Save this PDF as:

Size: px
Start display at page:

## Transcription

1 2011 International Conference on Intelligent Building and Management Proc.of CSIT vol.5 (2011) (2011) IACSIT Press, Singapore Dead Load Analysis of Cable-Stayed Bridge Tao Zhang 1,2 +, ZhiMin Wu 1 1 Department of Engineering Mechanics; Faculty of Vehicle Engineering and Mechanics; State Key Laboratory for Structural Analysis of Industrial Equipment, Dalian University of Technology, China 2 School of Civil and Safety Engineering, Dalian Jiaotong University, China Abstract. For cable-stayed bridges the cable forces are an important factor in the design process. By analyzing a simple structural system, the procedure using the analysis program MiDAS is illustrated. The generation of the model for the finished dead stage analysis is illustrated in detail, including the boundary conditions and variations in loading. The optimization method of unknown load factor is used to determine the cable forces to achieve an ideal state. The ideal cable forces are established and a construction stage analysis is performed. The maximum cable forces are proved to be in the allowable limits. The results obtained revealed that the method presented indeed leads to optimal structural performance for the cablestayed bridge in particular, and might be a useful reference for the design of other similar bridges. Keywords: dead load, cable-stayed bridge, unknown load factor 1. Introduction Cable-stayed bridges are structural systems which are effectively composed of cables, the main girder and towers. This bridge form has a fine-looking appearance and fits in with most surrounding environments [1]. The structural systems can be varied by changing the tower shapes and the cable arrangements [2]. Up to a span length of 1000 metres, the cable stayed system is considered as an economical solution [3]. For cablestayed bridges the cable forces are an important factor in the design process [4]. In this paper the computer program MiDAS is used to model and analyse the examples. The bending moments in the main girder and the pylon are minimized by the chosen cable forces. Structural analysis programmes apply optimisation methods to minimize the internal forces in the calculation of the ideal cable forces. The calculation considers user defined restrictions for forces or moments, stresses and displacements; the reasonable results are obtained. 2. Bridge Description The Xing Jia bridge under consideration is a 3-span composite cable-stayed bridge with an overall length of 420m (100m+ 220m+ 100m). The deck is 15.6 m wide. It comprises two longitudinal steel girders, approximately 2.5 m deep, transverse steel trusses at 3 m spacing and a reinforced concrete slab between 200 and 350 mm in depth. The deck of each cable-stayed cantilever section is supported by a total of 10 cables, with 10 cables arranged in each semi-fan configuration on each side of the pylon, in two planes, either side of the bridge deck. Each reinforced concrete pylon comprises two towers and two crossbeams, the lower one supporting the deck. During construction, longitudinal motion of the deck was restrained at the pylon bearing to resist temporary out-of-balance. Fig. 1 shows a schematic representation of the bridge with elevation view. A photograph of the completed Xing Jia cable-stayed bridge is shown in Fig Finite Element Models + Corresponding author. Tel.: ; fax: address: 270

2 The structure was modelled as a composition of substructures as follows: A steel-trusses deck girder with diaphragms, is modeled with conventional three dimensional (3-D) beam elements, forms a spine for the deck. To achieve this, all the bending, torsional and inertial properties of the steel trusses-deck composite girder are equivalent to that of the beam. Fig.1 Schematic plan of Xing Jia bridg Fig.2 Xing Jia bridg Pylon, tower and cross beams are modeled as beam elements while foundation restraints are modeled as 3-D beam elements. The final values for the beam elements representing the foundations are significantly higher than the original values used by the consultants, and essentially fix the support points in translation. A system of pseudo-beams and beam elements models the notional traffic lanes, all having zero density and relatively large stiffness. The function of these elements in the static load is to transfer 271

3 vehicle loading to the spine beam, but these elements also help to visualize the static behavior of the deck. Concrete with elastic modulus 36 GPa was assumed for the deck girder and pylon, with 1% of the nominal 36 GPa stiffness used for pseudo-beams. The cables were assumed to have moduli in the range GPa. Fig. 3 shows the finite element model incorporating all the above elements. Boundary conditions are indicated as green highlight. The cable tension is initially expected to have a significant effect on the bridge mechanical properties via geometric stiffness effects due to the cable tensions. For the computer code used (Midas Civil 6.7.1) these tensions have to be predetermined in a prior static analysis and then carried over into the global stiffness matrix for optimization analysis. The prior static analysis could begin with a neutral unloaded condition and impose a gravity load but this would result in initial bending stresses in the deck and low cable tensions. Instead, initial tensile strains estimated from the design tensions were set in the cables with the aim of producing neutral deck stresses and correct cable tensions. In fact it was necessary to iterate with different initial strains to generate close approximations to the design tension values in the cables for the optimization analysis. For static systems, linear and non-linear analyses can be performed by using truss and cable elements. Geometric non-linearities can be considered by including P-delta effects in the calculation or by performing a large displacement analysis. 4. Unknown Load Factor Optimization Fig.3 The finite element model of Xing Jia bridg The permanent state of stress in a cable-stayed bridge subject to its dead load is determined by the tension forces in the cable stays. They are introduced to reduce the bending moments in the main girder and to support the reactions in the bridge structure. The cable tension should be chosen in a way that bending moments in the girders and the pylons are eliminated or at least reduced as much as possible. Hence, the deck and pylon would be mainly under compression under the dead load. The analysis program MiDAS provides the unknown load factor function, which is based on an optimization technique. It can be used to calculate the load factors that satisfy specific boundary conditions (constrains) defined for a system. Initial pre-stressing forces can be calculated through optimizing the equilibrium state. The calculation of the ideal cable prestressing forces by the optimization is restricted to the linear analysis as the different loadings are superposed. The initial cable pre-stressing forces are obtained by the unknown load factor function and the initial equilibrium state analysis of a completed cable-stayed bridge Unknown Load Factor The first step of analyzing a cable-stayed bridge, in order to perform a construction stage analysis, is to evaluate the ideal cable forces for the final structure under it s self-weight. The general procedure of calculating these ideal cable forces by the unknown load factor function in MiDAS is outlined in Fig. 4. The function allows the determination of superposition factors for previously calculated load cases to obtain a prescribed state in the structure by combining those load cases. As far as a solution for realizing the user defined conditions exists, the factors will be calculated. 272

5 Fig.6 Cable forces [tonf/m 2 ] 5. Conclusions Fig.7 Moment distribution [tonfm] A detailed dead load stage analysis is performed using the analysis program MiDAS. The main issues relating to the modeling of the structure are outlined. To develop the ideal state system by an appropriate cable pre-stressing, unknown load factors are applied in the analysis. With the restriction of the vertical displacement and moment, a continuous beam condition for the main girder can be achieved. The ideal cable forces are determined to achieve an optimal structural performance due to its permanent loads. For all dead load stages, the minimal and the maximal moments are controlled to be within an allowable range. 6. Acknowledgements We would like to thank the National Natural Science Foundation of China (NSFC) for its support through the project (Project Number: ). This research was also supported by China Postdoctoral Science Foundation (Project Number: ). 7. References [1] A. Baldomir, S. Hernandez, F. Nieto, J.A. Jurado. Cable optimization of a long span cable stayed bridge in La Corua (Spain). Advances in Engineering Software. 2010, 41: [2] L. M. C. Simes, J. H. J. O. Negro. Optimization of cable-stayed bridges with box-girder decks. Advances in Engineering Software. 2000, 31: [3] Venkat Lute, Akhil Upadhyay, K.K. Singh. Computationally efficient analysis of cable-stayed bridge for GAbased optimization. Engineering Applications of Artificial Intelligence. 2009, 22: [4] Yu-Chi Sung, Dyi-Wei Chang, Eng-Huat Teo. Optimum post-tensioning cable forces of Mau-Lo Hsi cable-stayed bridge. Engineering Structures, 2006,28:

### EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES Yang-Cheng Wang Associate Professor & Chairman Department of Civil Engineering Chinese Military Academy Feng-Shan 83000,Taiwan Republic

### Optimum proportions for the design of suspension bridge

Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

### Statics of Structural Supports

Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure

### CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1.1 Background of the research Beam is a main element in structural system. It is horizontal member that carries load through bending (flexure) action. Therefore, beam will deflect

### Statics of Structural Supports

Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure

### Bridging Your Innovations to Realities

Graphic User Interface Graphic User Interface Modeling Features Bridge Applications Segmental Bridges Cable Bridges Analysis Features Result Evaluation Design Features 02 07 13 17 28 34 43 48 2 User Interface

### REPAIR AND STRENGTHENING OF HISTORICAL CONCRETE BRIDGE OVER VENTA RIVER IN LATVIA

1 REPAIR AND STRENGTHENING OF HISTORICAL CONCRETE BRIDGE OVER VENTA RIVER IN LATVIA Verners Straupe, M.sc.eng., Rudolfs Gruberts, dipl. eng. JS Celuprojekts, Murjanu St. 7a, Riga, LV 1024, Latvia e-mail:

### INTRODUCTION TO BEAMS

CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis

### Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges

7.7 Truss bridges Fig. 7.21 some of the trusses that are used in steel bridges Truss Girders, lattice girders or open web girders are efficient and economical structural systems, since the members experience

### Numerical Analysis of the Moving Formwork Bracket Stress during Construction of a Curved Continuous Box Girder Bridge with Variable Width

Modern Applied Science; Vol. 9, No. 6; 2015 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education Numerical Analysis of the Moving Formwork Bracket Stress during Construction

### Nonlinear Models of Reinforced and Post-tensioned Concrete Beams

111 Nonlinear Models of Reinforced and Post-tensioned Concrete Beams ABSTRACT P. Fanning Lecturer, Department of Civil Engineering, University College Dublin Earlsfort Terrace, Dublin 2, Ireland. Email:

Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 318-14 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318

### Design of cross-girders and slabs in ladder deck bridges

130 Chris R Hendy Head of Bridge Design and Technology Highways & Transportation Atkins Jessica Sandberg Senior Engineer Highways & Transportation Atkins David Iles Steel Construction Institute Design

### Analysis of the Response Under Live Loads of Two New Cable Stayed Bridges Built in Mexico

Analysis of the Response Under Live Loads of Two New Cable Stayed Bridges Built in Mexico Roberto Gómez, Raul Sánchez-García, J.A. Escobar and Luis M. Arenas-García Abstract In this paper we study the

### SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

### SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

### 8.2 Continuous Beams (Part I)

8.2 Continuous Beams (Part I) This section covers the following topics. Analysis Incorporation of Moment due to Reactions Pressure Line due to Prestressing Force Introduction Beams are made continuous

### Particular Design Features for a Long Span Cable-Stayed Bridge over the Harbour of Port Louis, Mauritius

Particular Design Features for a Long Span Cable-Stayed Bridge over the Harbour of Port Louis, Mauritius Dr. J. Jungwirth SSF Ingenieure AG, Munich, Germany Mr. J. Casper SSF Ingenieure AG, Munich, Germany

### Retrofitting of RCC Structure WIH Strengthening of Shear Wall with External Post Tensioning Cables

Retrofitting of RCC Structure WIH Strengthening of Shear Wall with External Post Tensioning Cables Yogesh Ghodke, G. R. Gandhe Department of Civil Engineering, Deogiri Institute of Engineering and Management

### Spon Press PRESTRESSED CONCRETE DESIGN EUROCODES. University of Glasgow. Department of Civil Engineering. Prabhakara Bhatt LONDON AND NEW YORK

PRESTRESSED CONCRETE DESIGN TO EUROCODES Prabhakara Bhatt Department of Civil Engineering University of Glasgow Spon Press an imprint of Taytor & Francfe LONDON AND NEW YORK CONTENTS Preface xix Basic

### AASHTOWare Bridge Design and Rating Training. STL8 Single Span Steel 3D Example (BrDR 6.6)

AASHTOWare Bridge Design and Rating Training STL8 Single Span Steel 3D Example (BrDR 6.6) Last Modified: 4/28/2015 STL8-1 AASHTOWare BrDR 6.5 AASHTOWare Bridge Design and Rating Training STL8 Single Span

### THE LATEST TECHNOLOGIES OF PRESTRESSED CONCRETE BRIDGES IN JAPAN

THE LATEST TECHNOLOGIES OF PRESTRESSED CONCRETE BRIDGES IN JAPAN Tamio YOSHIOKA 1 SUMMARY For more than 50 years prestressed concrete is one of the most important construction materials in not only Japan

### Field Damage Inspection and Static Load Test Analysis of Jiamusi Highway Prestressed Concrete Bridge in China

Advanced Materials Research Vols. 163-167 (2011) pp 1147-1156 Online available since 2010/Dec/06 at www.scientific.net (2011) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.163-167.1147

### Structural Analysis of the Sutong Bridge Dorian Janjic

Structural Analysis of the Sutong Bridge Dorian Janjic Summary The SuTong cable-stayed bridge is the Primary Fairway Bridge of the Suzhou-Nantong Yangtze River Bridge Project. It will be the most important

### Study of Analysis System for Bridge Test

Study of Analysis System for Bridge Test Chen Ke, Lu Jian-Ming, Research Institute of Highway, 100088, Beijing, China (chenkezi@163.com, lujianming@263.net) Summary Analysis System for Bridge Test (Chinese

### Unit 48: Structural Behaviour and Detailing for Construction. Chapter 13. Reinforced Concrete Beams

Chapter 13 Reinforced Concrete Beams Concrete is a material strong in its resistance to compression, but very weak indeed in tension. good concrete will safely take a stress upwards of 7 N/mm 2 in compression,

### The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow.

9.2 One-way Slabs This section covers the following topics. Introduction Analysis and Design 9.2.1 Introduction Slabs are an important structural component where prestressing is applied. With increase

### DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

### EML 5526 FEA Project 1 Alexander, Dylan. Project 1 Finite Element Analysis and Design of a Plane Truss

Problem Statement: Project 1 Finite Element Analysis and Design of a Plane Truss The plane truss in Figure 1 is analyzed using finite element analysis (FEA) for three load cases: A) Axial load: 10,000

### Comparison Between Three Types of Cable Stayed Bridges Using Structural Optimization

Western University Scholarship@Western Electronic Thesis and Dissertation Repository October 2012 Comparison Between Three Types of Cable Stayed Bridges Using Structural Optimization Olfat Sarhang Zadeh

### (laboratory) (fall semester)

Civil Engineering Courses-1 CIV 211/Surveying Prerequisite: MAT 127 An introduction to the theory and applications of modern surveying processes. Students use optical and digital land surveying instruments

### INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 5, No 2, 2014

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 5, No 2, 2014 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4399 Strengthening

### The elements used in commercial codes can be classified in two basic categories:

CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

### Basis of Structural Design

Basis of Structural Design Course 5 Structural action: - Cable structures - Multi-storey structures Course notes are available for download at http://www.ct.upt.ro/users/aurelstratan/ Cable structures

NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation

### Approximate Analysis of Statically Indeterminate Structures

Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis

### Simple design method

method Aim of the design method 2 3 Content of presentation in a fire situation method of reinforced concrete slabs at 20 C Floor slab model Failure modes method of at Extension to fire behaviour Membrane

### Course in. Nonlinear FEM

Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited

### Since the Steel Joist Institute

SELECTING and SPECIFYING Wesley B. Myers, P.E. An insider s guide to selecting and specifying K-series, LH, DLH-series joists and joist girders Since the Steel Joist Institute adopted the first standard

### National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination

Structural Effective Beginning with the April 2011 The structural engineering exam is a breadth and exam examination offered in two components on successive days. The 8-hour Vertical Forces (Gravity/Other)

### 16. Beam-and-Slab Design

ENDP311 Structural Concrete Design 16. Beam-and-Slab Design Beam-and-Slab System How does the slab work? L- beams and T- beams Holding beam and slab together University of Western Australia School of Civil

### Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

### Safe & Sound Bridge Terminology

Safe & Sound Bridge Terminology Abutment A retaining wall supporting the ends of a bridge, and, in general, retaining or supporting the approach embankment. Approach The part of the bridge that carries

### 4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections.

Shear Walls Buildings that use shear walls as the lateral force-resisting system can be designed to provide a safe, serviceable, and economical solution for wind and earthquake resistance. Shear walls

### Preliminary steel concrete composite bridge design charts for Eurocodes

Preliminary steel concrete composite bridge 90 Rachel Jones Senior Engineer Highways & Transportation Atkins David A Smith Regional Head of Bridge Engineering Highways & Transportation Atkins Abstract

### New Troja Bridge in Prague Concept and Structural Analysis of Steel Parts

Available online at www.sciencedirect.com Procedia Engineering 00 (2012) 000 000 www.elsevier.com/locate/procedia Steel Structures and Bridges 2012 New Troja Bridge in Prague Concept and Structural Analysis

### Precast concrete bridge elements produced with slipformer technology

Nordimpianti System Srl, 66100 Chieti (CH), Italy Precast concrete bridge elements produced with slipformer technology For over 40 years, Nordimpianti has designed and built equipment for the production

### In-situ Load Testing to Evaluate New Repair Techniques

In-situ Load Testing to Evaluate New Repair Techniques W.J. Gold 1 and A. Nanni 2 1 Assistant Research Engineer, Univ. of Missouri Rolla, Dept. of Civil Engineering 2 V&M Jones Professor, Univ. of Missouri

### STRENGTHENING OF JIAMUSI PRE-STRESSED CONCRETE HIGHWAY BRIDGE BY USING EXTERNAL POST-TENSIONING TECHNOLOGY IN CHINA

STRENGTHENING OF JIAMUSI PRE-STRESSED CONCRETE HIGHWAY BRIDGE BY USING EXTERNAL POST-TENSIONING TECHNOLOGY IN CHINA Ali Fadhil Naser and Wang Zonglin School of Transportation Science and Engineering, Bridge

### Steel and composite bridges in Germany State of the Art

Steel and composite bridges in Germany State of the Art Univ.-Prof. Dr.-Ing. G. Hanswille Institute for Steel and Composite Structures University of Wuppertal Germany Univ.-Prof. em. Dr.-Ing. Dr. h.c.

### Chapter 9 CONCRETE STRUCTURE DESIGN REQUIREMENTS

Chapter 9 CONCRETE STRUCTURE DESIGN REQUIREMENTS 9.1 GENERAL 9.1.1 Scope. The quality and testing of concrete and steel (reinforcing and anchoring) materials and the design and construction of concrete

### DESIGN OF SLENDER AESTHETICAL CONCRETE BRIDGES - CHALLENGES AND CONSIDERATIONS

Title DESIGN OF SLENDER AESTHETICAL CONCR BRIDGES - CHALLENGES AND CONSIDERAT Author(s) U. G. JENSEN; T. S. HANSEN Citation Issue Date 2013-09-13 DOI Doc URLhttp://hdl.handle.net/2115/54420 Right Type

### EFFECT OF SKEW ANGLE ON STATIC BEHAVIOUR OF REINFORCED CONCRETE SLAB BRIDGE DECKS

239-63 pissn: 232-738 EFFECT OF SKEW ANGLE ON STATIC BEHAVIOUR OF REINFORCED CONCRETE SLAB BRIDGE DECKS Sindhu B.V, Ashwin K.N 2, Dattatreya J.K. 3, S.V Dinesh 4 Post Graduate Student, 2 Assistant Professor,

### Steel Deck. A division of Canam Group

Steel Deck A division of Canam Group TABLE OF CONTENTS PAGE OUR SERVICES... 4 NOTES ABOUT LOAD TABLES... 5 P-3615 & P-3606 DIMENSIONS & PHYSICAL PROPERTIES... 6 FACTORED AND SERVICE LOADS... 7 P-2436 &

### REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE

REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE A.Rito Proponte, Lda, Lisbon, Portugal J. Appleton A2P Consult, Lda, Lisbon, Portugal ABSTRACT: The Figueira da Foz Bridge includes a 405 m long cable stayed

### Interaction between plate and column buckling

Delft, University of Technology Engineering office of Public works Rotterdam Interaction between plate and column buckling Master Thesis Name: Alex van Ham Student number: 1306138 Email: vanham.alex@gmail.com

### COVER SHEET. Kajewski, Stephen L. and Hampson, Keith D. (1997) Reengineering. Re-engineering (CPR-97), pages pp. 591-602, Gold Coast, Australia.

COVER SHEET Kajewski, Stephen L. and Hampson, Keith D. (1997) Reengineering High-Rise Construction for Enhanced Cycle Times and Safety. In Mohamed, Sherif, Eds. Proceedings International Conference on

### The Millau Viaduct: Ten Years of Structural Monitoring

The Millau Viaduct: Ten Years of Structural Monitoring Emmanuel Cachot, Civil Eng. CEVM, Millau, France; Thierry Vayssade, Civil Eng. CEVM, Millau, France; Michel Virlogeux, Civil Eng. MV Consultant, Bonnelles,

### MATERIALS SELECTION FOR SPECIFIC USE

MATERIALS SELECTION FOR SPECIFIC USE-1 Sub-topics 1 Density What determines density and stiffness? Material properties chart Design problems LOADING 2 STRENGTH AND STIFFNESS Stress is applied to a material

### Analyzing the Effectiveness of the Turnbuckle Exterior Post Tensioning as a Structural Retrofitting Method Using SAP2000

Presented at the DLSU Research Congress 15 Analyzing the Effectiveness of the Turnbuckle Exterior Post Tensioning as a Structural Retrofitting Method Using SAP Bernardo Lejano 1, Kenneth Toral 2,*, Dustin

### POST TENSIONING / PRE- TENSIONING LUMUCSO, JAY-AR T.

POST TENSIONING / PRE- TENSIONING LUMUCSO, JAY-AR T. History The first post-tensioning systems consisted of ¼-in.wires bundled in groups of 3 to 12. Eight wire bundles were the most common; the wires were

### SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the

### Improving FE models of a long-span flat concrete floor using natural frequency measurements

Computers and Structures 80 (2002) 2145 2156 www.elsevier.com/locate/compstruc Improving FE models of a long-span flat concrete floor using natural frequency measurements Emad El-Dardiry a, Endah Wahyuni

### SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP

13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3279 SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP Yuming DING 1, Bruce HAMERSLEY 2 SUMMARY Vancouver

### Chapter 5 Bridge Deck Slabs. Bridge Engineering 1

Chapter 5 Bridge Deck Slabs Bridge Engineering 1 Basic types of bridge decks In-situ reinforced concrete deck- (most common type) Pre-cast concrete deck (minimize the use of local labor) Open steel grid

### Rail Track Analysis User Manual. LUSAS Version 15.0 : Issue 1

Rail Track Analysis User Manual LUSAS Version 15.0 : Issue 1 LUSAS Forge House, 66 High Street, Kingston upon Thames, Surrey, KT1 1HN, United Kingdom Tel: +44 (0)20 8541 1999 Fax +44 (0)20 8549 9399 Email:

### SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED NOTE: MOMENT DIAGRAM CONVENTION In PT design, it is preferable to draw moment diagrams

### Experimental Investigation on Shear Cracking Behavior in Reinforced Concrete Beams with Shear Reinforcement

Journal of Advanced Concrete Technology Vol. 7, No. 1, 79-96, February 29 / Copyright 29 Japan Concrete Institute 79 Scientific paper Experimental Investigation on Shear Cracking Behavior in Reinforced

### New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

### Understanding Structural Concept of Cable-Stayed Bridge

Background Understanding Structural Concept of Cable-Stayed Bridge Xudong Niu There are many long-span cable-suspended and cable-stayed bridges in the world. (Ji, 2003) A cable-stayed bridge is a bridge

### Applied Finite Element Analysis. M. E. Barkey. Aerospace Engineering and Mechanics. The University of Alabama

Applied Finite Element Analysis M. E. Barkey Aerospace Engineering and Mechanics The University of Alabama M. E. Barkey Applied Finite Element Analysis 1 Course Objectives To introduce the graduate students

### A-insinöörit Suunnittelu Oy

A-insinöörit Suunnittelu Oy www.a-insinoorit.fi Background - Location at Ylöjärvi near Tampere at Highway VT3 - The design of the Malminmaki bridge, part of the Tampere West Bypass, Stage II, Contract

### Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile

Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile J. Sherstobitoff Ausenco Sandwell, Vancouver, Canada P. Cajiao AMEC, Vancouver, Canada P. Adebar University of British

### THE STUDY OF LATERAL TORSIONAL BUCKLING BEHAVIOUR OF BEAM WITH TRAPEZOID WEB STEEL SECTION BY EXPERIMENTAL AND FINITE ELEMENT ANALYSIS

THE STUDY OF LATERAL TORSIONAL BUCKLING BEHAVIOUR OF BEAM WITH TRAPEZOID WEB STEEL SECTION BY EXPERIMENTAL AND FINITE ELEMENT ANALYSIS Fatimah Denan 1, Mohd Hanim Osman 2 & Sariffuddin Saad 3 1 School

### Influence Analysis on Prestressed Reinforcement Tensioning Modes of Cast-in-place Box Beam

0 1 Journal of Highway and Transportation Research and Development Vol. 0 No. Mar. 1 doi 10. 969 /j. issn. 1002-0268. 1. 0. 014 1 2 1 1 1 1. 710064 2. 450011 1 m MIDAS /CIVIL 5 1 2 1 2 46. 71 m 1 1. 71

### SEISMIC DESIGN PROVISIONS FOR PRECAST CONCRETE STRUCTURES IN ACI 318. S.K. Ghosh, Ph. D. Neil M. Hawkins, Ph. D. BACKGROUND

SEISMIC DESIGN PROVISIONS FOR PRECAST CONCRETE STRUCTURES IN ACI 318 by S.K. Ghosh, Ph. D. Neil M. Hawkins, Ph. D. President Professor Emeritus S.K. Ghosh Associates Inc. Department of Civil Engineering

### АLGASLAB SOLUTIONS FOR POST-TENSIONED SLABS

АLGASLAB SOLUTIONS FOR POST-TENSIONED SLABS ANTISEISMIC DEVICES BEARINGS EXPANSION JOINTS POST TENSIONING SYSTEMS STRUCTURAL REPAIR AND MAINTENANCE Re-development of Michelin complex ex-area, Trento -

### Project Report. Junichiro NIWA Fellow, Professor, Civil Engineering Department, Tokyo Institute of Technology

Project Report World's first PC-steel composite cable-stayed bridge using corrugated steel plate webs for PC girders Yahagigawa Bridge on the Second Tomei Expressway Junichiro NIWA Fellow, Professor, Civil

### SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI318-02 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems

### CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS

1 CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS Written by: Sophia Hassiotis, January, 2003 Last revision: February, 2015 Modern methods of structural analysis overcome some of the

### Nonlinear analysis and form-finding in GSA Training Course

Nonlinear analysis and form-finding in GSA Training Course Non-linear analysis and form-finding in GSA 1 of 47 Oasys Ltd Non-linear analysis and form-finding in GSA 2 of 47 Using the GSA GsRelax Solver

### Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar,

Volume, Special Issue, ICSTSD Behaviour of Steel Bracing as a Global Retrofitting Technique Miss S. S. Nibhorkar M. E (Structure) Scholar, Civil Engineering Department, G. H. Raisoni College of Engineering

### PRESTRESSED CONCRETE. Introduction REINFORCED CONCRETE CHAPTER SPRING 2004. Reinforced Concrete Design. Fifth Edition. By Dr. Ibrahim.

CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition PRESTRESSED CONCRETE A. J. Clark School of Engineering Department of Civil and Environmental

### DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia

DESIGN OF SLABS Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction Types of Slab Slabs are plate elements

### Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

6.3 Behaviour of steel beams Laterally stable steel beams can fail only by (a) Flexure (b) Shear or (c) Bearing, assuming the local buckling of slender components does not occur. These three conditions

### Precast Balanced Cantilever Bridge Design Using AASHTO LRFD Bridge Design Specifications

Design Example Precast Balanced Cantilever Bridge Design Using AASHTO LRFD Bridge Design Specifications Prepared by Teddy S. Theryo, PE Major Bridge Service Center Prepared for American Segmental Bridge

### DYNAMIC ANALYSIS ON STEEL FIBRE

International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 179 184, Article ID: IJCIET_07_02_015 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

### METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

### 1. a) Discuss how finite element is evolved in engineering field. (8) b) Explain the finite element idealization of structures with examples.

M.TECH. DEGREE EXAMINATION Branch: Civil Engineering Specialization Geomechanics and structures Model Question Paper - I MCEGS 106-2 FINITE ELEMENT ANALYSIS Time: 3 hours Maximum: 100 Marks Answer ALL

### Distribution of Forces in Lateral Load Resisting Systems

Distribution of Forces in Lateral Load Resisting Systems Part 2. Horizontal Distribution and Torsion IITGN Short Course Gregory MacRae Many slides from 2009 Myanmar Slides of Profs Jain and Rai 1 Reinforced

### ENGI 8673 Subsea Pipeline Engineering Faculty of Engineering and Applied Science

GUIDANCE NOTE LECTURE 12 THERMAL EXPANSION ANALYSIS OVERVIEW The calculation procedure for determining the longitudinal pipeline response can be formulated on the basis of strain. The longitudinal strain

### REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition

CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition CONCRETE Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering

### Vibration based structural assessment of the rehabilitation intervention in r.c. segmental bridge

MATEC Web of Conferences 24, 09 00 8 ( 2015) DOI: 10.1051/ matecconf/ 2015 24 09008 C Owned by the authors, published by EDP Sciences, 2015 Vibration based structural assessment of the rehabilitation intervention

### Testing Anchors in Cracked Concrete

Testing Anchors in Cracked Concrete Guidance for testing laboratories: how to generate cracks BY ROLF ELIGEHAUSEN, LEE MATTIS, RICHARD WOLLMERSHAUSER, AND MATTHEW S. HOEHLER ACI Committee 355, Anchorage

### Tower Cross Arm Numerical Analysis

Chapter 7 Tower Cross Arm Numerical Analysis In this section the structural analysis of the test tower cross arm is done in Prokon and compared to a full finite element analysis using Ansys. This is done

### SCIENTIFIC DESIGN OF BAMBOO STRUCTURES

SCIENTIFIC DESIGN OF BAMBOO STRUCTURES Dr. Suresh Bhalla Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi -110016 EMAIL: sbhalla@civil.iitd.ac.in CONTENTS WHY

### S03: Tier 1 Assessment of Shear in Concrete Short Span Bridges to AS 5100 and AS 3600

Annexure S03: Tier 1 Assessment of Shear in Concrete Short Span Bridges to AS 5100 and AS 3600 April 2014 Copyright http://creativecommons.org/licenses/by/3.0/au/ State of Queensland (Department of Transport