# Military Reliability Modeling William P. Fox, Steven B. Horton

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Military Reliability Modeling William P. Fox, Steven B. Horton Introduction You are an infantry rifle platoon leader. Your platoon is occupying a battle position and has been ordered to establish an observation post (OP) on a hilltop approximately one kilometer forward of your position. The OP will be occupied by three soldiers for 24 hours. Hourly situation reports must be made by radio. All necessary rations, equipment, and supplies for the 24 hour period must be carried with them. The OP is ineffective unless it can communicate with you in a timely manner. Therefore, radio communications must be reliable. The radio has several components which affect its reliability, an essential one being the battery. Batteries have a useful life which is not deterministic (we do not know exactly how long a battery will last when we install it). Its lifetime is a variable which may depend on previous use, manufacturing defects, weather, etc. The battery that is installed in the radio prior to leaving for the OP could last only a few minutes or for the entire 24 hours. Since communications are so important to this mission, we are interested in modeling and analyzing the reliability of the battery. We will use the following definition for reliability: If T is the time to failure of a component of a system, and f(t) is the probability distribution function of T, then the components reliability at time t is R(t) = P (T >t) = 1 - F(t). R(t) is called the reliability function and F(t) is the cumulative distribution function of f(t). A measure of this reliability is the probability that a given battery will last more than 24 hours. If we know the probability distribution for the battery life, we can use our knowledge of probability theory to determine the reliability. If the battery reliability is below acceptable standards, one solution is to have the soldiers carry spares. Clearly, the more spares they carry, the less likely there is to be a failure in communications due to batteries. Of course the battery is only one component of the radio. Others include the antenna, handset, etc. Failure of any one of the essential components causes the system to fail. 153

2 This is a relatively simple example of one of many military applications of reliability. This chapter will show we can use elementary probability to generate models that can be used to determine the reliability of military equipment. Modeling Component Reliability In this section, we will discuss how to model component reliability. Recall that the reliability function, R( t ) is defined as: R( t) = P( T > t ) = P(component fails after time t). This can also be stated, using T as the component failure time, as t R t P T t 1 P T t 1 f x dx 1 F t. ( ) = ( > ) = ( ) = ( ) = ( ) Thus, if we know the probability density function f ( t ) of the time to failure T, we can use probability theory to determine the reliability function R( t ). We normally think of these functions as being time dependent; however, this is not always the case. The function might be discrete such as the lifetime of a cannon tube. It is dependent on the number of rounds fired through it (a discrete random variable). A useful probability distribution in reliability is the exponential distribution. Recall that its density function is given by t e t f( t ) = λ λ > 0 0 otherwise, where the parameter λ is such that 1 λ equals the mean of the random variable T. If T denotes the time to failure of a piece of equipment or a system, then 1 λ is the mean time to failure which is expressed in units of time. For applications of reliability, we will use the parameter λ. Since 1 λ is the mean time to failure, λ is the average number of failures per unit time or the failure rate. For example, if a light bulb has a time to failure that follows an exponential distribution with a mean time to failure of 50 hours, then its failure rate is 1 light bulb per 50 hours or 1/50 per hour, so in this case λ = per hour. Note that the mean of T, the mean time to failure of the component, is 1 λ. Example 1: Let's consider the example presented in the introduction. Let the random variable T be defined as follows: 154

3 T = time until a randomly selected battery fails. Suppose radio batteries have a time to failure that is exponentially distributed with a mean of 30 hours. In this case, we could write T ~ EXP λ = Therefore, λ = 1 30 per hour, so that 1 1 f ( t) = e t 30 30, t > 0 and ( ) t 1 x F t = 1 30 e dx. 30 F ( t ), the CDF of the exponential distribution, can be integrated to obtain ( ) 1 30 F t = 1 e t, t > 0. Now we can compute the reliability function for a battery: 1 1 t t R( t) = 1 F( t) = 1 1 e = e, t > 0. Recall that in the earlier example, the soldiers must occupy the OP for 24 hours. The reliability of the battery for 24 hours is ( ) ( ) R 24 = e = , so the probability that the battery lasts more than 24 hours is Example 2: We have the option to purchase a new nickel cadmium battery for our operation. Testing has shown that the distribution of the time to failure can be modeled using a parabolic function: 0 f( x ) = x x x otherwise Let the random variable T be defined as follows: 155

4 In this case, we could write T = time until a randomly selected battery fails. ( ) = ( / )( / ) f t t t 48, 0 48 t t and F( t ) = ( x 384)( 1 x / 48)dx 0 /. Recall that in the earlier example the soldiers must man the OP for 24 hours. The reliability of the battery for 24 hours is therefore ( ) ( ) ( )( ) 24 R 24 = 1 F 24 = 1 t / t / 48 dx = which is an improvement over the batteries from example 1. 0 Modeling Series Systems Now we consider is a system with n components C 1, C 2,..., C n where each of the individual components must work in order for the system to function. A model of this type of system is shown in figure C 1 C 2 C 3 C n Figure 1: Series system If we assume these components are mutually independent, the reliability of this type of system is easy to compute. We denote the reliability of component i at time t by Ri ( t ). In other words, Ri ( t ) is simply the probability that component i will function continuously from time 0 through until time t. We are interested in the reliability of the entire system of n components, but since these components are mutually independent, the system reliability is ( ) = ( ) ( ) ( ) R t R t R t R t 1 2 n. Example 3: Our radio has several components. Let us assume that there are four major components -- they are (in order) the handset, the battery, the receiver-transmitter, and the antenna. Since they all must function properly for the radio to operate, we can model the radio with the diagram shown in figure

5 C 1 C 2 C 3 C 4 Figure 2: Radio System Suppose we know that the probability that the handset will work for at least 24 hours is , and the reliabilities for the other components are , , and , respectively. If we assume that the components work independently of each other, then the probability that the entire system works for 24 hours is: ( ) ( ) ( ) ( ) ( ) ( )( )( )( ) R 24 = R 24 R 24 R 24 R 24 = = Recall that two events A and B are independent if P( A B) = P( A). Modeling Parallel Systems (Two Components) Now we consider a system with two components where only one of the components must work for the system to function. A system of this type is depicted in figure 3. C 1 C 2 Figure 3: Parallel System of Two Components Notice that in this situation the two components are both put in operation at time 0; they are both subject to failure throughout the period of interest. Only when both components fail before time t does the system fail. Again we also assume that the components are independent. The reliability of this type of system can be found using the following well known model: P( A B) = P( A) + P( B) P( A B). In this case, A is the event that the first component functions for longer than some time, t, and B is the event that the second component functions longer than the same time, t. Since reliabilities are probabilities, we can translate the above formula into the following: ( ) = ( ) + ( ) ( ) ( ) R t R t R t R t R t

6 Example 4: Suppose your battalion is crossing a river that has two bridges in the area. It will take 3 hours to complete the crossing. The crossing will be successful as long as at least one bridge remains operational during the entire crossing period. You estimate that enemy guerrillas with mortars have a onethird chance of destroying bridge 1 and a one-fourth chance of destroying bridge 2 in the next 3 hours. Assume the enemy guerrillas attacking each bridge operate independently. What is the probability that your battalion can complete the crossing? Solution: First we compute the individual reliabilities: ( ) R 1 3 = 1 1 = and R 2 ( 3) = =. 4 4 Now it is easy to compute the system reliability: 2 3 R( 3) = R1( 3) + R2 ( 3) R1( 3) R2 ( 3) = = = Modeling Active Redundant Systems Consider the situation in which a system has n components, all of which begin operating (are active) at time t = 0. The system continues to function properly as long as at least k of the components do not fail. In other words, if n k + 1 components fail, the system fails. This type of component system is called an active redundant system. The active redundant system can be modeled as a parallel system of components as shown in figure 4 below: 158

7 C 1 C 2... C n Figure 4: Active Redundant System We assume that all n components are identical and will fail independently. If we let T i be the time to failure of the ith component, then the T i terms are independent and identically distributed for i = 12,, 3,..., n. Thus Ri ( t ), the reliability at time t for component i, is identical for all components. Recall that our system operates if at least k components function properly. Now we define the random variables X and T as follows: Then we have X = number of components functioning at time t, and T = time to failure of the entire system. R( t ) = P( T > t ) = P( X k). It is easy to see that we now have n identical and independent components with the same probability of failure by time t. This situation corresponds to a binomial experiment and we can solve for the system reliability using the binomial p = R t. distribution with parameters n and ( ) i Example 5: Three soldiers on an OP have been instructed to put out 15 sensors forward of their OP to detect movement in a wooded area. They estimate that any movement through the area can be detected as long as at least 12 of the sensors are operating. Sensors are assumed to be in parallel (active redundant), i.e.: they fail independently. If we know that each sensor has a probability of operating properly for at least 24 hours, we can compute the reliability of the entire sensor system for 24 hours. Define the random variable: X = number of sensors working after 24 hours. 159

8 Clearly, the random variable X is binomially distributed with n = 15 and p = In the language of mathematics, we write this sentence as X ~ b( 15, ) or X ~ BINOMIAL( 15, ). We know that the reliability of the sensor system for 24 hours is ( ) ( ) ( ) R 24 = P X 12 = P 12 X 15 = Thus the reliability of the system for 24 hours is only Modeling Standby Redundant Systems Active redundant systems can sometimes be inefficient. These systems require only k of the n components to be operational, but all n components are initially in operation and thus subject to failure. An alternative is the use of spare components. Such systems have only k components initially in operation; exactly what we need for the whole system to be operational. When a component fails, we have a spare standing by which is immediately put in to operation. For this reason, we call these Standby Redundant Systems. Suppose our system requires k operational components and we initially have n k spares available. When a component in operation fails, a decision switch causes a spare or standby component to activate (becoming an operational component). The system will continue to function until there are less than k operational components remaining. In other words, the system works until n k + 1 components have failed. We will consider only the case where one operational component is required (the special case where k = 1) and there are n 1 standby (spare) components available. We will assume that a decision switch (DS) controls the activation of the standby components instantaneously and 100% reliably. We use the model shown in figure 5 below to represent this situation. 160

9 C 1 C 2 DS... C n Figure 5: Standby Redundant System If we let T i be the time to failure of the ith component, then the T i s are independent and identically distributed for i = 12 3 n Ri t is identical for all components. Let T = time to failure of the entire system. Since the system fails only when all n components have failed, and component i + 1 is put into operation only when component i fails, it is easy to see that T = T1 + T T n.,,,...,. Thus ( ) In other words, we can compute the system failure time easily if we know the failure times of the individual components. Finally, we can define a random variable X = number of components that fail before time t in a standby redundant system. Now the reliability of the system is simply equal to the probability that less than n components fail during the time interval (0, t). In other words, R t = P X < n. ( ) ( ) It can be shown that X follows a Poisson distribution with parameter λ where α is the failure rate, so we write X ~ POISSON( λ ). = α t For example, if time is measured in seconds, then α is the number of failures per second. The reliability for some specific time t then becomes: R t = P X < n = P 0 X n 1. ( ) ( ) ( ) Example 6: Consider the reliability of a radio battery. We determined previously that one battery has a reliability for 24 hours of In light of the importance of communications, you decide that this reliability is not satisfactory. Suppose 161

10 we carry two spare batteries. The addition of the spares should increase the battery system reliability. Later in the course, you will learn how to calculate the failure rate α for a battery given the reliability ( in this case). For now, we will give this to you: α = 1 30 per hour. We know that n = 3 total batteries. Therefore: and 1 X ~ POISSON λ = α t = ( ) = ( ) ( ) ( ) R 24 = P X < 3 = P 0 X 2 = The reliability of the system with two spare batteries for 24 hours is now Example 7: If the OP must stay out for 48 hours without resupply, how many spare batteries must be taken to maintain a reliability of 0.95? We can use trial and error to solve this problem. We start by trying our current load of 2 spares. We have 1 X ~ POISSON λ = α t = ( 48) = 16., 30 and we can now compute the system reliability ( ) ( ) ( ) R 48 = P X < 3 = P 0 X 2 = < which is not good enough. Therefore, we try another spare so n = 4 (3 spares) and we compute: ( ) ( ) ( ) R 48 = P X < 4 = P 0 X 3 = < which is still not quite good enough, but we are getting close! Finally, we try n = 5 which turns out to be sufficient: ( ) ( ) ( ) R 48 = P X < 5 = P 0 X 4 = Therefore, we conclude that the OP should take out at least 4 spare batteries for a 48 hour mission. Models of Large Scale Systems In our discussion of reliability up to this point, we have discussed series systems, active redundant systems, and standby redundant systems. Unfortunately, things are not always this simple. The types of systems listed above often appear as subsystems in larger arrangements of components that we shall call large scale systems. Fortunately, if you know how to deal with series systems, 162

11 active redundant systems, and standby redundant systems, finding system reliabilities for large scale systems is easy. Consider the following example. The first and most important step in developing a model to analyze a large scale system is to draw a picture. Consider the network that appears as figure 6 below. Subsystem A is the standby redundant system of three components (each with failure rate 5 per year) with the decision switch on the left of the figure. Subsystem B 1 is the active redundant system of three components (each with failure rate 3 per year), where at least two of the three components must be working for the subsystem to work. Subsystem B 1 appears in the upper right portion of the figure. Subsystem B 2 is the two component parallel system in the lower right portion of the figure. We define subsystem B as being subsystems B 1 and B 2 together. We assume all components have exponentially distributed times to failure with failure rates as shown in the figure. Figure 6: Network Example Suppose we want to know the reliability of the whole system for 6 months. Observe that you already know how to compute reliabilities for the subsystems A, B 1, and B 2. Let s review these computations and then see how we can use them to simplify our problem. Subsystem A is a standby redundant system, so we will use the Poisson model. We let X = the number of components which fail in one year. Since 6 months is 0.5 years, we seek R ( 0 5 A ) P( X 3 ) Poisson distribution with parameter λ = α = ( )( ) = R ( ) P( X ) P( X ). = < where X follows a t Then, 0. 5 = < 3 = 0 2 = A Now we consider subsystem B 1. In the section II, we learned how to find individual component reliabilities when the time to failure followed an exponential 163

12 distribution. For subsystem B 1, the failure rate is 3 per year, so our individual component reliability is ( 3)( 0. 5) ( ) ( )( ) ( ) ( ) R 0. 5 = 1 F 0. 5 = 1 1 e = e = Now recall that subsystem B 1 is an active redundant system where two components of the three must work for the subsystem to work. If we let Y = the number of components that function for 6 months and recognize that Y follows a binomial distribution with n = 3 and p = , we can quickly compute the reliability of the subsystem B 1 as follows: ( ) ( ) ( ) ( ) RB = P Y 2 = 1 P Y < 2 = 1 P Y 1 = = Finally we can look at subsystem B 2. Again we use the fact that the failure times follow an exponential distribution. The subsystem consists of two components; obviously they both need to work for the subsystem to work. The first component s reliability is ( 2)( 0. 5) ( ) ( )( ) ( ) ( ) R 0. 5 = 1 F 0. 5 = 1 1 e = e = , and for the other component the reliability is ( 1)( 0. 5) ( ) ( )( ) ( ) ( ) R 0. 5 = 1 F 0. 5 = 1 1 e = e = Therefore, the reliability of the subsystem is ( ) ( )( ) R B = = Our overall system can now be drawn as shown in figure 7 below. 164

13 Figure 7: Simplified Network Example From here we determine the reliability of subsystem B by treating it as a system of two independent components in parallel where only one component must work. Therefore, ( 0. 5) = ( 0. 5) + ( 0. 5) ( 0. 5) ( 0. 5) (. )(. ). R R R R R B B B B B = = Finally, since subsystems A and B are in series, we can find the overall system reliability for 6 months by taking the product of the two subsystem reliabilities: ( ) ( ) ( ) ( )( ) Rsystem 0. 5 = RA 0. 5 RB 0. 5 = = We have used a network reduction approach to determine the reliability for a large scale system for a given time period. Starting with those subsystems which consist of components independent of other subsystems, we reduced the size of our network by evaluating each subsystem reliability one at a time. This approach works for any large scale network consisting of basic subsystems of the type we have studied (series, active redundant, and standby redundant). We have seen how methods from elementary probability can be used to model military reliability problems. The modeling approach presented here is useful in helping students simultaneously improve their understanding of both the military problems addressed and the mathematics behind these problems. The models presented also motivate students to appreciate the power of mathematics and its relevance to today s military. 165

14 Exercises 1. A continuous random variable Y, representing the time to failure of a.50 cal machine gun tube, has a probability density function given by f( y ) = 1 e 3 0 y 3 y 0 otherwise a. Find the reliability function for Y. b. Find the reliability for 1.2 time periods, R(1.2). 2. The lifetime of a HUMM-V engine (measured in time of operation) is exponentially distributed with a MTTF of 400 hours. You have received a mission that requires 12 hours of continuous operation. Your log book indicates that the HUMM-V has been operating for 158 hours. a. Find the reliability of your engine for this mission. b. If your vehicle s engine had operated for 250 hours prior to the mission, find the reliability for the mission. 3. A critical target must be destroyed. You are on the staff of the division G-3 when he decides to use helicopter gunships to destroy this key target. The aviation battalion is tasked to send four helicopter gunships. On their way to the target area, these helicopters must fly over enemy territory for approximately 15 minutes during which time they are vulnerable to anti-aircraft fire. The life of a gunship over this territory is estimated to be exponentially distributed with a mean of 18.8 minutes. It is further estimated that two or more gunships are required to destroy the target. Find the reliability of the gunships in accomplishing their mission (assuming the only reason a gunship fails to reach the target is enemy air defense systems). 4. For the mission in exercise 3, the division G-3 determines that, to justify risking the loss of gunships, there must be at least an 80% chance of destroying the target. How many gunships should the aviation battalion recommend be sent? Justify your answer. 5. Mines are a dangerous obstacle. Most mines have three components--the firing device, the wire, and the mine itself (casing). If any of these components fail, the systems fails. These components of the mine start to age when they are unpacked from their sealed containers. All three components have MTTF that are exponentially distributed of 60 days, 300 days, and 35 days, respectively. a. Find the reliability of the mine after 90 days. b. What is the MTTF of the mine? c. What assumptions, if any, did you make? 166

15 6. You are a project manager for the new ADA system being developed in Huntsville, Alabama. A critical subsystem has two components arranged in a parallel configuration. You have told the contractor that you require this subsystem to be at least reliable. One of the subsystems came from an older ADA system and has a known reliability of What is the minimum reliability of the other component so that we meet our specifications? 7. You are your battalion S-3. Your battalion has several night operations planned. There is some concern about the reliability of the lighting system for the Battalion s Tactical Operations Center (TOC). The lights are powers by a 1.5 KW generator that has a MTTF of 7.5 hours. a. Find the reliability of the generator for 10 hours if the generator s reliability is exponential. b. Find the reliability of the power system if two other identical 1.5 KW generators are available. First consider as active redundant and then as stand-by redundant. Which would improve the reliability the most? c. How many generators would be necessary to insure a 99% reliability? 8. Consider the fire control system for a missile depicted below with the reliability for each component as indicated. Assume all components are independent and the radars are active redundant. Battery 0.92 Acceleration Switch Radar Radar 2 x Match a. Find the system reliability for six months when x = b. Find the system reliability for six months when x =

16 9. A major weapon system has components as shown in diagram below. All components have exponential times to failure with mean times to failure shown. All components operate independently of each other. Find the reliability for this weapon system for 2 hours. 10 hours 10 hours 5 hours 8 hours DS 2 hours 10 hours 7 hours 6 hours 10 hours 10. Write an essay about how you can use elementary probability in modeling military problems. References [1] Devore, J. L., Probability and Statistics for Engineers and Scientists, 4 th Edition, Duxbury Press, Belmont, CA (1995). [2] Resnick, S. L., Adventures in Stochastic Processes, Birkhäuser, Boston (1992). 168

### Marine Corps Tank Employment MCWP 3-12 (CD) Appendix F. Scout and TOW Platoons

Appendix F Scout and TOW Platoons Section 1. Scout Platoon Section 2. TOW Platoon F - 1 Section 1. Scout Platoon. Mission. The battalion scout platoon performs reconnaissance, provides limited security,

### Probabilities and Random Variables

Probabilities and Random Variables This is an elementary overview of the basic concepts of probability theory. 1 The Probability Space The purpose of probability theory is to model random experiments so

### Math 461 Fall 2006 Test 2 Solutions

Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two

### CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

### RELIABILITY OF SYSTEMS WITH VARIOUS ELEMENT CONFIGURATIONS

Application Example 1 (Probability of combinations of events; binomial and Poisson distributions) RELIABILITY OF SYSTEMS WITH VARIOUS ELEMENT CONFIGURATIONS Note: Sections 1, 3 and 4 of this application

### Deep Operations and Active Territorial Defence: Some ideas for the Baltic States

Deep Operations and Active Territorial Defence: Some ideas for the Baltic States By LtCol Ron LaGrone Introduction: The Image and the Reality of Deep Operations Current military literature suggests that

### Reliability. 26.1 Reliability Models. Chapter 26 Page 1

Chapter 26 Page 1 Reliability Although the technological achievements of the last 50 years can hardly be disputed, there is one weakness in all mankind's devices. That is the possibility of failure. What

### BATTLE DRILL 1A CONDUCT SQUAD ATTACK

BATTLE DRILL 1A CONDUCT SQUAD ATTACK TASK. Conduct Squad Attack (7-4-D101). CONDITIONS. The squad is moving as part of a platoon conducting a movement to contact or hasty or deliberate attack. The enemy

### Confidence Intervals for Exponential Reliability

Chapter 408 Confidence Intervals for Exponential Reliability Introduction This routine calculates the number of events needed to obtain a specified width of a confidence interval for the reliability (proportion

### WHAT ARE THE IMPLICATIONS OF ENHANCED AIR INSERTION OF THE BCT, SUCH AS BY VERTICAL ENVELOPMENT?

Chapter Five WHAT ARE THE IMPLICATIONS OF ENHANCED AIR INSERTION OF THE BCT, SUCH AS BY VERTICAL ENVELOPMENT? The final research question concerns the use of air insertion of most of the Blue force into

### 5. Continuous Random Variables

5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

### Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.)

Name: Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.) The total score is 100 points. Instructions: There are six questions. Each one is worth 20 points. TA will grade the best five

### Math 425 (Fall 08) Solutions Midterm 2 November 6, 2008

Math 425 (Fall 8) Solutions Midterm 2 November 6, 28 (5 pts) Compute E[X] and Var[X] for i) X a random variable that takes the values, 2, 3 with probabilities.2,.5,.3; ii) X a random variable with the

2. DATA AND EXERCISES (Geos2911 students please read page 8) 2.1 Data set The data set available to you is an Excel spreadsheet file called cyclones.xls. The file consists of 3 sheets. Only the third is

### NPTEL STRUCTURAL RELIABILITY

NPTEL Course On STRUCTURAL RELIABILITY Module # 02 Lecture 6 Course Format: Web Instructor: Dr. Arunasis Chakraborty Department of Civil Engineering Indian Institute of Technology Guwahati 6. Lecture 06:

### Practice Problems for Homework #6. Normal distribution and Central Limit Theorem.

Practice Problems for Homework #6. Normal distribution and Central Limit Theorem. 1. Read Section 3.4.6 about the Normal distribution and Section 4.7 about the Central Limit Theorem. 2. Solve the practice

### Equivalence factors of a parallel-series system

Equivalence factors of a parallel-series system Ammar M. Sarhan, L. Tad, A. Al-khedhairi and A. Mustafa Abstract. This paper discusses the reliability equivalences of a parallelseries system. It is assumed

### Taipei Economic and Cultural Representative Office in the United States PATRIOT Advanced Capability-3 Guided Missiles

Transmittal No. 08-56 PATRIOT Advanced Capability-3 Guided Missiles possible Foreign Military Sale to Taiwan of 330 PATRIOT Advanced Capability (PAC-3) missiles, as well as associated equipment and services.

### MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS

MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS CONTENTS Sample Space Accumulative Probability Probability Distributions Binomial Distribution Normal Distribution Poisson Distribution

### MAINTAINED SYSTEMS. Harry G. Kwatny. Department of Mechanical Engineering & Mechanics Drexel University ENGINEERING RELIABILITY INTRODUCTION

MAINTAINED SYSTEMS Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University OUTLINE MAINTE MAINTE MAINTAINED UNITS Maintenance can be employed in two different manners: Preventive

### Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

### Random Variable: A function that assigns numerical values to all the outcomes in the sample space.

STAT 509 Section 3.2: Discrete Random Variables Random Variable: A function that assigns numerical values to all the outcomes in the sample space. Notation: Capital letters (like Y) denote a random variable.

### Reliability Prediction Basics

Reliability Prediction Basics Reliability predictions are one of the most common forms of reliability analysis. Reliability predictions predict the failure rate of components and overall system reliability.

### Probability distributions

Probability distributions (Notes are heavily adapted from Harnett, Ch. 3; Hayes, sections 2.14-2.19; see also Hayes, Appendix B.) I. Random variables (in general) A. So far we have focused on single events,

### The purpose of this procedure is to document the process for generating Reliability Block Diagram (RBD) for Sydney Water s facility assets.

Procedure Reliability Block Diagram (RBD). Overview.. Objective The purpose of this procedure is to document the process for generating Reliability Block Diagram (RBD) for Sydney Water s facility assets..2.

### Game rules (the second edition)

www.art-of-tactic.com WORLD WAR II BARBAROSSA 1941 Game rules (the second edition) THE BASICS These are the basic concepts of the Art of Tactic system. Master these, and you will master the game! 1. Players

### You flip a fair coin four times, what is the probability that you obtain three heads.

Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

### 1 Sufficient statistics

1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =

### ST 371 (VIII): Theory of Joint Distributions

ST 371 (VIII): Theory of Joint Distributions So far we have focused on probability distributions for single random variables. However, we are often interested in probability statements concerning two or

### Chapter 4. Probability Distributions

Chapter 4 Probability Distributions Lesson 4-1/4-2 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive

### Cork Institute of Technology. CIT Mathematics Examination, Paper 2 Sample Paper A

Cork Institute of Technology CIT Mathematics Examination, 2015 Paper 2 Sample Paper A Answer ALL FIVE questions. Each question is worth 20 marks. Total marks available: 100 marks. The standard Formulae

### STOCHASTIC ANALYSIS OF AN AIR CONDITION COOLING SYSTEM MODEL

Journal of Reliability and Statistical Studies; ISSN (Print) 09-804 (Online)9-5666 Vol. 4 Issue 1 (011) 95-106 STOCHASTIC ANALYSIS OF AN AIR CONDITION COOLING SYSTEM MODEL Rakesh Gupta1 Punam Phartyal

### Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

### MTH135/STA104: Probability

MTH135/STA14: Probability Homework # 8 Due: Tuesday, Nov 8, 5 Prof Robert Wolpert 1 Define a function f(x, y) on the plane R by { 1/x < y < x < 1 f(x, y) = other x, y a) Show that f(x, y) is a joint probability

### Maximum Likelihood Estimation

Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

### 4. Joint Distributions

Virtual Laboratories > 2. Distributions > 1 2 3 4 5 6 7 8 4. Joint Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an underlying sample space. Suppose

### MATH 201. Final ANSWERS August 12, 2016

MATH 01 Final ANSWERS August 1, 016 Part A 1. 17 points) A bag contains three different types of dice: four 6-sided dice, five 8-sided dice, and six 0-sided dice. A die is drawn from the bag and then rolled.

### STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about

### Gamma Distribution Fitting

Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics

### Financial Mathematics and Simulation MATH 6740 1 Spring 2011 Homework 2

Financial Mathematics and Simulation MATH 6740 1 Spring 2011 Homework 2 Due Date: Friday, March 11 at 5:00 PM This homework has 170 points plus 20 bonus points available but, as always, homeworks are graded

### MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo. 3 MT426 Notebook 3 3. 3.1 Definitions... 3. 3.2 Joint Discrete Distributions...

MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo c Copyright 2004-2012 by Jenny A. Baglivo. All Rights Reserved. Contents 3 MT426 Notebook 3 3 3.1 Definitions............................................

### Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

### Lesson 20. Probability and Cumulative Distribution Functions

Lesson 20 Probability and Cumulative Distribution Functions Recall If p(x) is a density function for some characteristic of a population, then Recall If p(x) is a density function for some characteristic

### Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions

Chapter 4 - Lecture 1 Probability Density Functions and Cumulative Distribution Functions October 21st, 2009 Review Probability distribution function Useful results Relationship between the pdf and the

### Principle of Data Reduction

Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then

### Frontier/Musket Wargames Rules

Equipment: Frontier/Musket Wargames Rules For use with a chessboard battlefield By Bob Cordery Based on Joseph Morschauser s original ideas The following equipment is needed to fight battles with these

### A Monte Carlo simulation method for system reliability analysis

A Monte Carlo simulation method for system reliability analysis MATSUOKA Takeshi 1, 2 1. College of Nuclear Science and Technology, Harbin Engineering University No.145-1, Nantong Street, Nangang District,

### Tenth Problem Assignment

EECS 40 Due on April 6, 007 PROBLEM (8 points) Dave is taking a multiple-choice exam. You may assume that the number of questions is infinite. Simultaneously, but independently, his conscious and subconscious

### Notes on Continuous Random Variables

Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

### Practice Problems #4

Practice Problems #4 PRACTICE PROBLEMS FOR HOMEWORK 4 (1) Read section 2.5 of the text. (2) Solve the practice problems below. (3) Open Homework Assignment #4, solve the problems, and submit multiple-choice

### Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 4: Geometric Distribution Negative Binomial Distribution Hypergeometric Distribution Sections 3-7, 3-8 The remaining discrete random

### Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

### The Terrain and Tactics of If You Survive

The Terrain and Tactics of If You Survive Mechelle Rouchon Course: History 498 Instructor: Dr. Harry Laver Assignment: Analysis First Lieutenant George Wilson served in the U.S. Army during the last, but

### Chapter 2: Data quantifiers: sample mean, sample variance, sample standard deviation Quartiles, percentiles, median, interquartile range Dot diagrams

Review for Final Chapter 2: Data quantifiers: sample mean, sample variance, sample standard deviation Quartiles, percentiles, median, interquartile range Dot diagrams Histogram Boxplots Chapter 3: Set

### the number of organisms in the squares of a haemocytometer? the number of goals scored by a football team in a match?

Poisson Random Variables (Rees: 6.8 6.14) Examples: What is the distribution of: the number of organisms in the squares of a haemocytometer? the number of hits on a web site in one hour? the number of

### C 1 C 2 C i C n C 1 C 2. C i. C n

Exercises 1. A microcomputer system consists of a microprocessor CPU chip and a random access memory chip. The CPU is selected from a lot of 100 of which 10 are defective and the memory chip is selected

### MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,

### Probability Calculator

Chapter 95 Introduction Most statisticians have a set of probability tables that they refer to in doing their statistical wor. This procedure provides you with a set of electronic statistical tables that

### Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

### Module 5 Hypotheses Tests: Comparing Two Groups

Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this

### Numerical Methods for Option Pricing

Chapter 9 Numerical Methods for Option Pricing Equation (8.26) provides a way to evaluate option prices. For some simple options, such as the European call and put options, one can integrate (8.26) directly

### Reliability of Technical Systems

Reliability of Technical Systems Main Topics 1. Short Introduction, Reliability Parameters: Failure Rate, Failure Probability, etc. 2. Some Important Reliability Distributions 3. Component Reliability

### , for x = 0, 1, 2, 3,... (4.1) (1 + 1/n) n = 2.71828... b x /x! = e b, x=0

Chapter 4 The Poisson Distribution 4.1 The Fish Distribution? The Poisson distribution is named after Simeon-Denis Poisson (1781 1840). In addition, poisson is French for fish. In this chapter we will

### DISCRETE RANDOM VARIABLES

DISCRETE RANDOM VARIABLES DISCRETE RANDOM VARIABLES Documents prepared for use in course B01.1305, New York University, Stern School of Business Definitions page 3 Discrete random variables are introduced

### Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

### 6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS

6.4/6.43 Spring 28 Quiz 2 Wednesday, April 6, 7:3-9:3 PM. SOLUTIONS Name: Recitation Instructor: TA: 6.4/6.43: Question Part Score Out of 3 all 36 2 a 4 b 5 c 5 d 8 e 5 f 6 3 a 4 b 6 c 6 d 6 e 6 Total

### The random variable X - the no. of defective items when three electronic components are tested would be

RANDOM VARIABLES and PROBABILITY DISTRIBUTIONS Example: Give the sample space giving a detailed description of each possible outcome when three electronic components are tested, where N - denotes nondefective

### Statistics 100A Homework 8 Solutions

Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the one-half

### 4.3. Addition and Multiplication Laws of Probability. Introduction. Prerequisites. Learning Outcomes. Learning Style

Addition and Multiplication Laws of Probability 4.3 Introduction When we require the probability of two events occurring simultaneously or the probability of one or the other or both of two events occurring

### The Binomial Probability Distribution

The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability

### Lecture 6: Discrete & Continuous Probability and Random Variables

Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September

### MATH 140 Lab 4: Probability and the Standard Normal Distribution

MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes

### System risks, reliability and costs

System risks, reliability and costs Systems always have risks attached to them. How do we deal with risks? How reliable are systems? And what do systems cost anyway? That s what we ll look at in this chapter.

### Aggregate Loss Models

Aggregate Loss Models Chapter 9 Stat 477 - Loss Models Chapter 9 (Stat 477) Aggregate Loss Models Brian Hartman - BYU 1 / 22 Objectives Objectives Individual risk model Collective risk model Computing

### CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction

CA200 Quantitative Analysis for Business Decisions File name: CA200_Section_04A_StatisticsIntroduction Table of Contents 4. Introduction to Statistics... 1 4.1 Overview... 3 4.2 Discrete or continuous

### Chapter 5 Discrete Probability Distribution. Learning objectives

Chapter 5 Discrete Probability Distribution Slide 1 Learning objectives 1. Understand random variables and probability distributions. 1.1. Distinguish discrete and continuous random variables. 2. Able

### 2 Binomial, Poisson, Normal Distribution

2 Binomial, Poisson, Normal Distribution Binomial Distribution ): We are interested in the number of times an event A occurs in n independent trials. In each trial the event A has the same probability

### Normal Probability Distribution

Normal Probability Distribution The Normal Distribution functions: #1: normalpdf pdf = Probability Density Function This function returns the probability of a single value of the random variable x. Use

### Stats on the TI 83 and TI 84 Calculator

Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and

### An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

### THE BELGIAN ARMY IN 1940

THE BELGIAN ARMY IN 1940 Belgium announced its policy of Armed Independence in 1936. This policy was understood to go beyond strict neutrality (which had not kept Belgium out og World War I) and was accompanied

### Chapter 5: Normal Probability Distributions - Solutions

Chapter 5: Normal Probability Distributions - Solutions Note: All areas and z-scores are approximate. Your answers may vary slightly. 5.2 Normal Distributions: Finding Probabilities If you are given that

### 6.3 Conditional Probability and Independence

222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

### 12.5: CHI-SQUARE GOODNESS OF FIT TESTS

125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability

### Kinematics. Demonstrated Through. Projectile Launcher

Kinematics Demonstrated Through Projectile Launcher E. El-Zammar Physics 420: Demonstration Physics Department of Physics University of British Columbia Vancouver,B.C. Canada V6T 1Z1 October 28 th, 2008

### Alessandro Birolini. ineerin. Theory and Practice. Fifth edition. With 140 Figures, 60 Tables, 120 Examples, and 50 Problems.

Alessandro Birolini Re ia i it En ineerin Theory and Practice Fifth edition With 140 Figures, 60 Tables, 120 Examples, and 50 Problems ~ Springer Contents 1 Basic Concepts, Quality and Reliability Assurance

### Introduction to Software Reliability Estimation

Introduction to Software Reliability Estimation 1 Motivations Software is an essential component of many safetycritical systems These systems depend on the reliable operation of software components How

### 1) What is the probability that the random variable has a value greater than 2? A) 0.750 B) 0.625 C) 0.875 D) 0.700

Practice for Chapter 6 & 7 Math 227 This is merely an aid to help you study. The actual exam is not multiple choice nor is it limited to these types of questions. Using the following uniform density curve,

### Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test

Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely

### 6.0 RELIABILITY ALLOCATION

6.0 RELIABILITY ALLOCATION Reliability Allocation deals with the setting of reliability goals for individual subsystems such that a specified reliability goal is met and the hardware and software subsystem

### Conditional Probability and Independence. What Is Conditional Probability?

Conditional Probability and Independence What Is Conditional Probability? The probability we assign to an event can change if we know that some other event has occurred. This idea is the key to many applications

### A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails

12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint

### Practice Problems > 10 10

Practice Problems. A city s temperature measured at 2:00 noon is modeled as a normal random variable with mean and standard deviation both equal to 0 degrees Celsius. If the temperature is recorded at

### Chapter 3: The basic concepts of probability

Chapter 3: The basic concepts of probability Experiment: a measurement process that produces quantifiable results (e.g. throwing two dice, dealing cards, at poker, measuring heights of people, recording

### CHAPTER 7: THE CENTRAL LIMIT THEOREM

CHAPTER 7: THE CENTRAL LIMIT THEOREM Exercise 1. Yoonie is a personnel manager in a large corporation. Each month she must review 16 of the employees. From past experience, she has found that the reviews

### 6.4 Normal Distribution

Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

### Unit 26 Estimation with Confidence Intervals

Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference

### Exploratory Data Analysis

Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction