# HYPOTHESIS TESTING AND TYPE I AND TYPE II ERROR

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 HYPOTHESIS TESTING AND TYPE I AND TYPE II ERROR Hypothesis is a conjecture (an inferring) about one or more population parameters. Null Hypothesis (H 0 ) is a statement of no difference or no relationship and is the logical counterpart to the alternative hypothesis. Alternative Hypothesis (H 1 or H a ) claims the differences in results between conditions is due to the independent variable. Also known as the research hypothesis and covers possible outcome not covered by the null hypothesis. Hypothesis Testing involves making inferences about the nature (or reality) of the population on the basis of observations of a sample drawn from the population. Type I Error (also known as alpha,α) is defined as a decision to reject the null hypothesis when the null hypothesis is true. Type II Error (also known as beta,β) is defined as a decision to retain (or fail to reject) the null hypothesis when the null hypothesis is false. POSSIBLE OUTCOMES (CONCLUSIONS) IN HYPOTHESIS TESTING STATE OF REALITY H 0 IS TRUE H 0 IS FALSE DECISION RETAIN H 0 (CI, 1 ) TYPE II ERROR (β) MADE REJECT H 0 TYPE I ERROR (α) (POWER, 1 β) When we retain (or fail to reject) the null hypothesis we are concluding that there is no difference between the treatment groups or no relationship between the variables. Retaining H 0 we can only make a Correct Decision (when the H 0 is in reality true) or a Type II Error (when the H 0 is in reality false). When we reject (or fail to support) the null hypothesis we are concluding that there is a difference between the treatment groups or there is a relationship between the variables. Rejecting H 0 we can only make a Type I Error (when the H 0 is in reality true) or a Correct Decision (when the H 0 is in reality false). Type I and Type II errors are inversely related: The smaller the risk of one, the greater the risk of the other. By minimizing the probability of making these errors, we maximize the probability of concluding correctly, regardless of whether the null hypothesis is true or false. By controlling the alpha level we can minimize the probability of making a Type I error.

2 STATE OF REALITY H 0 IS TRUE H 0 IS FALSE DECISION MADE RETAIN H 0 REJECT H 0 (CI, 1 ) TYPE I ERROR (α) TYPE II ERROR (β) (POWER, 1 β) If in reality the Null Hypothesis (H 0 ) is TRUE, there is NO significant difference between (among) groups. If in reality the Null Hypothesis (H 0 ) is FALSE, this is a significant difference between (among) groups. If our decision is to RETAIN the Null Hypothesis (H 0 ), we are concluding that there is NO significant difference between (among) groups. If our decision is to REJECT the Null Hypothesis (H 0 ), we are concluding that there is a significant difference between (among) groups.

3 IN REALITY WHAT WE CONCLUDE We retain the Null Hypothesis (H 0 ) We reject the Alternative Hypothesis (H a ) We say There is no relationship There is no difference, no gain There is no effect Our theory is wrong We reject the Null Hypothesis (H 0 ) We accept the Alternative Hypothesis (H a ) We say There is a relationship There is a difference, is a gain There is an effect Our theory is correct H 0 (Null Hypothesis) is True H a (Alternative Hypothesis) is False In Reality There is no relationship There is no difference, no gain, no effect Our theory is wrong 1 (e.g.,.95) CONFIDENCE LEVEL/INTERVAL The odds of saying there is no relationship, difference, gain, when in fact there is none. The odds of correctly not confirming our theory. 95 times out of 100 when there is no effect, we will say there is none. (e.g.,.05) TYPE I ERROR (SIGNIFICANCE LEVEL) The odds of saying there is a relationship, difference, gain, when in fact there is not. The odds of confirming our theory incorrectly. 5 times out of 100, when there is no effect, we will say there is one. We should keep this small when we cannot afford/risk wrongly concluding that our program works. H 0 (Null Hypothesis) is False H a (Alternative Hypothesis) is True In Reality There is a relationship There is a difference, gain, or effect Our theory is correct (e.g.,.20) TYPE II ERROR The odds of saying there is no relationship, difference, gain, when in fact there is one. The odds of not confirming our theory when it is true. 20 times out of 100, when there is an effect, we will say there is not one. 1 (e.g.,.80) POWER The odds of saying that there is a relationship, difference, gain, when in fact there is one. The odds of confirming our theory correctly. 80 times out of 100, when there is an effect, we will say there is one. We generally want this to be as large as possible.

4 All statistical conclusions involve constructing two mutually exclusive hypotheses, called the null (H 0 ) and alternative (H a or H 1 ) hypothesis. Together, the hypotheses describe all possible outcomes with respect to the inference. That is, one must be right and one must be wrong. The central decision involves determining which hypothesis to accept (retain or support) and which to reject (fail to retain or support). The null hypothesis is so termed because it usually refers to the no relationship, no difference, no gain, or no effect case. Usually in research we expect that our treatment and/or program will make a difference. So, typically, our theory is described in the alternative hypothesis, that there is a relationship, difference, gain, or effect. Researchers want to have the highest degree of accuracy (power) with any study they conduct. As such, they want to increase the power of the study. As you increase power, you increase the chances that you are going to find an effect if it is there. However, if you increase power, you are at the same time increasing the chances of making a Type I Error. There is clearly a direct relationship between power and alpha (the level of significance). Since we usually want high power and low Type I Error, you should be able to appreciate the dilemma researchers face. We often talk about alpha () and beta () using the language of higher and lower. For example, we might talk about the advantages of a higher or lower level in a particular study. You have to be careful about interpreting the meaning of these terms. When we talk about higher levels, we mean that we are increasing the chance of a Type I Error. Therefore, a lower level actually means that you are conducting a more rigorous/stringent test. That is, it takes more to convince us that something is going on (i.e., that there is a real effect). Consider the following associations among alpha (), beta (), and Power: The lower the, the lower the power; the higher the, the higher the power The lower the, the less likely it is that you will make a Type I Error (i.e., rejecting the null hypothesis when in reality it is true) The lower the (in numeric value), the more rigorous or stringent the test An of.01 (compared to.05 or.10) means the researcher is being relatively careful and is only willing to risk being wrong 1 out of 100 times in rejecting the null hypothesis when in reality it is true (i.e., saying there is an effect when there really is not one) An of.01 (compared to.05 or.10) limits one s chances of concluding that there is an effect. This would mean that both the statistical power and the chances of making a Type I Error are lower An of.01 means that you have a 99% chance (1 ) of saying there is no difference when in reality there is no difference (i.e., making a correct decision) Increasing (e.g., from.01 to.05 or.10) increases the chances of making a Type I Error (i.e., saying there is a difference when in reality there is not), decreases the chances of making a Type II Error (i.e., saying there is no difference when in reality there is) and decreases the rigor of the test Increasing (e.g., from.01 to.05 or.10) increases power because the researcher will be rejecting the null hypothesis more often (i.e., accepting the alternative hypothesis) and, consequently, when the alternative hypothesis is true, there is a greater chance of accepting it (i.e., power)

5 NON-DIRECTIONAL (TWO-TAILED) Retain H 0 Region of Retention p > α Reject H 0 Reject H 0 DIRECTIONAL (ONE-TAILED NEGATIVE END) Region of Retention Retain H 0 p > α Reject H 0 DIRECTIONAL (ONE-TAILED POSITIVE END) Region of Retention Retain H 0 p > α Reject H 0

6 THE FOUR STEPS IN TESTING A NULL HYPOTHESIS: 1. STATE THE HYPOTHESES State the null hypothesis and alternative hypothesis(es) 2. SET THE CRITERION FOR REJECTING H 0 Set the alpha level, which in turn identifies the critical values 3. COMPUTE THE TEST STATISTIC If parameter information is known calculate z If parameter information is not known calculate t 4. DECIDE WHETHER TO RETAIN OR REJECT H 0 Using the obtained probability value (compared to the alpha level) If p > α Retain the null hypothesis If Reject the null hypothesis Using the obtained statistic value (compared to the critical value) If z obt or t obt < z crit or t crit Retain the null hypothesis If z obt or t obt > z crit or t crit Reject the null hypothesis s of the z Test Statistic Level of Significance Two-tailed Test Level of Significance One-tailed Test of Test Statistic NOTE that the + and/or sign is dependent on the type of test being used When parameter information (σ) is unknown we will use the t statistic. Critical values for the Student s t distribution are found on the table on the following page. Note however, when the sample size (N) is large (when df = ) we can use the normal distribution table (Table A Areas under the normal curve) to obtain critical values. That is, the t distribution is identical to the z distribution.

7 df CRITICAL VALUES OF STUDENT S t DISTRIBUTION Level of Significance for One-Tailed Test Level of Significance for Two-Tailed Test The values listed in the table are the critical values of t for the specified degrees of freedom (left column) and the alpha level (column heading). For two-tailed alpha levels, t crit is both + and. To be significant, t obt > t crit.

### HYPOTHESIS TESTING: POWER OF THE TEST

HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,

### Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses

Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the

### Hypothesis Testing Summary

Hypothesis Testing Summary Hypothesis testing begins with the drawing of a sample and calculating its characteristics (aka, statistics ). A statistical test (a specific form of a hypothesis test) is an

### Hypothesis testing - Steps

Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =

### The Basics of a Hypothesis Test

Overview The Basics of a Test Dr Tom Ilvento Department of Food and Resource Economics Alternative way to make inferences from a sample to the Population is via a Test A hypothesis test is based upon A

### Hypothesis Testing 1

Hypothesis Testing 1 Statistical procedures for addressing research questions involves formulating a concise statement of the hypothesis to be tested. The hypothesis to be tested is referred to as the

About Hypothesis Testing TABLE OF CONTENTS About Hypothesis Testing... 1 What is a HYPOTHESIS TEST?... 1 Hypothesis Testing... 1 Hypothesis Testing... 1 Steps in Hypothesis Testing... 2 Steps in Hypothesis

### Chapter 9, Part A Hypothesis Tests. Learning objectives

Chapter 9, Part A Hypothesis Tests Slide 1 Learning objectives 1. Understand how to develop Null and Alternative Hypotheses 2. Understand Type I and Type II Errors 3. Able to do hypothesis test about population

### HypoTesting. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: HypoTesting Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A Type II error is committed if we make: a. a correct decision when the

### Estimation of σ 2, the variance of ɛ

Estimation of σ 2, the variance of ɛ The variance of the errors σ 2 indicates how much observations deviate from the fitted surface. If σ 2 is small, parameters β 0, β 1,..., β k will be reliably estimated

### Independent samples t-test. Dr. Tom Pierce Radford University

Independent samples t-test Dr. Tom Pierce Radford University The logic behind drawing causal conclusions from experiments The sampling distribution of the difference between means The standard error of

### TRANSCRIPT: In this lecture, we will talk about both theoretical and applied concepts related to hypothesis testing.

This is Dr. Chumney. The focus of this lecture is hypothesis testing both what it is, how hypothesis tests are used, and how to conduct hypothesis tests. 1 In this lecture, we will talk about both theoretical

### Section 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)

Section 7.1 Introduction to Hypothesis Testing Schrodinger s cat quantum mechanics thought experiment (1935) Statistical Hypotheses A statistical hypothesis is a claim about a population. Null hypothesis

### Chapter 1 Hypothesis Testing

Chapter 1 Hypothesis Testing Principles of Hypothesis Testing tests for one sample case 1 Statistical Hypotheses They are defined as assertion or conjecture about the parameter or parameters of a population,

### Chapter Additional: Standard Deviation and Chi- Square

Chapter Additional: Standard Deviation and Chi- Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret

### Single sample hypothesis testing, II 9.07 3/02/2004

Single sample hypothesis testing, II 9.07 3/02/2004 Outline Very brief review One-tailed vs. two-tailed tests Small sample testing Significance & multiple tests II: Data snooping What do our results mean?

### Lecture 13 More on hypothesis testing

Lecture 13 More on hypothesis testing Thais Paiva STA 111 - Summer 2013 Term II July 22, 2013 1 / 27 Thais Paiva STA 111 - Summer 2013 Term II Lecture 13, 07/22/2013 Lecture Plan 1 Type I and type II error

### Develop hypothesis and then research to find out if it is true. Derived from theory or primary question/research questions

Chapter 12 Hypothesis Testing Learning Objectives Examine the process of hypothesis testing Evaluate research and null hypothesis Determine one- or two-tailed tests Understand obtained values, significance,

### DDBA 8438: Introduction to Hypothesis Testing Video Podcast Transcript

DDBA 8438: Introduction to Hypothesis Testing Video Podcast Transcript JENNIFER ANN MORROW: Welcome to "Introduction to Hypothesis Testing." My name is Dr. Jennifer Ann Morrow. In today's demonstration,

### Two-sample hypothesis testing, I 9.07 3/09/2004

Two-sample hypothesis testing, I 9.07 3/09/2004 But first, from last time More on the tradeoff between Type I and Type II errors The null and the alternative: Sampling distribution of the mean, m, given

### Correlational Research

Correlational Research Chapter Fifteen Correlational Research Chapter Fifteen Bring folder of readings The Nature of Correlational Research Correlational Research is also known as Associational Research.

### Null Hypothesis H 0. The null hypothesis (denoted by H 0

Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property

### CHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING

CHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING MULTIPLE CHOICE 56. In testing the hypotheses H 0 : µ = 50 vs. H 1 : µ 50, the following information is known: n = 64, = 53.5, and σ = 10. The standardized

### Module 5 Hypotheses Tests: Comparing Two Groups

Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this

### Chapter 9 Introduction to Hypothesis Testing

Chapter 9 Introduction to Hypothesis Testing 9.2 - Hypothesis Testing Hypothesis testing is an eample of inferential statistics We use sample information to draw conclusions about the population from which

### Chapter 8. Hypothesis Testing

Chapter 8 Hypothesis Testing Hypothesis In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing

### THE LOGIC OF HYPOTHESIS TESTING. The general process of hypothesis testing remains constant from one situation to another.

THE LOGIC OF HYPOTHESIS TESTING Hypothesis testing is a statistical procedure that allows researchers to use sample to draw inferences about the population of interest. It is the most commonly used inferential

### Hypothesis Testing. Chapter 7

Hypothesis Testing Chapter 7 Hypothesis Testing Time to make the educated guess after answering: What the population is, how to extract the sample, what characteristics to measure in the sample, After

### Chapter 8 Introduction to Hypothesis Testing

Chapter 8 Student Lecture Notes 8-1 Chapter 8 Introduction to Hypothesis Testing Fall 26 Fundamentals of Business Statistics 1 Chapter Goals After completing this chapter, you should be able to: Formulate

### Hypothesis Testing. Hypothesis Testing

Hypothesis Testing Daniel A. Menascé Department of Computer Science George Mason University 1 Hypothesis Testing Purpose: make inferences about a population parameter by analyzing differences between observed

### Hypothesis Testing --- One Mean

Hypothesis Testing --- One Mean A hypothesis is simply a statement that something is true. Typically, there are two hypotheses in a hypothesis test: the null, and the alternative. Null Hypothesis The hypothesis

### Lesson 9 Hypothesis Testing

Lesson 9 Hypothesis Testing Outline Logic for Hypothesis Testing Critical Value Alpha (α) -level.05 -level.01 One-Tail versus Two-Tail Tests -critical values for both alpha levels Logic for Hypothesis

### 8-2 Basics of Hypothesis Testing. Definitions. Rare Event Rule for Inferential Statistics. Null Hypothesis

8-2 Basics of Hypothesis Testing Definitions This section presents individual components of a hypothesis test. We should know and understand the following: How to identify the null hypothesis and alternative

### HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

### Hypothesis Testing. Concept of Hypothesis Testing

Quantitative Methods 2013 Hypothesis Testing with One Sample 1 Concept of Hypothesis Testing Testing Hypotheses is another way to deal with the problem of making a statement about an unknown population

### Hypothesis Testing or How to Decide to Decide Edpsy 580

Hypothesis Testing or How to Decide to Decide Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at Urbana-Champaign Hypothesis Testing or How to Decide to Decide

### Hypothesis testing S2

Basic medical statistics for clinical and experimental research Hypothesis testing S2 Katarzyna Jóźwiak k.jozwiak@nki.nl 2nd November 2015 1/43 Introduction Point estimation: use a sample statistic to

### Chapter 7 Part 2. Hypothesis testing Power

Chapter 7 Part 2 Hypothesis testing Power November 6, 2008 All of the normal curves in this handout are sampling distributions Goal: To understand the process of hypothesis testing and the relationship

### 15.0 More Hypothesis Testing

15.0 More Hypothesis Testing 1 Answer Questions Type I and Type II Error Power Calculation Bayesian Hypothesis Testing 15.1 Type I and Type II Error In the philosophy of hypothesis testing, the null hypothesis

### HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

### IQ of deaf children example: Are the deaf children lower in IQ? Or are they average? If µ100 and σ 2 225, is the 88.07 from the sample of N59 deaf chi

PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 All inferential statistics have the following in common: Use of some descriptive statistic Use of probability Potential for estimation

### Sampling and Hypothesis Testing

Population and sample Sampling and Hypothesis Testing Allin Cottrell Population : an entire set of objects or units of observation of one sort or another. Sample : subset of a population. Parameter versus

### Null and Alternative Hypotheses. Lecture # 3. Steps in Conducting a Hypothesis Test (Cont d) Steps in Conducting a Hypothesis Test

Lecture # 3 Significance Testing Is there a significant difference between a measured and a standard amount (that can not be accounted for by random error alone)? aka Hypothesis testing- H 0 (null hypothesis)

### Elements of Hypothesis Testing (Summary from lecture notes)

Statistics-20090 MINITAB - Lab 1 Large Sample Tests of Hypothesis About a Population Mean We use hypothesis tests to make an inference about some population parameter of interest, for example the mean

### Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.

Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative

### I. Basics of Hypothesis Testing

Introduction to Hypothesis Testing This deals with an issue highly similar to what we did in the previous chapter. In that chapter we used sample information to make inferences about the range of possibilities

### MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample

MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of

### 5. 가설과통계추론 5.1 가설이란무엇인가

2008-2009 Jeeshim & KUCC625 (08/04/2009) Statistical Data Analysis Using R:16 5. 가설과통계추론 이장에서는가설이무엇이고, 통계추론을어떻게하는지세가지방법을설명한다. 5.1 가설이란무엇인가 A hypothesis is a specific conjecture (statement) about a characteristic

### HYPOTHESIS TESTING III: POPULATION PROPORTIONS, ETC.

HYPOTHESIS TESTING III: POPULATION PROPORTIONS, ETC. HYPOTHESIS TESTS OF POPULATION PROPORTIONS Purpose: to determine whether the proportion in the population with some characteristic is or is not equal

### LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

### We have already discussed hypothesis testing in study unit 13. In this

14 study unit fourteen hypothesis tests applied to means: two related samples We have already discussed hypothesis testing in study unit 13. In this study unit we shall test a hypothesis empirically in

### Introduction to Hypothesis Testing OPRE 6301

Introduction to Hypothesis Testing OPRE 6301 Motivation... The purpose of hypothesis testing is to determine whether there is enough statistical evidence in favor of a certain belief, or hypothesis, about

### t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

### Hypothesis Testing. Bluman Chapter 8

CHAPTER 8 Learning Objectives C H A P T E R E I G H T Hypothesis Testing 1 Outline 8-1 Steps in Traditional Method 8-2 z Test for a Mean 8-3 t Test for a Mean 8-4 z Test for a Proportion 8-5 2 Test for

### Chapter 7. Section Introduction to Hypothesis Testing

Section 7.1 - Introduction to Hypothesis Testing Chapter 7 Objectives: State a null hypothesis and an alternative hypothesis Identify type I and type II errors and interpret the level of significance Determine

### Confidence intervals

Confidence intervals Today, we re going to start talking about confidence intervals. We use confidence intervals as a tool in inferential statistics. What this means is that given some sample statistics,

### Hypothesis Testing and Confidence Interval Estimation

Biostatistics for Health Care Researchers: A Short Course Hypothesis Testing and Confidence Interval Estimation Presented ed by: Susan M. Perkins, Ph.D. Division of Biostatistics Indiana University School

### Interaction between quantitative predictors

Interaction between quantitative predictors In a first-order model like the ones we have discussed, the association between E(y) and a predictor x j does not depend on the value of the other predictors

### Hypothesis Testing. Reminder of Inferential Statistics. Hypothesis Testing: Introduction

Hypothesis Testing PSY 360 Introduction to Statistics for the Behavioral Sciences Reminder of Inferential Statistics All inferential statistics have the following in common: Use of some descriptive statistic

### 5/31/2013. Chapter 8 Hypothesis Testing. Hypothesis Testing. Hypothesis Testing. Outline. Objectives. Objectives

C H 8A P T E R Outline 8 1 Steps in Traditional Method 8 2 z Test for a Mean 8 3 t Test for a Mean 8 4 z Test for a Proportion 8 6 Confidence Intervals and Copyright 2013 The McGraw Hill Companies, Inc.

### How to Conduct a Hypothesis Test

How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some

### 6. Statistical Inference: Significance Tests

6. Statistical Inference: Significance Tests Goal: Use statistical methods to check hypotheses such as Women's participation rates in elections in France is higher than in Germany. (an effect) Ethnic divisions

### "Statistical methods are objective methods by which group trends are abstracted from observations on many separate individuals." 1

BASIC STATISTICAL THEORY / 3 CHAPTER ONE BASIC STATISTICAL THEORY "Statistical methods are objective methods by which group trends are abstracted from observations on many separate individuals." 1 Medicine

### Two Related Samples t Test

Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person

### Measuring the Power of a Test

Textbook Reference: Chapter 9.5 Measuring the Power of a Test An economic problem motivates the statement of a null and alternative hypothesis. For a numeric data set, a decision rule can lead to the rejection

### Chapter III. Testing Hypotheses

Chapter III Testing Hypotheses R (Introduction) A statistical hypothesis is an assumption about a population parameter This assumption may or may not be true The best way to determine whether a statistical

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### AP STATISTICS 2009 SCORING GUIDELINES (Form B)

AP STATISTICS 2009 SCORING GUIDELINES (Form B) Question 5 Intent of Question The primary goals of this question were to assess students ability to (1) state the appropriate hypotheses, (2) identify and

### Hypothesis Testing. Barrow, Statistics for Economics, Accounting and Business Studies, 4 th edition Pearson Education Limited 2006

Hypothesis Testing Lecture 4 Hypothesis Testing Hypothesis testing is about making decisions Is a hypothesis true or false? Are women paid less, on average, than men? Principles of Hypothesis Testing The

### 7 Hypothesis testing - one sample tests

7 Hypothesis testing - one sample tests 7.1 Introduction Definition 7.1 A hypothesis is a statement about a population parameter. Example A hypothesis might be that the mean age of students taking MAS113X

### Sampling Distribution of the Mean & Hypothesis Testing

Sampling Distribution of the Mean & Hypothesis Testing Let s first review what we know about sampling distributions of the mean (Central Limit Theorem): 1. The mean of the sampling distribution will be

### Homework #3 is due Friday by 5pm. Homework #4 will be posted to the class website later this week. It will be due Friday, March 7 th, at 5pm.

Homework #3 is due Friday by 5pm. Homework #4 will be posted to the class website later this week. It will be due Friday, March 7 th, at 5pm. Political Science 15 Lecture 12: Hypothesis Testing Sampling

### Hypothesis testing for µ:

University of California, Los Angeles Department of Statistics Statistics 13 Elements of a hypothesis test: Hypothesis testing Instructor: Nicolas Christou 1. Null hypothesis, H 0 (always =). 2. Alternative

### Chapter Five. Hypothesis Testing: Concepts

Chapter Five The Purpose of Hypothesis Testing... 110 An Initial Look at Hypothesis Testing... 112 Formal Hypothesis Testing... 114 Introduction... 114 Null and Alternate Hypotheses... 114 Procedure for

### BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394

BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete

### Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.

Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.

### Probability, Binomial Distributions and Hypothesis Testing Vartanian, SW 540

Probability, Binomial Distributions and Hypothesis Testing Vartanian, SW 540 1. Assume you are tossing a coin 11 times. The following distribution gives the likelihoods of getting a particular number of

### An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS

The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10- TWO-SAMPLE TESTS Practice

### MCQ TESTING OF HYPOTHESIS

MCQ TESTING OF HYPOTHESIS MCQ 13.1 A statement about a population developed for the purpose of testing is called: (a) Hypothesis (b) Hypothesis testing (c) Level of significance (d) Test-statistic MCQ

### Basic Elements of a Hypothesis Test. Hypothesis Testing of Proportions and Small Sample Means. Proportions. Proportions

Hypothesis Testing of Proportions and Small Sample Means Dr. Tom Ilvento FREC 408 Basic Elements of a Hypothesis Test H 0 : H a : : : Proportions The Pepsi Challenge asked soda drinkers to compare Diet

### The Philosophy of Hypothesis Testing, Questions and Answers 2006 Samuel L. Baker

HYPOTHESIS TESTING PHILOSOPHY 1 The Philosophy of Hypothesis Testing, Questions and Answers 2006 Samuel L. Baker Question: So I'm hypothesis testing. What's the hypothesis I'm testing? Answer: When you're

### 9-3.4 Likelihood ratio test. Neyman-Pearson lemma

9-3.4 Likelihood ratio test Neyman-Pearson lemma 9-1 Hypothesis Testing 9-1.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental

### Statistical Inference and t-tests

1 Statistical Inference and t-tests Objectives Evaluate the difference between a sample mean and a target value using a one-sample t-test. Evaluate the difference between a sample mean and a target value

### Difference of Means and ANOVA Problems

Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly

### Section 13, Part 1 ANOVA. Analysis Of Variance

Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability

### BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test

### Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so:

Chapter 7 Notes - Inference for Single Samples You know already for a large sample, you can invoke the CLT so: X N(µ, ). Also for a large sample, you can replace an unknown σ by s. You know how to do a

### Example Hypotheses. Chapter 8-2: Basics of Hypothesis Testing. A newspaper headline makes the claim: Most workers get their jobs through networking

Chapter 8-2: Basics of Hypothesis Testing Two main activities in statistical inference are using sample data to: 1. estimate a population parameter forming confidence intervals 2. test a hypothesis or

### Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing

### Simple Regression Theory II 2010 Samuel L. Baker

SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the

### Chapter 08. Introduction

Chapter 08 Introduction Hypothesis testing may best be summarized as a decision making process in which one attempts to arrive at a particular conclusion based upon "statistical" evidence. A typical hypothesis

### Sample Size and Power in Clinical Trials

Sample Size and Power in Clinical Trials Version 1.0 May 011 1. Power of a Test. Factors affecting Power 3. Required Sample Size RELATED ISSUES 1. Effect Size. Test Statistics 3. Variation 4. Significance

### Hypothesis Testing - II

-3σ -2σ +σ +2σ +3σ Hypothesis Testing - II Lecture 9 0909.400.01 / 0909.400.02 Dr. P. s Clinic Consultant Module in Probability & Statistics in Engineering Today in P&S -3σ -2σ +σ +2σ +3σ Review: Hypothesis

### 1 SAMPLE SIGN TEST. Non-Parametric Univariate Tests: 1 Sample Sign Test 1. A non-parametric equivalent of the 1 SAMPLE T-TEST.

Non-Parametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A non-parametric equivalent of the 1 SAMPLE T-TEST. ASSUMPTIONS: Data is non-normally distributed, even after log transforming.

### The alternative hypothesis,, is the statement that the parameter value somehow differs from that claimed by the null hypothesis. : 0.5 :>0.5 :<0.

Section 8.2-8.5 Null and Alternative Hypotheses... The null hypothesis,, is a statement that the value of a population parameter is equal to some claimed value. :=0.5 The alternative hypothesis,, is the

### Chapter 8 Hypothesis Testing

Chapter 8 Hypothesis Testing Chapter problem: Does the MicroSort method of gender selection increase the likelihood that a baby will be girl? MicroSort: a gender-selection method developed by Genetics

### Pearson's Correlation Tests

Chapter 800 Pearson's Correlation Tests Introduction The correlation coefficient, ρ (rho), is a popular statistic for describing the strength of the relationship between two variables. The correlation

### Hypothesis Testing. Hypothesis Testing CS 700

Hypothesis Testing CS 700 1 Hypothesis Testing! Purpose: make inferences about a population parameter by analyzing differences between observed sample statistics and the results one expects to obtain if