arxiv:math/ v1 [math.ca] 22 Apr 2003

Size: px
Start display at page:

Download "arxiv:math/0304317v1 [math.ca] 22 Apr 2003"

Transcription

1 AN ENTRY OF RAMANUJAN ON HYPERGEOMETRIC SERIES IN HIS NOTEBOOKS arxiv:math/030437v math.ca Apr 003 K. Srinivasa Rao a,b, G. Vanden Berghe a,c and C. Krattenthaler d a Flemish Academic Center VLAC), Royal Flemish Academy of Belgium for Science and the Arts, Paleis der Academiën, Hertogsstraat, B-000 Brussels, Belgium. b The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai , India. c Universiteit Gent, Toegepaste Wiskunde en Informatica, Krijgslaan 8-S9, B-9000 Gent, Belgium. d Institut Girard Desargues, Université Claude Berrnard Lyon-I,, avenue Claude Bernard, F-696 Villeurbanne, Cedex. rao@imsc.res.in, guido.vandenberghe@rug.ac.be, kratt@euler.univ-lyon.fr Abstract. Example 7, after Entry 43, in Chapter XII of the first Notebook of Srinivasa Ramanujan is proved and, more generally, a summation theorem for 3F a, a, x; a, a N; ), where N is a non-negative integer, is derived.. Introduction In the Notebooks of Ramanujan, identities for hypergeometric series occupy a prominent part see 3, Chapters X, XI). In fact, Ramanujan discovered for himself all the now classical) summation theorems established by Gauß, Chu-Vandermonde, Kummer, Pfaff Saalschütz, Dixon and Dougall. For example, Dougall s summation theorem of which all the others mentioned are special cases), which was discovered by Dougall 5 in 907, was independently found by Ramanujan during 90 9 see Entry in Chapter XII of Notebook and in the corresponding Entry in Chapter X of Notebook ). We cannot assert an exact date, because there are no dates anywhere in the Notebooks of Ramanujan. In any case, Ramanujan rediscovered not only all that was known in Europe on hypergeometric series at that time, but he also discovered several new theorems, and, in particular, theorems on products of hypergeometric series, 000 Mathematics Subject Classification. Primary 33C0; Secondary 33C05, 33B5. Key words and phrases. Hypergeometric functions, gamma function, digamma function, Ramanujan s Notebooks, summation theorems. Corresponding author: G. Vanden Berghe, Universiteit Gent, Toegepaste Wiskunde en Informatica, Krijgslaan 8-S9, B-9000 Gent, Belgium

2 K. SRINIVASA RAO, G. VANDEN BERGHE AND C. KRATTENTHALER as well as several types of asymptotic expansions. On the other hand, it is well known 3, 4 that Ramanujan did not publish any of his results from his Chapters on hypergeometric series that are to be found in his Notebooks. The Chapters on hypergeometric series, in particular, Chapters X and XI, in his second Notebook, have been extensively studied by Hardy 8 and Berndt 3, since the Chapters of Ramanujan s second Notebook are considered as revised, enlarged versions of the Chapters in his first Notebook. However, Example 7, after Entry 43, in Chapter XII of the first Notebook did not find a place in the corresponding examples after Entry 0 in Chapter X of his second Notebook, and is therefore not discussed in 3. The purpose of this article is to provide a proof for Example 7, after Entry 43, in Chapter XII, XII, 43, Ex. 7), in the first Notebook of Ramanujan, using well-known transformation and summation theorems of hypergeometric series. In fact, we prove a more general identity which may have been the identity that Ramanujan actually had, and from which he recorded the most elegant specializations into his Notebook a conjecture consistent with a wide spread belief that that was Ramanujan s style). Our paper is organized as follows: In Section, Entry XII, 43, Ex. 7) in the first Notebook of Ramanujan and some related entries are presented in Ramanujan s notation, and subsequently translated into current notation. This leads us to the statement of a summation theorem for a 3 F x,, ; 3, 3 ; ) hypergeometric series, for R x <. In Section 3, the statement is generalized to a summation theorem for the 3F a, a, x; a, an; ) series, where N is a non-negative integer, and it is proved. Finally, in Section 4, some remarks regarding special cases of the theorem are made.. Ramanujan s Entry In Ramanujan s notation, Example 7, after Entry 43, in Chapter XII, of the first Notebook reads as follows: π x tanπx) x x ) x) x x x π ) tanπx) = x xx ) 3 &c. XII, 43, Ex.7) 5 Here, x is Ramanujan s notation for the gamma function Γx ), which, for him, was a function over real numbers x see 0). We, of course, adopt the contemporary point of view and regard the gamma function as a function over the complex numbers. The factor on the left-hand side of XII, 43, Ex.7): π x tanπx) x x ) x) )

3 AN ENTRY OF RAMANUJAN ON HYPERGEOMETRIC SERIES 3 is the same factor that appears on the left-hand side of XII, 43, Ex.4) which, in Ramanujan s first Notebook is π tanπx) x x x ) x) = x 3 xx ) &c. XII, 43, Ex.4) 5 This is given in Ramanujan s second Notebook as: π n n = n nn ) &c. X, 0, Ex.4) 3 5 As pointed out by Berndt 3, the Entry X, 0, Ex.4), or, XII, 43, Ex.4), is the special case of X, 0), or, XII, 43), where we do the replacements n and x n. The factor ) which occurs on the left-hand side of XII, 43, Ex.4) can be shown to be equal to: π Γ x) π x x Γ 3 x) = x x, ) after using the reflection formula: Γz) Γ z) = π/ sinπz), and the duplication formula Γz) = z π / Γz)Γz ) and some algebraic manipulations. When written in the standard hypergeometric notation a,...,a r a ) k a r ) k rf s ; z = z b,...,b k, s k! b ) k b s ) k k=0 where the Pochhammer symbol α) k is defined by α) k = αα)α) αk ), k > 0, α) 0 =, the series on the right-hand side of XII, 43, Ex.4) is: F, x 3 ;, which by the Gauß summation theorem see,.7.6); Appendix III.3)): a, b F c ; Γc) Γc a b) = valid for Rc a b) > 0, 3) Γc a) Γc b) becomes: F, x 3 ; = π Γ x) π Γ3/ x) = x x /. 4) If we compare the right-hand side of this equation with ), which, as we outlined, is equal to the left-hand side ) of XII, 43, Ex.4), it is clear that Ramanujan missed a multiplicative factor x on the left-hand side of XII, 43, Ex.4), while his Entry X, 0, Ex.4) is correct. As we shall see, the same applies to the Entry XII, 43, Ex.7). To be precise, the factor ) on the left-hand side of that entry must also be replaced by the correct value 4). The series on the right-hand side of XII, 43, Ex.7) is, in hypergeometric notation: x, 3F, 3 ;., 3

4 4 K. SRINIVASA RAO, G. VANDEN BERGHE AND C. KRATTENTHALER There are two factors on the left-hand side of XII, 43, Ex.7). Besides the factor ), the other factor in XII, 43, Ex.7) is: x x x π tanπx). 5) Ramanujan used the notation x to indicate the extension of the function 3 n, representing the harmonic numbers, from positive integers n to real x. In other words, x is Ramanujan s notation for the digamma function ψx) := Γ x)/γx), the logarithmic derivative of the gamma function, or, more precisely, for ψx ) γ, where γ is the Euler-Mascheroni constant, that is ψx ) = γ. 6) x In fact, in Ramanujan s very first research paper 9, the digamma function occurs as: d dn log Γn ) = 3 n γ = n γ. Thus, the expression 5) becomes: ψx ) ψx ) x π tanπx) γ. 7) The digamma function satisfies the recurrence relation 6,.7.8): the reflection formula 6,.7.): ψz ) = ψz) z, 8) ψz) = ψz ) π cotπz) 9) and the duplication formula 6,.7.): ψz) = ψz) ψ z ) log. 0) We remark that the duplication formula appears implicitly in Ramanujan s first Notebook. Namely, a comparison of Entry XII, 43, Ex.6) with n x in Entry X, 0, Ex.6) shows that Ramanujan obtained: x x = x x log, x which by 6) and 8) is equivalent to 0). Furthermore, the digamma function has the special values ψ = γ log and ψ) = γ. ) ) We now use the duplication formula 0) to convert 7) into x ψ ) log x π tanπx) γ.

5 AN ENTRY OF RAMANUJAN ON HYPERGEOMETRIC SERIES 5 The recurrence relation 8) implies that ψx ) = ψx ), while we know x from ) that log = ψ) γ. If this is substituted in the last equation, and if we then apply the reflection formula 9), we obtain 3 ) ) ) ψ x ψ ) for the expression 5). Therefore, if we recall that the factor ) on the left-hand side of Ramanujan s Entry XII, 43, Ex.7) must be replaced by 4), this entry can be rewritten in contemporary notation as: x, 3F, { π Γ x) 3 ) 3 ; = ψ x ψ ) } for R x <., 3 = 4 Γ 3 x) 3 ) x ψ ) } x, F { ψ 3 ;, 3) In the next section we state and prove a theorem which is a generalization of 3), that is, of Ramanujan s Entry XII, 43, Ex.7). 3. The theorem Theorem. Let N be a non-negative integer and a be a complex number which is not a negative integer. If R x < N, then a, a, x 3F a, a N ; = a Γa N ) Γ x) N! Γa x ) ψa x ) ψa) ψn ) γ) a Γa N ) Γ x) N! Γa x ) N k= a) k N) k k k! a x ) k. 4) Proof. To evaluate the 3 F ) series on the left-hand side of 4), let us introduce a parameter ε, and consider the series a, a ε, x 3F a ε, a ε N ;. First we apply the non-terminating) transformation formula see 7, Ex. 3.6, q, reversed): a, b, c 3F d, e ; = Γa b) Γd) Γe) Γd e a b c) Γa) Γd b) Γe b) Γd e a c) 3 F Γb a) Γd) Γe) Γd e a b c) Γb) Γd a) Γe a) Γd e b c) 3 F b, d a, e a a b, d e a c ; a, d b, e b d e b c, a b ;.

6 6 K. SRINIVASA RAO, G. VANDEN BERGHE AND C. KRATTENTHALER and obtain Γ a ε) Γε) Γ a ε N) Γ ε N x) a ε, ε N F Γa) Γ N) Γ a ε N x) a ε N x ; Γ a ε) Γε) Γ a ε N) Γ ε N x) Γ ε) Γa ε) Γ ε N) Γ a ε N x) a,, N 3 F ε, a ε N x ;. Clearly, the convergence of the hypergeometric series on the right-hand side will only be guaranteed if R x <. Therefore. for the moment we suppose R x <. To the 3 F -series we apply the transformation formula see, Ex. 7, p. 98): 3F a, b, c d, e ; = to get the expression Γe) Γd e a b c) Γe a) Γd e b c) 3 F Γ a ε) Γε) Γ a ε N) Γ ε N x) Γ) Γa) Γ N) Γ a ε N x) Γ a ε) Γε) Γ a ε N) Γ x) Γ ε) Γa ε) Γ ε N) Γ a x) a, d b, d c d, d e b c ;, a ε, ε N F a ε N x ; a, ε, ε N 3F ε, a x ; The F -series is summed by means of the Gauß summation theorem 3), while the 3F -series is written as a sum over k, and subsequently split into the ranges k = 0, k =,,...,N, and k = N, N =,.... This yields the expression ε Γ a ε) Γ ε) Γ a ε N) Γ x) Γa) Γ N) Γ a ε x) ) Γ a ε) Γ a ε N) Γ x) Γa ε) Γ ε N) Γ a x) Γ a ε) Γ a ε N) Γ x) N a) k ε N) k Γa ε) Γ ε N) Γ a x) k! k ε) a x) k k= Γ a ε) Γ a ε N) Γ x) Γa ε) Γ ε N) Γ a x) k=n Now we perform the limit ε 0. Thus, our original 3 F -series becomes a, a, x 3F a, a N ;. a) k ε N) k k! k ε) a x) k. On the other hand, the four-line expression which we obtained for this 3 F -series simplifies significantly. The last term simply vanishes because of the occurrence of the factor ε N) k, which is equal to ε N) N ε ε) kn for k N, which is zero for N a non-negative integer. On the other hand, the limit of ε 0 of the first two lines can be easily calculated by means of l Hôpital s rule to obtain the final result 4). As it stands, the assertion is only demonstrated for R x <. However, by analytic continuation, Equation 4) is true for any values of x for which the 3 F -series on the left-hand side converges, i.e., for R x < N..

7 AN ENTRY OF RAMANUJAN ON HYPERGEOMETRIC SERIES 7 The following observations can be made: 4. Some remarks i) Clearly, the theorem 4) reduces to Ramanujan s entry XII, 43, Ex.7), in our notation 3), if a = / and N = 0. ii) For x =, in 3), the 3 F ) is a special case of Dixon s theorem see e.g. III.8) of, for a =, b = c = /), and it has the value π 8. iii) For x = 3, the left-hand side of 3) is: 3 3F,, 3, 3 ; = F, 3 ; = π, by the Gauß summation theorem 3), which is the result for the right-hand side evaluated by l Hôpital s rule. iv) For x = k, a negative integer, in 3), we get: 3F,, k π Γk ) k 3, 3 ; = Γ3/ k) j. 5) j= v) The 3 F a, a, x; ) a, a N; ) series can be related to the 3-j coefficient x x 0 a x a x cf. ) provided x is a negative integer and x a 0. 0 It also corresponds to the dual Hahn polynomial S n 0; a, b =, c = N), for x = n. Finally, as we already announced in Section, it has to be noted that as in the case of Entry XII, 43, Ex.4), Ramanujan has missed a multiplicative factor x on the left-hand side of his Entry XII, 43, Ex.7). Acknowledgments : Two of the authors KSR and GVB) thank Prof. Dr. Niceas Schamp and the Koninklijke Vlaamse Academie van Belgie voor Wetenschappen en Kunsten for excellent hospitality and one of us KSR) thanks Prof. Dr. Walter Van Assche for an interesting discussion on a visit to the Katholieke Universiteit Leuven for a lecture on the Life and Work of Ramanujan. References G. E. Andrews, R. A. Askey and R. Roy, Special Functions, Encycl. Math. and Its Applns., 7, Cambridge University Press, Cambridge 999). W. N. Bailey, Generalized hypergeometric series, Cambridge University Press, Cambridge, B.C. Berndt, Ramanujan Notebooks, Part II, Springer-Verlag, New-York 987), Chapter X, D. Bradley, On a claim of Ramanujan about certain hypergeometric series, Proc. Amer. Math. Soc. 994), J. Dougall, On Vandermonde s theorem and some more general expansions, Proc. Edinburgh Math. Soc ), 4 3.

8 8 K. SRINIVASA RAO, G. VANDEN BERGHE AND C. KRATTENTHALER 6 A. Erdélyi, V. Magnus, F. Oberhettinger and F. Tricomi, Higher transcendental functions, McGraw Hill, New York, G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics And Its Applications 35, Cambridge University Press, Cambridge, G. H. Hardy, A chapter from Ramanujan s notebook, Proc. Cambridge Philos. Soc. 93), and Chapter VII in Ramanujan: Twelve lecture on subjects suggested by his life and work, G. H. Hardy, Chelsea, New York 944). 9 S. Ramanujan, Some properties of Bernoulli s numbers, J. Indian Math. Soc. 3 9), S. Ramanujan s historic first letter to G.H. Hardy, quoted in Ramanujan: Letters and Commentary, Bruce C Berndt and Robert A. Rankin, Eds.), AMS LMS publication 995). L. J. Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 966. K. Srinivasa Rao, A note on the symmetries of the 3j-coefficient, J. Phys. A: Math. Gen. 978), L69 L73.

Math 115 Spring 2011 Written Homework 5 Solutions

Math 115 Spring 2011 Written Homework 5 Solutions . Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence

More information

Continued Fractions. Darren C. Collins

Continued Fractions. Darren C. Collins Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history

More information

Section 4.2: The Division Algorithm and Greatest Common Divisors

Section 4.2: The Division Algorithm and Greatest Common Divisors Section 4.2: The Division Algorithm and Greatest Common Divisors The Division Algorithm The Division Algorithm is merely long division restated as an equation. For example, the division 29 r. 20 32 948

More information

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4) ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

The sum of digits of polynomial values in arithmetic progressions

The sum of digits of polynomial values in arithmetic progressions The sum of digits of polynomial values in arithmetic progressions Thomas Stoll Institut de Mathématiques de Luminy, Université de la Méditerranée, 13288 Marseille Cedex 9, France E-mail: stoll@iml.univ-mrs.fr

More information

arxiv:math/0202219v1 [math.co] 21 Feb 2002

arxiv:math/0202219v1 [math.co] 21 Feb 2002 RESTRICTED PERMUTATIONS BY PATTERNS OF TYPE (2, 1) arxiv:math/0202219v1 [math.co] 21 Feb 2002 TOUFIK MANSOUR LaBRI (UMR 5800), Université Bordeaux 1, 351 cours de la Libération, 33405 Talence Cedex, France

More information

arxiv:math/0606467v2 [math.co] 5 Jul 2006

arxiv:math/0606467v2 [math.co] 5 Jul 2006 A Conjectured Combinatorial Interpretation of the Normalized Irreducible Character Values of the Symmetric Group arxiv:math/0606467v [math.co] 5 Jul 006 Richard P. Stanley Department of Mathematics, Massachusetts

More information

ON FIBONACCI NUMBERS WITH FEW PRIME DIVISORS

ON FIBONACCI NUMBERS WITH FEW PRIME DIVISORS ON FIBONACCI NUMBERS WITH FEW PRIME DIVISORS YANN BUGEAUD, FLORIAN LUCA, MAURICE MIGNOTTE, SAMIR SIKSEK Abstract If n is a positive integer, write F n for the nth Fibonacci number, and ω(n) for the number

More information

Algebraic and Transcendental Numbers

Algebraic and Transcendental Numbers Pondicherry University July 2000 Algebraic and Transcendental Numbers Stéphane Fischler This text is meant to be an introduction to algebraic and transcendental numbers. For a detailed (though elementary)

More information

About the Gamma Function

About the Gamma Function About the Gamma Function Notes for Honors Calculus II, Originally Prepared in Spring 995 Basic Facts about the Gamma Function The Gamma function is defined by the improper integral Γ) = The integral is

More information

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein) Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p

More information

CONFLUENT HYPERGEOMETRIC FUNCTIONS

CONFLUENT HYPERGEOMETRIC FUNCTIONS CONFLUENT HYPERGEOMETRIC FUNCTIONS BY L. J. SLATER, D.LIT., PH.D. Formerly Bateson Research Fellow Newnham College, Cambridge Institut fur theoretssche Physfk Technische Hochschule Darmstadt CAMBRIDGE

More information

Stirling s formula, n-spheres and the Gamma Function

Stirling s formula, n-spheres and the Gamma Function Stirling s formula, n-spheres and the Gamma Function We start by noticing that and hence x n e x dx lim a 1 ( 1 n n a n n! e ax dx lim a 1 ( 1 n n a n a 1 x n e x dx (1 Let us make a remark in passing.

More information

Basic Proof Techniques

Basic Proof Techniques Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

PRIME FACTORS OF CONSECUTIVE INTEGERS

PRIME FACTORS OF CONSECUTIVE INTEGERS PRIME FACTORS OF CONSECUTIVE INTEGERS MARK BAUER AND MICHAEL A. BENNETT Abstract. This note contains a new algorithm for computing a function f(k) introduced by Erdős to measure the minimal gap size in

More information

Arrangements of Stars on the American Flag

Arrangements of Stars on the American Flag Arrangements of Stars on the American Flag Dimitris Koukoulopoulos and Johann Thiel Abstract. In this article, we examine the existence of nice arrangements of stars on the American flag. We show that

More information

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS Bull Austral Math Soc 77 (2008), 31 36 doi: 101017/S0004972708000038 COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS IGOR V EROVENKO and B SURY (Received 12 April 2007) Abstract We compute

More information

Equations, Inequalities & Partial Fractions

Equations, Inequalities & Partial Fractions Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

arxiv:hep-th/0507236v1 25 Jul 2005

arxiv:hep-th/0507236v1 25 Jul 2005 Non perturbative series for the calculation of one loop integrals at finite temperature Paolo Amore arxiv:hep-th/050736v 5 Jul 005 Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo

More information

Chapter 4 -- Decimals

Chapter 4 -- Decimals Chapter 4 -- Decimals $34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

Sample Induction Proofs

Sample Induction Proofs Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given

More information

On some Formulae for Ramanujan s tau Function

On some Formulae for Ramanujan s tau Function Revista Colombiana de Matemáticas Volumen 44(2010)2, páginas 103-112 On some Formulae for Ramanujan s tau Function Sobre algunas fórmulas para la función tau de Ramanujan Luis H. Gallardo University of

More information

Collinear Points in Permutations

Collinear Points in Permutations Collinear Points in Permutations Joshua N. Cooper Courant Institute of Mathematics New York University, New York, NY József Solymosi Department of Mathematics University of British Columbia, Vancouver,

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 7: Conditionally Positive Definite Functions Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu MATH 590 Chapter

More information

On the largest prime factor of the Mersenne numbers

On the largest prime factor of the Mersenne numbers On the largest prime factor of the Mersenne numbers Kevin Ford Department of Mathematics The University of Illinois at Urbana-Champaign Urbana Champaign, IL 61801, USA ford@math.uiuc.edu Florian Luca Instituto

More information

Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES. 1. Introduction

Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES. 1. Introduction F A S C I C U L I M A T H E M A T I C I Nr 51 2013 Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES Abstract. In this article the notion of acceleration convergence of double sequences

More information

1 Prior Probability and Posterior Probability

1 Prior Probability and Posterior Probability Math 541: Statistical Theory II Bayesian Approach to Parameter Estimation Lecturer: Songfeng Zheng 1 Prior Probability and Posterior Probability Consider now a problem of statistical inference in which

More information

2 : two cube. 5 : five cube. 10 : ten cube.

2 : two cube. 5 : five cube. 10 : ten cube. Math 105 TOPICS IN MATHEMATICS REVIEW OF LECTURES VI Instructor: Line #: 52920 Yasuyuki Kachi 6 Cubes February 2 Mon, 2015 We can similarly define the notion of cubes/cubing Like we did last time, 3 2

More information

Grade Level Year Total Points Core Points % At Standard 9 2003 10 5 7 %

Grade Level Year Total Points Core Points % At Standard 9 2003 10 5 7 % Performance Assessment Task Number Towers Grade 9 The task challenges a student to demonstrate understanding of the concepts of algebraic properties and representations. A student must make sense of the

More information

FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project

FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project 9 10 YEARS The Improving Mathematics Education in Schools (TIMES) Project FACTORISATION NUMBER AND ALGEBRA Module 33 A guide for teachers - Years 9 10 June 2011 Factorisation (Number and Algebra : Module

More information

WHEN DOES A RANDOMLY WEIGHTED SELF NORMALIZED SUM CONVERGE IN DISTRIBUTION?

WHEN DOES A RANDOMLY WEIGHTED SELF NORMALIZED SUM CONVERGE IN DISTRIBUTION? WHEN DOES A RANDOMLY WEIGHTED SELF NORMALIZED SUM CONVERGE IN DISTRIBUTION? DAVID M MASON 1 Statistics Program, University of Delaware Newark, DE 19717 email: davidm@udeledu JOEL ZINN 2 Department of Mathematics,

More information

Real Roots of Univariate Polynomials with Real Coefficients

Real Roots of Univariate Polynomials with Real Coefficients Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials

More information

3 1. Note that all cubes solve it; therefore, there are no more

3 1. Note that all cubes solve it; therefore, there are no more Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

More information

Remembering Ray s Lecture: e is Transcendental

Remembering Ray s Lecture: e is Transcendental Remembering Ray s Lecture: e is Transcendental Mike Raugh Michael.Raugh@gmail.com http://mikeraugh.org Companion to a presentation at The High School Math Contest Los Angeles City College March 28, 2009

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators... MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................

More information

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

More information

Fibonacci Numbers and Greatest Common Divisors. The Finonacci numbers are the numbers in the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,...

Fibonacci Numbers and Greatest Common Divisors. The Finonacci numbers are the numbers in the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,... Fibonacci Numbers and Greatest Common Divisors The Finonacci numbers are the numbers in the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,.... After starting with two 1s, we get each Fibonacci number

More information

Powers of Two in Generalized Fibonacci Sequences

Powers of Two in Generalized Fibonacci Sequences Revista Colombiana de Matemáticas Volumen 462012)1, páginas 67-79 Powers of Two in Generalized Fibonacci Sequences Potencias de dos en sucesiones generalizadas de Fibonacci Jhon J. Bravo 1,a,B, Florian

More information

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS (Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

More information

Solving Rational Equations

Solving Rational Equations Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

CSI 333 Lecture 1 Number Systems

CSI 333 Lecture 1 Number Systems CSI 333 Lecture 1 Number Systems 1 1 / 23 Basics of Number Systems Ref: Appendix C of Deitel & Deitel. Weighted Positional Notation: 192 = 2 10 0 + 9 10 1 + 1 10 2 General: Digit sequence : d n 1 d n 2...

More information

Unified Lecture # 4 Vectors

Unified Lecture # 4 Vectors Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

More information

Introduction. Appendix D Mathematical Induction D1

Introduction. Appendix D Mathematical Induction D1 Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to

More information

arxiv:math/0601660v3 [math.nt] 25 Feb 2006

arxiv:math/0601660v3 [math.nt] 25 Feb 2006 NOTES Edited by William Adkins arxiv:math/666v3 [math.nt] 25 Feb 26 A Short Proof of the Simple Continued Fraction Expansion of e Henry Cohn. INTRODUCTION. In [3], Euler analyzed the Riccati equation to

More information

5.1 Radical Notation and Rational Exponents

5.1 Radical Notation and Rational Exponents Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

More information

A characterization of trace zero symmetric nonnegative 5x5 matrices

A characterization of trace zero symmetric nonnegative 5x5 matrices A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the

More information

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or

More information

Implementing the BG/NBD Model for Customer Base Analysis in Excel

Implementing the BG/NBD Model for Customer Base Analysis in Excel Implementing the BG/NBD Model for Customer Base Analysis in Excel Peter S. Fader www.petefader.com Bruce G. S. Hardie www.brucehardie.com Ka Lok Lee www.kaloklee.com June 2005 1. Introduction This note

More information

Counting Primes whose Sum of Digits is Prime

Counting Primes whose Sum of Digits is Prime 2 3 47 6 23 Journal of Integer Sequences, Vol. 5 (202), Article 2.2.2 Counting Primes whose Sum of Digits is Prime Glyn Harman Department of Mathematics Royal Holloway, University of London Egham Surrey

More information

Integrals of Rational Functions

Integrals of Rational Functions Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

More information

THE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION

THE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION THE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION ERICA CHAN DECEMBER 2, 2006 Abstract. The function sin is very important in mathematics and has many applications. In addition to its series epansion, it

More information

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial

More information

k, then n = p2α 1 1 pα k

k, then n = p2α 1 1 pα k Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

More information

arxiv:0909.4913v2 [math.ho] 4 Nov 2009

arxiv:0909.4913v2 [math.ho] 4 Nov 2009 IRRATIONALITY FROM THE BOOK STEVEN J. MILLER AND DAVID MONTAGUE arxiv:0909.4913v2 [math.ho] 4 Nov 2009 A right of passage to theoretical mathematics is often a proof of the irrationality of 2, or at least

More information

THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties:

THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties: THE DYING FIBONACCI TREE BERNHARD GITTENBERGER 1. Introduction Consider a tree with two types of nodes, say A and B, and the following properties: 1. Let the root be of type A.. Each node of type A produces

More information

9.2 Summation Notation

9.2 Summation Notation 9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

More information

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

More information

SECTION 10-2 Mathematical Induction

SECTION 10-2 Mathematical Induction 73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

More information

26 Integers: Multiplication, Division, and Order

26 Integers: Multiplication, Division, and Order 26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue

More information

Tilings of the sphere with right triangles III: the asymptotically obtuse families

Tilings of the sphere with right triangles III: the asymptotically obtuse families Tilings of the sphere with right triangles III: the asymptotically obtuse families Robert J. MacG. Dawson Department of Mathematics and Computing Science Saint Mary s University Halifax, Nova Scotia, Canada

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

More information

Continuity of the Perron Root

Continuity of the Perron Root Linear and Multilinear Algebra http://dx.doi.org/10.1080/03081087.2014.934233 ArXiv: 1407.7564 (http://arxiv.org/abs/1407.7564) Continuity of the Perron Root Carl D. Meyer Department of Mathematics, North

More information

MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Invertible elements in associates and semigroups. 1

Invertible elements in associates and semigroups. 1 Quasigroups and Related Systems 5 (1998), 53 68 Invertible elements in associates and semigroups. 1 Fedir Sokhatsky Abstract Some invertibility criteria of an element in associates, in particular in n-ary

More information

Schooling, Political Participation, and the Economy. (Online Supplementary Appendix: Not for Publication)

Schooling, Political Participation, and the Economy. (Online Supplementary Appendix: Not for Publication) Schooling, Political Participation, and the Economy Online Supplementary Appendix: Not for Publication) Filipe R. Campante Davin Chor July 200 Abstract In this online appendix, we present the proofs for

More information

Linear Equations and Inequalities

Linear Equations and Inequalities Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................

More information

Lecture 4: BK inequality 27th August and 6th September, 2007

Lecture 4: BK inequality 27th August and 6th September, 2007 CSL866: Percolation and Random Graphs IIT Delhi Amitabha Bagchi Scribe: Arindam Pal Lecture 4: BK inequality 27th August and 6th September, 2007 4. Preliminaries The FKG inequality allows us to lower bound

More information

The Characteristic Polynomial

The Characteristic Polynomial Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

More information

Algebra Practice Problems for Precalculus and Calculus

Algebra Practice Problems for Precalculus and Calculus Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

7.7 Solving Rational Equations

7.7 Solving Rational Equations Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate

More information

Jacobi s four squares identity Martin Klazar

Jacobi s four squares identity Martin Klazar Jacobi s four squares identity Martin Klazar (lecture on the 7-th PhD conference) Ostrava, September 10, 013 C. Jacobi [] in 189 proved that for any integer n 1, r (n) = #{(x 1, x, x 3, x ) Z ( i=1 x i

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1 Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

More information

RINGS WITH A POLYNOMIAL IDENTITY

RINGS WITH A POLYNOMIAL IDENTITY RINGS WITH A POLYNOMIAL IDENTITY IRVING KAPLANSKY 1. Introduction. In connection with his investigation of projective planes, M. Hall [2, Theorem 6.2]* proved the following theorem: a division ring D in

More information

Lecture Notes on Polynomials

Lecture Notes on Polynomials Lecture Notes on Polynomials Arne Jensen Department of Mathematical Sciences Aalborg University c 008 Introduction These lecture notes give a very short introduction to polynomials with real and complex

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

Lecture 13: Factoring Integers

Lecture 13: Factoring Integers CS 880: Quantum Information Processing 0/4/0 Lecture 3: Factoring Integers Instructor: Dieter van Melkebeek Scribe: Mark Wellons In this lecture, we review order finding and use this to develop a method

More information

Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

More information

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Spring 2012 Homework # 9, due Wednesday, April 11 8.1.5 How many ways are there to pay a bill of 17 pesos using a currency with coins of values of 1 peso, 2 pesos,

More information

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +... 6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

More information

SOLVING POLYNOMIAL EQUATIONS

SOLVING POLYNOMIAL EQUATIONS C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

More information

Welcome to Math 19500 Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013

Welcome to Math 19500 Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013 Welcome to Math 19500 Video Lessons Prof. Department of Mathematics The City College of New York Fall 2013 An important feature of the following Beamer slide presentations is that you, the reader, move

More information