, has mean A) 0.3. B) the smaller of 0.8 and 0.5. C) D) which cannot be determined without knowing the sample results.


 Cameron Jacobs
 2 years ago
 Views:
Transcription
1 BA 275 Review Problems  Week 9 (11/20/0611/24/06) CD Lessons: 69, 70, Textbook: pp , , An SRS of size 100 is taken from a population having proportion 0.8 of successes. An independent SRS of size 400 is taken from a population having proportion 0.5 of successes. 1. The sampling distribution for the difference in the sample proportions, p 1 p 2, has mean A) 0.3. B) the smaller of 0.8 and 0.5. C) D) which cannot be determined without knowing the sample results. 2. The sampling distribution for the difference in the sample proportions, p 1 p 2, has standard deviation σd equal to A) 1.3. B) C) D) In a large midwestern university (the class of entering freshmen being on the order of 6000 or more students), an SRS of 100 entering freshmen in 1993 found that 20 finished in the bottom third of their high school class. Admission standards at the university were tightened in In 1997 an SRS of 100 entering freshmen found that 10 finished in the bottom third of their high school class. Letting p1 and p2 be the proportion of all entering freshmen in 1993 and 1997, respectively, who graduated in the bottom third of their high school class. 3. A 90% confidence interval for p1 p2 is A) ±.050. B) ±.083. C) ±.099. D) ±.130. Page 1
2 4. Is there evidence that the proportion of freshmen who graduated in the bottom third of their high school class in 1997 has been reduced, as a result of the tougher admission standards adopted in 1995, compared to the proportion in 1993? To determine this, you test the hypotheses H0: p1 = p2, Ha: p1 > p2. The Pvalue of your test is A) between.10 and.05. B) between.05 and.01. C) between.01 and.001. D) below The fraction of the variation in the values of y that is explained by the leastsquares regression of y on x is A) the correlation coefficient. B) the slope of the leastsquares regression line. C) the square of the correlation coefficient. D) the intercept of the leastsquares regression line. 6. In a statistics course, a linear regression equation was computed to predict the final exam score from the score on the first test. The equation of the leastsquares regression line was y = x where y represents the final exam score and x is the score on the first exam. Suppose Joe scores a 90 on the first exam. What would be the predicted value of his score on the final exam? A) 91. B) 89. C) 81. D) The value cannot be determined from the information given. We also need to know the correlation. Page 2
3 7. A researcher wished to determine whether a company's profits can be used to predict the market value of the company. Based on data from a sample of over 80 companies from the Forbes 500 list, the researcher calculated the equation of the leastsquares line for predicting market value from profits to be Market value = (Profits) The correlation between market value and profits would be A) 1/13.7. B) 13.7/ C) positive, but we cannot say what the exact value is. D) either positive or negative. It is impossible to say anything about the correlation from the information given. 8. The leastsquares regression line is A) the line that makes the square of the correlation in the data as large as possible. B) the line that makes the sum of the squares of the vertical distances of the data points from the line as small as possible. C) the line that best splits the data in half, with half of the points above the line and half below the line. D) all of the above. 9. Which of the following is true of the leastsquares regression line? A) The slope is the change in the response variable that would be predicted by a unit change in the explanatory variable. B) It always passes through the point ( x, y ), the means of the explanatory and response variables, respectively. C) It will only pass through all the data points if r = ± 1. D) All of the above. Page 3
4 10. A producer of infant formual wishes to study how the average weight Y (in kilograms) of children changes during the first year of life. He plots these averages versus the age (in months) and decides to fit a leastsquares regression line to the data with as the explanatory variable and Y as the response variable. He computes the following quantities: r = correlation between and Y = 0.9 x = mean of the values of = 6.5 y = mean of the values of Y = 6.6 s x = standard deviation of the values of = 3.6 s = standard deviation of the values of Y = 1.2 y The slope of the leastsquares line is A) B) C) D) In a study of 1991 model cars, a researcher computed the leastsquares regression line of price (in dollars) on horsepower. He obtained the following equation for this line. price = horsepower. Based on the leastsquares regression line, we would predict that a 1991 model car with horsepower equal to 200 would cost A) $41,677. B) $35,000. C) $28,323. D) $13,354. Page 4
5 12. A response Y and explanatory variable were measured on each of several subjects. A scatterplot of the measurements is given below. The leastsquares regression line is shown in the plot Which of the following is a plot of the residuals for the above data versus? A) B) Page 5
6 C) D) The leastsquares regression line is fit to a set of data. If one of the data points has a positive residual, then A) the correlation between the values of the response and explanatory variables must be positive. B) the point must lie above the leastsquares regression line. C) the point must lie near the right edge of the scatterplot. D) all of the above. 14. Which of the following statements concerning residuals is true? A) The sum of the residuals is always 0. B) A plot of the residuals is useful for assessing the fit of the leastsquares regression line. C) The value of a residual is the observed value of the response minus the value of the response that one would predict from the leastsquares regression line. D) All of the above. Page 6
7 15. When exploring very large sets of data involving many variables, which of the following is true? A) Extrapolation is safe because it is based on a greater quantity of evidence. B) Associations will be stronger than would be seen in a much smaller subset of the data. C) A strong association is good evidence for causation because it is based on a large quantity of information. D) None of the above. 16. A sample of 79 companies was taken and the annual profits (y) were plotted against annual sales (x). The plot is given below. All values in the plots are in units of $100, Sales The correlation between sales and profits is found to be Based on this information, we may conclude which of the following? A) Not surprisingly, increasing sales causes an increase in profits. This is confirmed by the large positive correlation. B) There are clearly influential observations present. C) If we group the companies in the plot into those that are small in size, those that are medium in size, and those that are large in size and compute the correlation between sales and profits for each group of companies separately, the correlation in each group will be about 0.8. D) All of the above. 17. When possible, the best way to establish that an observed association is the result of a causeandeffect relation is by means of A) the leastsquares regression line. B) the correlation coefficient. C) examining zscores rather than the original variables. D) a welldesigned experiment. Page 7
8 18. Which of the following would be necessary to establish a causeandeffect relation between two variables? A) Strong association between the variables. B) An association between the variables is observed in many different settings. C) The alleged cause is plausible. D) All of the above. Page 8
9 Answer Key 1. A Topic: 8.2 Comparing Two Proportions 2. C Topic: 8.2 Comparing Two Proportions 3. B Topic: 8.2 Comparing Two Proportions 4. B Topic: 8.2 Comparing Two Proportions 5. C 6. A 7. C 8. B 9. D 10. A 11. C 12. A 13. B 14. D 15. D 16. B 17. D 18. D Page 9
Linear Regression. Chapter 5. Prediction via Regression Line Number of new birds and Percent returning. Least Squares
Linear Regression Chapter 5 Regression Objective: To quantify the linear relationship between an explanatory variable (x) and response variable (y). We can then predict the average response for all subjects
More informationName: Date: Use the following to answer questions 23:
Name: Date: 1. A study is conducted on students taking a statistics class. Several variables are recorded in the survey. Identify each variable as categorical or quantitative. A) Type of car the student
More informationChapter 7: Simple linear regression Learning Objectives
Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) 
More information1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
More informationPremaster Statistics Tutorial 4 Full solutions
Premaster Statistics Tutorial 4 Full solutions Regression analysis Q1 (based on Doane & Seward, 4/E, 12.7) a. Interpret the slope of the fitted regression = 125,000 + 150. b. What is the prediction for
More informationSTAT 350 Practice Final Exam Solution (Spring 2015)
PART 1: Multiple Choice Questions: 1) A study was conducted to compare five different training programs for improving endurance. Forty subjects were randomly divided into five groups of eight subjects
More informationStatistics 151 Practice Midterm 1 Mike Kowalski
Statistics 151 Practice Midterm 1 Mike Kowalski Statistics 151 Practice Midterm 1 Multiple Choice (50 minutes) Instructions: 1. This is a closed book exam. 2. You may use the STAT 151 formula sheets and
More informationAnswer: C. The strength of a correlation does not change if units change by a linear transformation such as: Fahrenheit = 32 + (5/9) * Centigrade
Statistics Quiz Correlation and Regression  ANSWERS 1. Temperature and air pollution are known to be correlated. We collect data from two laboratories, in Boston and Montreal. Boston makes their measurements
More informationElementary Statistics Sample Exam #3
Elementary Statistics Sample Exam #3 Instructions. No books or telephones. Only the supplied calculators are allowed. The exam is worth 100 points. 1. A chi square goodness of fit test is considered to
More informationGood luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:
Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours
More informationChapter 23. Inferences for Regression
Chapter 23. Inferences for Regression Topics covered in this chapter: Simple Linear Regression Simple Linear Regression Example 23.1: Crying and IQ The Problem: Infants who cry easily may be more easily
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All but one of these statements contain a mistake. Which could be true? A) There is a correlation
More informationThe importance of graphing the data: Anscombe s regression examples
The importance of graphing the data: Anscombe s regression examples Bruce Weaver Northern Health Research Conference Nipissing University, North Bay May 3031, 2008 B. Weaver, NHRC 2008 1 The Objective
More information2013 MBA Jump Start Program. Statistics Module Part 3
2013 MBA Jump Start Program Module 1: Statistics Thomas Gilbert Part 3 Statistics Module Part 3 Hypothesis Testing (Inference) Regressions 2 1 Making an Investment Decision A researcher in your firm just
More informationHomework 8 Solutions
Math 17, Section 2 Spring 2011 Homework 8 Solutions Assignment Chapter 7: 7.36, 7.40 Chapter 8: 8.14, 8.16, 8.28, 8.36 (ad), 8.38, 8.62 Chapter 9: 9.4, 9.14 Chapter 7 7.36] a) A scatterplot is given below.
More informationExercise 1.12 (Pg. 2223)
Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.
More information" Y. Notation and Equations for Regression Lecture 11/4. Notation:
Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through
More informationChapter 9 Descriptive Statistics for Bivariate Data
9.1 Introduction 215 Chapter 9 Descriptive Statistics for Bivariate Data 9.1 Introduction We discussed univariate data description (methods used to eplore the distribution of the values of a single variable)
More information1. The parameters to be estimated in the simple linear regression model Y=α+βx+ε ε~n(0,σ) are: a) α, β, σ b) α, β, ε c) a, b, s d) ε, 0, σ
STA 3024 Practice Problems Exam 2 NOTE: These are just Practice Problems. This is NOT meant to look just like the test, and it is NOT the only thing that you should study. Make sure you know all the material
More informationRegression Analysis: A Complete Example
Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty
More informationDESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.
DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,
More informationChapter 13 Introduction to Linear Regression and Correlation Analysis
Chapter 3 Student Lecture Notes 3 Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing
More informationUNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test March 2014
UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test March 2014 STAB22H3 Statistics I Duration: 1 hour and 45 minutes Last Name: First Name: Student number: Aids
More informationUsing R for Linear Regression
Using R for Linear Regression In the following handout words and symbols in bold are R functions and words and symbols in italics are entries supplied by the user; underlined words and symbols are optional
More informationBusiness Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.
Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGrawHill/Irwin, 2008, ISBN: 9780073319889. Required Computing
More informationLAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE
LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE MAT 119 STATISTICS AND ELEMENTARY ALGEBRA 5 Lecture Hours, 2 Lab Hours, 3 Credits Pre
More informationA Basic Introduction to Missing Data
John Fox Sociology 740 Winter 2014 Outline Why Missing Data Arise Why Missing Data Arise Global or unit nonresponse. In a survey, certain respondents may be unreachable or may refuse to participate. Item
More informationScatter Plot, Correlation, and Regression on the TI83/84
Scatter Plot, Correlation, and Regression on the TI83/84 Summary: When you have a set of (x,y) data points and want to find the best equation to describe them, you are performing a regression. This page
More informationTRINITY COLLEGE. Faculty of Engineering, Mathematics and Science. School of Computer Science & Statistics
UNIVERSITY OF DUBLIN TRINITY COLLEGE Faculty of Engineering, Mathematics and Science School of Computer Science & Statistics BA (Mod) Enter Course Title Trinity Term 2013 Junior/Senior Sophister ST7002
More informationCourse Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics
Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGrawHill/Irwin, 2010, ISBN: 9780077384470 [This
More informationSimple Linear Regression
STAT 101 Dr. Kari Lock Morgan Simple Linear Regression SECTIONS 9.3 Confidence and prediction intervals (9.3) Conditions for inference (9.1) Want More Stats??? If you have enjoyed learning how to analyze
More informationMultiple Linear Regression
Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is
More informationCHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression
Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the
More information2. Simple Linear Regression
Research methods  II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according
More informationA Primer on Forecasting Business Performance
A Primer on Forecasting Business Performance There are two common approaches to forecasting: qualitative and quantitative. Qualitative forecasting methods are important when historical data is not available.
More informationSTT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012)
STT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012) TA: Zhen (Alan) Zhang zhangz19@stt.msu.edu Office hour: (C500 WH) 1:45 2:45PM Tuesday (office tel.: 4323342) Helproom: (A102 WH) 11:20AM12:30PM,
More informationStat 412/512 CASE INFLUENCE STATISTICS. Charlotte Wickham. stat512.cwick.co.nz. Feb 2 2015
Stat 412/512 CASE INFLUENCE STATISTICS Feb 2 2015 Charlotte Wickham stat512.cwick.co.nz Regression in your field See website. You may complete this assignment in pairs. Find a journal article in your field
More informationSection 1.5 Linear Models
Section 1.5 Linear Models Some reallife problems can be modeled using linear equations. Now that we know how to find the slope of a line, the equation of a line, and the point of intersection of two lines,
More information1) The table lists the smoking habits of a group of college students. Answer: 0.218
FINAL EXAM REVIEW Name ) The table lists the smoking habits of a group of college students. Sex Nonsmoker Regular Smoker Heavy Smoker Total Man 5 52 5 92 Woman 8 2 2 220 Total 22 2 If a student is chosen
More informationIntroduction to Regression and Data Analysis
Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it
More informationa) Find the five point summary for the home runs of the National League teams. b) What is the mean number of home runs by the American League teams?
1. Phone surveys are sometimes used to rate TV shows. Such a survey records several variables listed below. Which ones of them are categorical and which are quantitative?  the number of people watching
More informationAdditional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
More informationClass 19: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.1)
Spring 204 Class 9: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the
More information17. SIMPLE LINEAR REGRESSION II
17. SIMPLE LINEAR REGRESSION II The Model In linear regression analysis, we assume that the relationship between X and Y is linear. This does not mean, however, that Y can be perfectly predicted from X.
More informationDEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9
DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,
More informationFactors affecting online sales
Factors affecting online sales Table of contents Summary... 1 Research questions... 1 The dataset... 2 Descriptive statistics: The exploratory stage... 3 Confidence intervals... 4 Hypothesis tests... 4
More information5. Multiple regression
5. Multiple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/5 QBUS6840 Predictive Analytics 5. Multiple regression 2/39 Outline Introduction to multiple linear regression Some useful
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Final Exam Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A researcher for an airline interviews all of the passengers on five randomly
More informationc. Construct a boxplot for the data. Write a one sentence interpretation of your graph.
MBA/MIB 5315 Sample Test Problems Page 1 of 1 1. An English survey of 3000 medical records showed that smokers are more inclined to get depressed than nonsmokers. Does this imply that smoking causes depression?
More informationExample G Cost of construction of nuclear power plants
1 Example G Cost of construction of nuclear power plants Description of data Table G.1 gives data, reproduced by permission of the Rand Corporation, from a report (Mooz, 1978) on 32 light water reactor
More informationDescriptive Statistics
Descriptive Statistics Descriptive statistics consist of methods for organizing and summarizing data. It includes the construction of graphs, charts and tables, as well various descriptive measures such
More informationTheory at a Glance (For IES, GATE, PSU)
1. Forecasting Theory at a Glance (For IES, GATE, PSU) Forecasting means estimation of type, quantity and quality of future works e.g. sales etc. It is a calculated economic analysis. 1. Basic elements
More informationAlgebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
More informationGetting Correct Results from PROC REG
Getting Correct Results from PROC REG Nathaniel Derby, Statis Pro Data Analytics, Seattle, WA ABSTRACT PROC REG, SAS s implementation of linear regression, is often used to fit a line without checking
More informationChicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this
More informationInstitute of Actuaries of India Subject CT3 Probability and Mathematical Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in
More informationElements of statistics (MATH04871)
Elements of statistics (MATH04871) Prof. Dr. Dr. K. Van Steen University of Liège, Belgium December 10, 2012 Introduction to Statistics Basic Probability Revisited Sampling Exploratory Data Analysis 
More informationSimple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
More informationSouth Carolina College and CareerReady (SCCCR) Probability and Statistics
South Carolina College and CareerReady (SCCCR) Probability and Statistics South Carolina College and CareerReady Mathematical Process Standards The South Carolina College and CareerReady (SCCCR)
More informationProblem Solving and Data Analysis
Chapter 20 Problem Solving and Data Analysis The Problem Solving and Data Analysis section of the SAT Math Test assesses your ability to use your math understanding and skills to solve problems set in
More informationIntroduction to Hypothesis Testing
I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters  they must be estimated. However, we do have hypotheses about what the true
More informationLogs Transformation in a Regression Equation
Fall, 2001 1 Logs as the Predictor Logs Transformation in a Regression Equation The interpretation of the slope and intercept in a regression change when the predictor (X) is put on a log scale. In this
More information11. Analysis of Casecontrol Studies Logistic Regression
Research methods II 113 11. Analysis of Casecontrol Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:
More informationp ˆ (sample mean and sample
Chapter 6: Confidence Intervals and Hypothesis Testing When analyzing data, we can t just accept the sample mean or sample proportion as the official mean or proportion. When we estimate the statistics
More informationDescriptive statistics; Correlation and regression
Descriptive statistics; and regression Patrick Breheny September 16 Patrick Breheny STA 580: Biostatistics I 1/59 Tables and figures Descriptive statistics Histograms Numerical summaries Percentiles Human
More informationBasic Statistics and Data Analysis for Health Researchers from Foreign Countries
Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma siersma@sund.ku.dk The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association
More informationUsing Excel for Statistical Analysis
Using Excel for Statistical Analysis You don t have to have a fancy pants statistics package to do many statistical functions. Excel can perform several statistical tests and analyses. First, make sure
More informationMATH 100 PRACTICE FINAL EXAM
MATH 100 PRACTICE FINAL EXAM Lecture Version Name: ID Number: Instructor: Section: Do not open this booklet until told to do so! On the separate answer sheet, fill in your name and identification number
More informationDimensionality Reduction: Principal Components Analysis
Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely
More informationAn analysis appropriate for a quantitative outcome and a single quantitative explanatory. 9.1 The model behind linear regression
Chapter 9 Simple Linear Regression An analysis appropriate for a quantitative outcome and a single quantitative explanatory variable. 9.1 The model behind linear regression When we are examining the relationship
More informationSimple Predictive Analytics Curtis Seare
Using Excel to Solve Business Problems: Simple Predictive Analytics Curtis Seare Copyright: Vault Analytics July 2010 Contents Section I: Background Information Why use Predictive Analytics? How to use
More informationTeaching Multivariate Analysis to BusinessMajor Students
Teaching Multivariate Analysis to BusinessMajor Students WingKeung Wong and TeckWong Soon  Kent Ridge, Singapore 1. Introduction During the last two or three decades, multivariate statistical analysis
More informationHow To Run Statistical Tests in Excel
How To Run Statistical Tests in Excel Microsoft Excel is your best tool for storing and manipulating data, calculating basic descriptive statistics such as means and standard deviations, and conducting
More informationEXCEL Tutorial: How to use EXCEL for Graphs and Calculations.
EXCEL Tutorial: How to use EXCEL for Graphs and Calculations. Excel is powerful tool and can make your life easier if you are proficient in using it. You will need to use Excel to complete most of your
More informationUSING A TI83 OR TI84 SERIES GRAPHING CALCULATOR IN AN INTRODUCTORY STATISTICS CLASS
USING A TI83 OR TI84 SERIES GRAPHING CALCULATOR IN AN INTRODUCTORY STATISTICS CLASS W. SCOTT STREET, IV DEPARTMENT OF STATISTICAL SCIENCES & OPERATIONS RESEARCH VIRGINIA COMMONWEALTH UNIVERSITY Table
More informationASSIGNMENT 4 PREDICTIVE MODELING AND GAINS CHARTS
DATABASE MARKETING Fall 2015, max 24 credits Dead line 15.10. ASSIGNMENT 4 PREDICTIVE MODELING AND GAINS CHARTS PART A Gains chart with excel Prepare a gains chart from the data in \\work\courses\e\27\e20100\ass4b.xls.
More informationLesson 3.2.1 Using Lines to Make Predictions
STATWAY INSTRUCTOR NOTES i INSTRUCTOR SPECIFIC MATERIAL IS INDENTED AND APPEARS IN GREY ESTIMATED TIME 50 minutes MATERIALS REQUIRED Overhead or electronic display of scatterplots in lesson BRIEF DESCRIPTION
More informationMind on Statistics. Chapter 12
Mind on Statistics Chapter 12 Sections 12.1 Questions 1 to 6: For each statement, determine if the statement is a typical null hypothesis (H 0 ) or alternative hypothesis (H a ). 1. There is no difference
More informationFlorida Math for College Readiness
Core Florida Math for College Readiness Florida Math for College Readiness provides a fourthyear math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness
More informationChapter 7: Modeling Relationships of Multiple Variables with Linear Regression
Chapter 7: Modeling Relationships of Multiple Variables with Linear Regression Overview Chapters 5 and 6 examined methods to test relationships between two variables. Many research projects, however, require
More informationPenalized regression: Introduction
Penalized regression: Introduction Patrick Breheny August 30 Patrick Breheny BST 764: Applied Statistical Modeling 1/19 Maximum likelihood Much of 20thcentury statistics dealt with maximum likelihood
More informationDATA INTERPRETATION AND STATISTICS
PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE
More informationUNIT 1: COLLECTING DATA
Core Probability and Statistics Probability and Statistics provides a curriculum focused on understanding key data analysis and probabilistic concepts, calculations, and relevance to realworld applications.
More informationMathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework
Provider York County School Division Course Syllabus URL http://yorkcountyschools.org/virtuallearning/coursecatalog.aspx Course Title Algebra I AB Last Updated 2010  A.1 The student will represent verbal
More informationBill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1
Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Calculate counts, means, and standard deviations Produce
More informationSection Format Day Begin End Building Rm# Instructor. 001 Lecture Tue 6:45 PM 8:40 PM Silver 401 Ballerini
NEW YORK UNIVERSITY ROBERT F. WAGNER GRADUATE SCHOOL OF PUBLIC SERVICE Course Syllabus Spring 2016 Statistical Methods for Public, Nonprofit, and Health Management Section Format Day Begin End Building
More informationRegression III: Advanced Methods
Lecture 4: Transformations Regression III: Advanced Methods William G. Jacoby Michigan State University Goals of the lecture The Ladder of Roots and Powers Changing the shape of distributions Transforming
More informationWhy should we learn this? One realworld connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY
Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the intercept. One realworld connection is to find the rate
More informationList of Examples. Examples 319
Examples 319 List of Examples DiMaggio and Mantle. 6 Weed seeds. 6, 23, 37, 38 Vole reproduction. 7, 24, 37 Wooly bear caterpillar cocoons. 7 Homophone confusion and Alzheimer s disease. 8 Gear tooth strength.
More informationList the elements of the given set that are natural numbers, integers, rational numbers, and irrational numbers. (Enter your answers as commaseparated
MATH 142 Review #1 (4717995) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Description This is the review for Exam #1. Please work as many problems as possible
More informationSection 1: Simple Linear Regression
Section 1: Simple Linear Regression Carlos M. Carvalho The University of Texas McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction
More informationAP Physics 1 and 2 Lab Investigations
AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks
More informationAlgebra 1 Course Title
Algebra 1 Course Title Course wide 1. What patterns and methods are being used? Course wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
More informationAP Statistics 2005 Scoring Guidelines
AP Statistics 2005 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a notforprofit membership association whose mission is to connect students to college
More informationBUS/ST 350 Exam 3 Spring 2012
BUS/ST 350 Exam 3 Spring 2012 Name Lab Section ID # INSTRUCTIONS: Write your name, lab section #, and ID# above. Note the statement at the bottom of this page that you must sign when you are finished with
More information12.5: CHISQUARE GOODNESS OF FIT TESTS
125: ChiSquare Goodness of Fit Tests CD121 125: CHISQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability
More informationSTATISTICS 8, FINAL EXAM. Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4
STATISTICS 8, FINAL EXAM NAME: KEY Seat Number: Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4 Make sure you have 8 pages. You will be provided with a table as well, as a separate
More informationStraightening Data in a Scatterplot Selecting a Good ReExpression Model
Straightening Data in a Scatterplot Selecting a Good ReExpression What Is All This Stuff? Here s what is included: Page 3: Graphs of the three main patterns of data points that the student is likely to
More informationCurriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 20092010
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 20092010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different
More informationDomain of a Composition
Domain of a Composition Definition Given the function f and g, the composition of f with g is a function defined as (f g)() f(g()). The domain of f g is the set of all real numbers in the domain of g such
More information