 Vectors

Unified Lecture # 4 Vectors Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

More information

Solution for Homework #1

Solution for Homework #1 Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

More information

MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES OF STRESS AND STRAIN

MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES OF STRESS AND STRAIN MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES O STRESS AND STRAIN This tutorial is essential for anyone studying the group of tutorials on beams. Essential pre-requisite knowledge

More information

Sheet metal operations - Bending and related processes

Sheet metal operations - Bending and related processes Sheet metal operations - Bending and related processes R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Table of Contents 1.Quiz-Key... Error! Bookmark not defined. 1.Bending

More information

Course in. Nonlinear FEM

Course in. Nonlinear FEM Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited

More information

The Dot and Cross Products

The Dot and Cross Products The Dot and Cross Products Two common operations involving vectors are the dot product and the cross product. Let two vectors =,, and =,, be given. The Dot Product The dot product of and is written and

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

Vector Algebra II: Scalar and Vector Products

Vector Algebra II: Scalar and Vector Products Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define

More information

SHEAR AND TORSION. David Roylance Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139

SHEAR AND TORSION. David Roylance Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139 SHER ND TORSION David Roylance Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, M 02139 June 23, 2000 Introduction Torsionally loaded shafts are among the

More information

(Seattle is home of Boeing Jets)

(Seattle is home of Boeing Jets) Dr. Faeq M. Shaikh Seattle, Washington, USA (Seattle is home of Boeing Jets) 1 Pre Requisites for Today s Seminar Basic understanding of Finite Element Analysis Working Knowledge of Laminate Plate Theory

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING COUNCIL CERTIICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL - BASIC STUDIES O STRESS AND STRAIN You should judge your progress by completing the self assessment exercises. These may be sent

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Concepts of Stress and Strain

Concepts of Stress and Strain CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS Concepts of Stress and Strain 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original

More information

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 4 AREAS AND VOLUMES This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.

More information

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

More information

2D Geometrical Transformations. Foley & Van Dam, Chapter 5

2D Geometrical Transformations. Foley & Van Dam, Chapter 5 2D Geometrical Transformations Fole & Van Dam, Chapter 5 2D Geometrical Transformations Translation Scaling Rotation Shear Matri notation Compositions Homogeneous coordinates 2D Geometrical Transformations

More information

Bending Stress in Beams

Bending Stress in Beams 936-73-600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending

More information

9.3 Two-way Slabs (Part I)

9.3 Two-way Slabs (Part I) 9.3 Two-way Slabs (Part I) This section covers the following topics. Introduction Analysis and Design Features in Modeling and Analysis Distribution of Moments to Strips 9.3.1 Introduction The slabs are

More information

THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS

THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS Dr Andrew Pollard Principal Engineer GKN Technology UK INTRODUCTION There is a wide choice of flexible couplings for power transmission applications,

More information

Vector Calculus: a quick review

Vector Calculus: a quick review Appendi A Vector Calculus: a quick review Selected Reading H.M. Sche,. Div, Grad, Curl and all that: An informal Tet on Vector Calculus, W.W. Norton and Co., (1973). (Good phsical introduction to the subject)

More information

2. Spin Chemistry and the Vector Model

2. Spin Chemistry and the Vector Model 2. Spin Chemistry and the Vector Model The story of magnetic resonance spectroscopy and intersystem crossing is essentially a choreography of the twisting motion which causes reorientation or rephasing

More information

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams Introduction to Beam Theory Area Moments of Inertia, Deflection, and Volumes of Beams Horizontal structural member used to support horizontal loads such as floors, roofs, and decks. Types of beam loads

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

More information

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H). INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes

More information

TENSILE TESTING PRACTICAL

TENSILE TESTING PRACTICAL TENSILE TESTING PRACTICAL MTK 2B- Science Of Materials Ts epo Mputsoe 215024596 Summary Material have different properties all varying form mechanical to chemical properties. Taking special interest in

More information

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31)

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Outline -1-! This part of the module consists of seven lectures and will focus

More information

جامعة البلقاء التطبيقية

جامعة البلقاء التطبيقية AlBalqa Applied University تا سست عام 997 The curriculum of associate degree in Air Conditioning, Refrigeration and Heating Systems consists of (7 credit hours) as follows: Serial No. Requirements First

More information