CONFLUENT HYPERGEOMETRIC FUNCTIONS


 Neil Strickland
 1 years ago
 Views:
Transcription
1 CONFLUENT HYPERGEOMETRIC FUNCTIONS BY L. J. SLATER, D.LIT., PH.D. Formerly Bateson Research Fellow Newnham College, Cambridge Institut fur theoretssche Physfk Technische Hochschule Darmstadt CAMBRIDGE AT THE UNIVERSITY i960 PRESS Sweaterft*.B ^ 8 9
2 CONTENTS PREFACE poge xi CHAPTER I DIFFERENTIAL EQUATIONS SATISFIED BY CONFLUENT HYPERGEOMETRIC FUNCTIONS 1.1 Introduction i I.I.I Generalized hypergeometric functions i 1.2 Two solutions of Kummer's equation Two further solutions of Kummer's equation The second form of solutions of Kummer's equation Kummer's first theorem The first logarithmic solutions when b is an integer The second logarithmic solutions when b is an integer Whittaker's normalized equation An alternative solution for Whittaker's equation ' The logarithmic solutions of Whittaker's equation when zm is an integer Kummer's second theorem Bessel functions as special cases of confluent hypergeometric functions Relations between Kummer's functions and Whittaker's functions 13 CHAPTER 2 DIFFERENTIAL PROPERTIES 2.1 The differentiation of Kummer's function The derivatives of U(a; b; x) The Wronskians of Kummer's equation Recurrence relations for ±F X [a; b; x] Recurrence relations for U(a; b; x) Continuation formulae for U(a; b; x) Addition theorems for ji^fa; b; x] Addition theorems for U(a; b; x) 22
3 vi CONTENTS Multiplication theorems for xf^a; b; x] page Multiplication theorems for U(a; b; x) The derivatives of M kim (x) The derivatives of W km (x) The Wronskians of Whittaker's equation Recurrence relations for M k>m (x) Recurrence relations for W km (x) Continuation formulae for Whittaker's functions Addition theorems for M km (x) Addition theorems for W km (x) Multiplication theorems for M kjm (x) Multiplication theorems for W km (x) Expansions in series of Bessel functions An elementary proof of the 4F 3 [i] summation theorem ~ Expansion of Kummer's function in terms of I n (x) Some further expansions 32 CHAPTER 3 INTEGRAL PROPERTIES 3.1 Elementary integrals for Kummer's function Barnes's integral for Kummer's function "Barnes and Euler type integrals for U(a; b; x) Pochhammer's contour integrals for Kummer's function The Pochhammer integrals for U{a; b; x) Elementary indefinite integrals The Laplace transforms of ji^a; b; x] The inverse Laplace transform The Laplace transform of U(a; b; x) Mellin transforms of ^[a; b; x\ Mellin transforms of U{a\ b; x) The Hankel transforms 49
4 CONTENTS Vll 3.5 Elementary integrals for the Whittaker functions page Barnes type integrals for the Whittaker functions Pochhammer contour integrals for the Whittaker functions The Laplace transforms of the Whittaker functions Integrals involving pairs of Kummer's functions Integrals involving pairs of Whittaker functions Some expansions in series 56 CHAPTER 4 ASYMPTOTIC EXPANSIONS 4.1 Introduction ' The asymptotic expansions in x for Kummer's function The asymptotic expansions in x for U(a; b; x) The asymptotic expansions in x for Whittaker's functions ~ Converging factors for Kummer's functions Converging factors for Whittaker's functions Approximations when b is large Approximations for Whittaker's functions when m is large Bessel functions as limiting cases of Kummer functions Approximations in terms of Bessel functions when a is large Bessel functions as limiting cases of Whittaker functions Approximations for Whittaker functions in terms of Bessel functions, when k is large Approximations when a and x are real, \x> \b a Approximations when \b a ~ \x Approximations when \b a > \x Whittaker functions when k and x are large Olver's theorems Asymptotic expansions when a is large Asymptotic expansions when k and x are large Asymptotic expansions when 4^ 4= x Asymptotic expansions when \k = x 86
5 Vlll CONTENTS CHAPTER 5 RELATED DIFFERENTIAL EQUATIONS AND PARTICULAR CASES OF THE FUNCTIONS 5.1 General transforms of Kummer's equation p#g e Kummer's second theorem and the connection with Bessel functions The Coulomb wave equation Further forms of Whittaker's equation Watson's fourthorder equation The Laguerre polynomials The incomplete gamma functions Transformations of Kummer's equation when m = The Poiseuille functions The Schrodinger equation Kamke's equation 101 CHAPTER 6 DESCRIPTIVE PROPERTIES 6.1 The distribution of the zeros The curves of zeros The zeros of U(a; b; x) ~ Approximations to the zeros Expansions for the zeros Nesting processes no 6.4 Zeros in 'a' no 6.5 The zeros in ' b' The tabulation of zeros in x The numerical evaluation of Kummer's function Exponential and oscillatory regions The SoninePolya theorem Graphing Kummer's function 120
6 CONTENTS IX REFERENCES page 121 Table of the smallest positive zeros of xi b oi (01)25 Table of ^[a; b; x] over the range APPENDIX I [a; b; x] over the range a = 40(01) oi, APPENDIX II a = IO(OI) io, b = oi (oi) io, x = oi (oi) ioo Table of JF^a; b; 1] over the range APPENDIX III a 110(02)20, b = 40(02) io, x = SYMBOLIC INDEX OF DEFINITIONS 244 GENERAL INDEX 245
Elementary Differential Equations
Elementary Differential Equations EIGHTH EDITION Earl D. Rainville Late Professor of Mathematics University of Michigan Phillip E. Bedient Professor Emeritus of Mathematics Franklin and Marshall College
More informationContents. Gbur, Gregory J. Mathematical methods for optical physics and engineering digitalisiert durch: IDS Basel Bern
Preface page xv 1 Vector algebra 1 1.1 Preliminaries 1 1.2 Coordinate System invariance 4 1.3 Vector multiplication 9 1.4 Useful products of vectors 12 1.5 Linear vector Spaces 13 1.6 Focus: periodic media
More informationFRACTIONAL INTEGRALS AND DERIVATIVES. Theory and Applications
FRACTIONAL INTEGRALS AND DERIVATIVES Theory and Applications Stefan G. Samko Rostov State University, Russia Anatoly A. Kilbas Belorussian State University, Minsk, Belarus Oleg I. Marichev Belorussian
More informationLimit processes are the basis of calculus. For example, the derivative. f f (x + h) f (x)
SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 187 Taylor Series 4.1 Taylor Series and Calculation of Functions Limit processes are the basis of calculus. For example, the derivative f f (x + h) f
More informationConstruction of the Real Line 2 Is Every Real Number Rational? 3 Problems Algebra of the Real Numbers 7
About the Author v Preface to the Instructor xiii WileyPLUS xviii Acknowledgments xix Preface to the Student xxi 1 The Real Numbers 1 1.1 The Real Line 2 Construction of the Real Line 2 Is Every Real Number
More informationComplex Function Theory. Second Edition. Donald Sarason >AMS AMERICAN MATHEMATICAL SOCIETY
Complex Function Theory Second Edition Donald Sarason >AMS AMERICAN MATHEMATICAL SOCIETY Contents Preface to the Second Edition Preface to the First Edition ix xi Chapter I. Complex Numbers 1 1.1. Definition
More informationMTH304: Honors Algebra II
MTH304: Honors Algebra II This course builds upon algebraic concepts covered in Algebra. Students extend their knowledge and understanding by solving openended problems and thinking critically. Topics
More informationMath Department Student Learning Objectives Updated April, 2014
Math Department Student Learning Objectives Updated April, 2014 Institutional Level Outcomes: Victor Valley College has adopted the following institutional outcomes to define the learning that all students
More informationAnalytically Tractable Stochastic Stock Price Models
Archil Gulisashvili Analytically Tractable Stochastic Stock Price Models 4Q Springer Contents 1 Volatility Processes 1 1.1 Brownian Motion 1 1.2 s Geometric Brownian Motion 6 1.3 LongTime Behavior of
More informationDynamics at the Horsetooth, Volume 2A, Focussed Issue: Asymptotics and Perturbations
Dynamics at the Horsetooth, Volume A, Focussed Issue: Asymptotics and Perturbations Asymptotic Expansion of Bessel Functions; Applications to Electromagnetics Department of Electrical Engineering Colorado
More informationAbout the Gamma Function
About the Gamma Function Notes for Honors Calculus II, Originally Prepared in Spring 995 Basic Facts about the Gamma Function The Gamma function is defined by the improper integral Γ) = The integral is
More informationContents. The Real Numbers. Linear Equations and Inequalities in One Variable
dug33513_fm.qxd 11/20/07 3:21 PM Page vii Preface Guided Tour: Features and Supplements Applications Index 1 2 The Real Numbers 1.1 1.2 1.3 1.4 1.5 1.6 1 Sets 2 The Real Numbers 9 Operations on the Set
More informationCONTENTS. (Entries in small print at the end of the contents of each chapter refer to subiects discussed incidentally in the examples) CHAPTER I
12. 37. 8. 9. 1011. 12. 1314. 15. 16. 17. 18. 19. 20. 21. 22. 23. 2425. 2627. 2829. 30. 31. 32. 33. CONTENTS (Entries in small print at the end of the contents of each chapter refer to subiects
More informationCHAPTER 5: Exponential and Logarithmic Functions
MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College 5.2 CHAPTER 5: Exponential and Logarithmic Functions 5.1 Inverse Functions 5.2 Exponential Functions and Graphs 5.3 Logarithmic
More informationMean value theorem, Taylors Theorem, Maxima and Minima.
MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and expressions. Permutations and Combinations.
More information4. Factor polynomials over complex numbers, describe geometrically, and apply to realworld situations. 5. Determine and apply relationships among syn
I The Real and Complex Number Systems 1. Identify subsets of complex numbers, and compare their structural characteristics. 2. Compare and contrast the properties of real numbers with the properties of
More informationEngineering Mathematics II
PSUT Engineering Mathematics II Fourier Series and Transforms Dr. Mohammad Sababheh 4/14/2009 11.1 Fourier Series 2 Fourier Series and Transforms Contents 11.1 Fourier Series... 3 Periodic Functions...
More informationZeros of Polynomial Functions
Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n1 x n1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of
More informationDiploma Plus in Certificate in Advanced Engineering
Diploma Plus in Certificate in Advanced Engineering Mathematics New Syllabus from April 2011 Ngee Ann Polytechnic / School of Interdisciplinary Studies 1 I. SYNOPSIS APPENDIX A This course of advanced
More informationSCHWEITZER ENGINEERING LABORATORIES, COMERCIAL LTDA.
Pocket book of Electrical Engineering Formulas Content 1. Elementary Algebra and Geometry 1. Fundamental Properties (real numbers) 1 2. Exponents 2 3. Fractional Exponents 2 4. Irrational Exponents 2 5.
More informationR U S S E L L L. H E R M A N
R U S S E L L L. H E R M A N A N I N T R O D U C T I O N T O F O U R I E R A N D C O M P L E X A N A LY S I S W I T H A P P L I C AT I O N S T O T H E S P E C T R A L A N A LY S I S O F S I G N A L S R.
More informationAN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEYINTERSCIENCE A John Wiley & Sons, Inc.,
More informationCalculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum
Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic
More informationZeros of Polynomial Functions
Review: Synthetic Division Find (x 25x  5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 35x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 35x 2 + x + 2. Zeros of Polynomial Functions Introduction
More informationCurriculum Map. Discipline: Math Course: AP Calculus AB Teacher: Louis Beuschlein
Curriculum Map Discipline: Math Course: AP Calculus AB Teacher: Louis Beuschlein August/September: State: 8.B.5, 8.C.5, 8.D.5 What is a limit? What is a derivative? What role do derivatives and limits
More informationReview for Calculus Rational Functions, Logarithms & Exponentials
Definition and Domain of Rational Functions A rational function is defined as the quotient of two polynomial functions. F(x) = P(x) / Q(x) The domain of F is the set of all real numbers except those for
More informationarxiv:math/0304317v1 [math.ca] 22 Apr 2003
AN ENTRY OF RAMANUJAN ON HYPERGEOMETRIC SERIES IN HIS NOTEBOOKS arxiv:math/030437v math.ca Apr 003 K. Srinivasa Rao a,b, G. Vanden Berghe a,c and C. Krattenthaler d a Flemish Academic Center VLAC), Royal
More information1. Students will demonstrate an understanding of the real number system as evidenced by classroom activities and objective tests
MATH 102/102L InterAlgebra/Lab Properties of the real number system, factoring, linear and quadratic equations polynomial and rational expressions, inequalities, systems of equations, exponents, radicals,
More informationItems related to expected use of graphing technology appear in bold italics.
 1  Items related to expected use of graphing technology appear in bold italics. Investigating the Graphs of Polynomial Functions determine, through investigation, using graphing calculators or graphing
More informationZero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
More informationMicroeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
More informationMATH MathematicsNursing. MATH Remedial Mathematics IBusiness & Economics. MATH Remedial Mathematics IIBusiness and Economics
MATH 090  MathematicsNursing MATH 091  Remedial Mathematics IBusiness & Economics MATH 094  Remedial Mathematics IIBusiness and Economics MATH 095  Remedial Mathematics IScience (3 CH) MATH 096
More informationClovis Community College Core Competencies Assessment 2014 2015 Area II: Mathematics Algebra
Core Assessment 2014 2015 Area II: Mathematics Algebra Class: Math 110 College Algebra Faculty: Erin Akhtar (Learning Outcomes Being Measured) 1. Students will construct and analyze graphs and/or data
More informationNumerical Recipes in C
2008 AGIInformation Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Numerical Recipes in C The Art of Scientific Computing Second Edition
More informationSTUDENT LEARNING OUTCOMES FOR THE SANTIAGO CANYON COLLEGE MATHEMATICS DEPARTMENT (Last Revised 8/20/14)
STUDENT LEARNING OUTCOMES FOR THE SANTIAGO CANYON COLLEGE MATHEMATICS DEPARTMENT (Last Revised 8/20/14) Department SLOs: Upon completion of any course in Mathematics the student will be able to: 1. Create
More informationMarch 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions
MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial
More informationADVANCED LINEAR ALGEBRA FOR ENGINEERS WITH MATLAB. Sohail A. Dianat. Rochester Institute of Technology, New York, U.S.A. Eli S.
ADVANCED LINEAR ALGEBRA FOR ENGINEERS WITH MATLAB Sohail A. Dianat Rochester Institute of Technology, New York, U.S.A. Eli S. Saber Rochester Institute of Technology, New York, U.S.A. (g) CRC Press Taylor
More informationAdvanced Algebra 2. I. Equations and Inequalities
Advanced Algebra 2 I. Equations and Inequalities A. Real Numbers and Number Operations 6.A.5, 6.B.5, 7.C.5 1) Graph numbers on a number line 2) Order real numbers 3) Identify properties of real numbers
More informationMath Course Descriptions & Student Learning Outcomes
Math Course Descriptions & Student Learning Outcomes Table of Contents MAC 100: Business Math... 1 MAC 101: Technical Math... 3 MA 090: Basic Math... 4 MA 095: Introductory Algebra... 5 MA 098: Intermediate
More informationAlgebra Graphing an Exponential Function
Graphing an Exponential Function Graphing an exponential or logarithmic function is a process best described by example. Each step of the process is described and illustrated in the examples over the next
More informationEquations. #110 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0
College Algebra Review Problems for Final Exam Equations #110 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve
More informationLearning Objectives for Math 165
Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given
More informationSolutions to SelfTest for Chapter 4 c4sts  p1
Solutions to SelfTest for Chapter 4 c4sts  p1 1. Graph a polynomial function. Label all intercepts and describe the end behavior. a. P(x) = x 4 2x 3 15x 2. (1) Domain = R, of course (since this is a
More informationA Fractional Survival Model
Journal of Data Science 7(29), 487495 A Fractional Survival Model Cheng K. Lee 1 and JenqDaw Lee 2 1 Bank of America and 2 National Cheng Kung University Abstract: A survival model is derived from the
More informationAlgebra 2 Final Exam Review Ch 714
Algebra 2 Final Exam Review Ch 714 Short Answer 1. Simplify the radical expression. Use absolute value symbols if needed. 2. Simplify. Assume that all variables are positive. 3. Multiply and simplify.
More informationMathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 PreAlgebra 4 Hours
MAT 051 PreAlgebra Mathematics (MAT) MAT 051 is designed as a review of the basic operations of arithmetic and an introduction to algebra. The student must earn a grade of C or in order to enroll in MAT
More informationALGEBRA 1/ALGEBRA 1 HONORS
ALGEBRA 1/ALGEBRA 1 HONORS CREDIT HOURS: 1.0 COURSE LENGTH: 2 Semesters COURSE DESCRIPTION The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical
More information3.4 Complex Zeros and the Fundamental Theorem of Algebra
86 Polynomial Functions.4 Complex Zeros and the Fundamental Theorem of Algebra In Section., we were focused on finding the real zeros of a polynomial function. In this section, we expand our horizons and
More informationMath 131 College Algebra Fall 2015
Math 131 College Algebra Fall 2015 Instructor's Name: Office Location: Office Hours: Office Phone: Email: Course Description This course has a minimal review of algebraic skills followed by a study of
More informationMATHEMATICS (MATH) 3. Provides experiences that enable graduates to find employment in sciencerelated
194 / Department of Natural Sciences and Mathematics MATHEMATICS (MATH) The Mathematics Program: 1. Provides challenging experiences in Mathematics, Physics, and Physical Science, which prepare graduates
More informationLesson 5.4 Exercises, pages
Lesson 5.4 Eercises, pages 8 85 A 4. Evaluate each logarithm. a) log 4 6 b) log 00 000 4 log 0 0 5 5 c) log 6 6 d) log log 6 6 4 4 5. Write each eponential epression as a logarithmic epression. a) 6 64
More informationCourse Name: Course Code: ALEKS Course: Instructor: Course Dates: Course Content: Textbook: Dates Objective Prerequisite Topics
Course Name: MATH 1204 Fall 2015 Course Code: N/A ALEKS Course: College Algebra Instructor: Master Templates Course Dates: Begin: 08/22/2015 End: 12/19/2015 Course Content: 271 Topics (261 goal + 10 prerequisite)
More informationWEEK #2: Cobwebbing, Equilibria, Exponentials and Logarithms
WEEK #2: Cobwebbing, Equilibria, Exponentials and Logarithms Goals: Analyze DiscreteTime Dynamical Systems Logs and Exponentials Textbook reading for Week #2: Read Sections 1.6 1.7 2 Graphical Analysis
More informationThe Laplace Expansion Theorem: Computing the Determinants and Inverses of Matrices
The Laplace Expansion Theorem: Computing the Determinants and Inverses of Matrices David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 19982016. All Rights Reserved. Created:
More information3.7 Complex Zeros; Fundamental Theorem of Algebra
SECTION.7 Complex Zeros; Fundamental Theorem of Algebra 2.7 Complex Zeros; Fundamental Theorem of Algebra PREPARING FOR THIS SECTION Before getting started, review the following: Complex Numbers (Appendix,
More informationRemoving false singular points as a method of solving ordinary differential equations
Euro. Jnl of Applied Mathematics (2002), vol. 13, pp. 617 639. c 2002 Cambridge University Press DOI: 10.1017/S0956792502004916 Printed in the United Kingdom 617 Removing false singular points as a method
More informationInstitute of Actuaries of India Subject CT3 Probability and Mathematical Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in
More informationExponential Functions
Eponential Functions In this chapter we will study the eponential function and its inverse the logarithmic function. These important functions are indispensable in working with problems that involve population
More informationAnalytically Tractable Stochastic Stock Price Models
Springer Finance Analytically Tractable Stochastic Stock Price Models Bearbeitet von Archil Gulisashvili 1. Auflage 2012. Buch. XVII, 359 S. Hardcover ISBN 978 3 642 31213 7 Format (B x L): 15,5 x 23,5
More informationExponential Functions Video Lecture. Section 5.3
Exponential Functions Video Lecture Section 5.3 Course Learning Objectives: 1)Graph exponential functions and use such graphs to solve applied problems and to understand the significance of attributes
More informationINTRODUCTION TO FOURIER ANALYSIS AND WAVELETS
#. INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS Mark A. Pinsky Northwestern University BROOKS/COLE * THOMSON LEARNING Australia Canada Mexico Singapore Spain United Kingdom United States 1 FOURIER SERIES
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Math 110 Review for Final Examination 2012 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Match the equation to the correct graph. 1) y = 
More information2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
More informationMATH. ALGEBRA I HONORS 9 th Grade 12003200 ALGEBRA I HONORS
* Students who scored a Level 3 or above on the Florida Assessment Test Math Florida Standards (FSAMAFS) are strongly encouraged to make Advanced Placement and/or dual enrollment courses their first choices
More informationAdvanced Higher Mathematics Course Assessment Specification (C747 77)
Advanced Higher Mathematics Course Assessment Specification (C747 77) Valid from August 2015 This edition: April 2016, version 2.4 This specification may be reproduced in whole or in part for educational
More informationNumerical Analysis An Introduction
Walter Gautschi Numerical Analysis An Introduction 1997 Birkhauser Boston Basel Berlin CONTENTS PREFACE xi CHAPTER 0. PROLOGUE 1 0.1. Overview 1 0.2. Numerical analysis software 3 0.3. Textbooks and monographs
More informationOfficial Math 112 Catalog Description
Official Math 112 Catalog Description Topics include properties of functions and graphs, linear and quadratic equations, polynomial functions, exponential and logarithmic functions with applications. A
More informationZeros of Polynomial Functions
Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate
More informationSenior Secondary Australian Curriculum
Senior Secondary Australian Curriculum Mathematical Methods Glossary Unit 1 Functions and graphs Asymptote A line is an asymptote to a curve if the distance between the line and the curve approaches zero
More informationCollege Algebra. Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGrawHill, 2008, ISBN: 9780072867381
College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGrawHill, 2008, ISBN: 9780072867381 Course Description This course provides
More informationZeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
More information3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS. Copyright Cengage Learning. All rights reserved.
3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS Copyright Cengage Learning. All rights reserved. What You Should Learn Recognize and evaluate logarithmic functions with base a. Graph logarithmic functions.
More informationMATHEMATICS (CLASSES XI XII)
MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)
More informationTaylor Series and Asymptotic Expansions
Taylor Series and Asymptotic Epansions The importance of power series as a convenient representation, as an approimation tool, as a tool for solving differential equations and so on, is pretty obvious.
More informationMyMathLab ecourse for Developmental Mathematics
MyMathLab ecourse for Developmental Mathematics, North Shore Community College, University of New Orleans, Orange Coast College, Normandale Community College Table of Contents Module 1: Whole Numbers and
More information6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.
hapter omplex integration. omplex number quiz. Simplify 3+4i. 2. Simplify 3+4i. 3. Find the cube roots of. 4. Here are some identities for complex conjugate. Which ones need correction? z + w = z + w,
More informationAlgebra Nation MAFS Videos and Standards Alignment Algebra 2
Section 1, Video 1: Linear Equations in One Variable  Part 1 Section 1, Video 2: Linear Equations in One Variable  Part 2 Section 1, Video 3: Linear Equations and Inequalities in Two Variables Section
More informationSCHOOL DISTRICT OF THE CHATHAMS CURRICULUM PROFILE
CONTENT AREA(S): Mathematics COURSE/GRADE LEVEL(S): Honors Algebra 2 (10/11) I. Course Overview In Honors Algebra 2, the concept of mathematical function is developed and refined through the study of real
More informationHIGH SCHOOL: GEOMETRY (Page 1 of 4)
HIGH SCHOOL: GEOMETRY (Page 1 of 4) Geometry is a complete college preparatory course of plane and solid geometry. It is recommended that there be a strand of algebra review woven throughout the course
More informationAlgebra 1 Course Title
Algebra 1 Course Title Course wide 1. What patterns and methods are being used? Course wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
More informationExponential and Logarithmic Functions
Exponential and Logarithmic Functions Exponential Functions Overview of Objectives, students should be able to: 1. Evaluate exponential functions. Main Overarching Questions: 1. How do you graph exponential
More informationSequence of Mathematics Courses
Sequence of ematics Courses Where do I begin? Associates Degree and Nontransferable Courses (For math course below prealgebra, see the Learning Skills section of the catalog) MATH M09 PREALGEBRA 3 UNITS
More informationLecture 13: Factoring Integers
CS 880: Quantum Information Processing 0/4/0 Lecture 3: Factoring Integers Instructor: Dieter van Melkebeek Scribe: Mark Wellons In this lecture, we review order finding and use this to develop a method
More informationInverse Functions and Logarithms
Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a onetoone function if it never takes on the same value twice; that
More informationPURE MATHEMATICS AM 27
AM Syllabus (015): Pure Mathematics AM SYLLABUS (015) PURE MATHEMATICS AM 7 SYLLABUS 1 AM Syllabus (015): Pure Mathematics Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs)
More informationPURE MATHEMATICS AM 27
AM SYLLABUS (013) PURE MATHEMATICS AM 7 SYLLABUS 1 Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs) 1. AIMS To prepare students for further studies in Mathematics and
More informationPRECALCULUS GRADE 12
PRECALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.
More informationElementary Differential Equations and Boundary Value Problems. 10th Edition International Student Version
Brochure More information from http://www.researchandmarkets.com/reports/3148843/ Elementary Differential Equations and Boundary Value Problems. 10th Edition International Student Version Description:
More information88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a
88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small
More informationGeorgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1
Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse
More informationDifferentiation and Integration
This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have
More information2.5 Zeros of a Polynomial Functions
.5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the xaxis and
More informationCHAPTER 2 FOURIER SERIES
CHAPTER 2 FOURIER SERIES PERIODIC FUNCTIONS A function is said to have a period T if for all x,, where T is a positive constant. The least value of T>0 is called the period of. EXAMPLES We know that =
More informationAble Enrichment Centre  Prep Level Curriculum
Able Enrichment Centre  Prep Level Curriculum Unit 1: Number Systems Number Line Converting expanded form into standard form or vice versa. Define: Prime Number, Natural Number, Integer, Rational Number,
More informationTaylor and Maclaurin Series
Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions
More informationMathematics Review for MS Finance Students
Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,
More information4.3 Lagrange Approximation
206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average
More informationIdentify examples of field properties: commutative, associative, identity, inverse, and distributive.
Topic: Expressions and Operations ALGEBRA II  STANDARD AII.1 The student will identify field properties, axioms of equality and inequality, and properties of order that are valid for the set of real numbers
More informationNotes on Determinant
ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 918/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without
More informationCourse Name: College Algebra Course Number: Math 1513 Semester: Fall 2015
Course Name: College Algebra Course Number: Math 1513 Semester: Fall 2015 Instructor s Name: Ricky Streight Hours Credit: 3 Office Phone: 9456794 Office Hours: Check http://www.osuokc.edu/rickyws/ for
More information