An elementary proof of Wigner's theorem on quantum mechanical symmetry transformations

Size: px
Start display at page:

Download "An elementary proof of Wigner's theorem on quantum mechanical symmetry transformations"

Transcription

1 An elementary proof of Wigner's theorem on quantum mechanical symmetry transformations University of Szeged, Bolyai Institute and MTA-DE "Lendület" Functional Analysis Research Group, University of Debrecen 5th June 2014, Ljubljana LAW'14

2 Introduction

3 Wigner's theorem Theorem Let H be a complex Hilbert space and let S denote the set of unit vectors of H. Let us consider an arbitrary mapping φ: S S such that the following holds: u, v = φ( u), φ( v) ( u = v = 1). (W's C) Then there exists a linear or a conjugatelinear isometry W : H H and a function f : S T := {z C: z = 1} such that we have φ( u) = f ( u) W u is satised for every unit vector u H. Remark: Originally Wigner assumed bijectivity of φ.

4 E. P. Wigner (1931) the proof was not complete. J. A. Lomont and P. Mendleson (1963) rst known proof for the classical (i.e. bijective) case. V. Bargmann (1964) His proof follows the thoughtline suggested by Wigner. Figure: Valentine Bargmann

5 U. Uhlhorn (1963) A nice generalization (dim H 3, φ is bijective and preserves orthogonality in both directions). Figure: Ulf Uhlhorn

6 L. Molnár (1996) algebraic approach, he managed to generalize Wigner's theorem in several ways. Figure: Molnár Lajos

7 P 1 := P 1 (H) the set of rank-one (self-adjoint) projections. If u = 1, then P[ u] the rank-one projection with precise range C u. u, v 2 = Tr P[ u]p[ v] } {{ } P[ u] P[ v] = transition probability 1 u, v 2..

8 Wigner's theorem, two reformulations Theorem Let us consider an arbitrary mapping φ: P 1 P 1 for which the following holds Tr P[ u]p[ v] = Tr f (P[ u])f (P[ v]) ( u = v = 1). (W's C) Then there is a linear or antilinear isometry W : H H such that Theorem φ(p[ u]) = WP[ u]w = P[W u] ( u = 1). For every isometry φ: P 1 P 1 there exists a linear or an antilinear isometry W : H H such that we have φ(p[ u]) = WP[ u]w = P[W u] ( u = 1).

9 Resolving sets

10 Denition (S. Bau and A. F. Beardon) Let (X, d) be a metric space and D, R X. We say that R is a resolving set of D if for every two points x 1, x 2 D whenever d(x 1, y) = d(x 2, y) is satised for all y R, we necessarily have x 1 = x 2.

11 Denition (S. Bau and A. F. Beardon) Let (X, d) be a metric space and D, R X. We say that R is a resolving set of D if for every two points x 1, x 2 D whenever d(x 1, y) = d(x 2, y) is satised for all y R, we necessarily have x 1 = x 2. dim H = N N {ℵ 0 }, N > 1. We x an orthonormal base: { e j } N j=1. Let v j := v, e j denote the jth coordinate of a unit vector v. The set D := {P[ v]: v j 0, j} P 1 is dense in P 1.

12 Lemma Let H be an arbitrary separable (nite or innite-dimensional) Hilbert space. Then the set R = {P[ e j ]} N { P[ 1 ( e j=1 2 j e j+1 )], P[ 1 2( e j + i e j+1 )] } 1 j<n resolves D.

13 Lemma Let H be an arbitrary separable (nite or innite-dimensional) Hilbert space. Then the set R = {P[ e j ]} N { P[ 1 ( e j=1 2 j e j+1 )], P[ 1 2( e j + i e j+1 )] } 1 j<n resolves D. Proof. An easy calculation.

14 Proof of Wigner's theorem (in the separable case)

15 Proof. Let P[ f j ] = φ(p[ e j ]), then { f j } N j=1 H := { f j } N j=1. is an ONS.

16 Proof. Let P[ f j ] = φ(p[ e j ]), then { f j } N j=1 H := { f j } N j=1. is an ONS. Set a unit vector v H and let φ(p[ v]) = P[ w]. (W's C) implies v j = w, f j ( j), and from Parseval's identity we get w H.

17 Proof. Let P[ f j ] = φ(p[ e j ]), then { f j } N j=1 H := { f j } N j=1. is an ONS. Set a unit vector v H and let φ(p[ v]) = P[ w]. (W's C) implies v j = w, f j ( j), and from Parseval's identity we get w H. We dene a linear isometry V : H H H, V e j = f j (j N N ). The mapping φ 1 ( ) := V φ( )V satisfy (W's C).

18 Proof. Let P[ f j ] = φ(p[ e j ]), then { f j } N j=1 H := { f j } N j=1. is an ONS. Set a unit vector v H and let φ(p[ v]) = P[ w]. (W's C) implies v j = w, f j ( j), and from Parseval's identity we get w H. We dene a linear isometry V : H H H, V e j = f j (j N N ). The mapping φ 1 ( ) := V φ( )V satisfy (W's C). Moreover φ 1 (P[ e j ]) = V φ(p[ e j ])V = V P[ f j ]V = P[V fj ] = P[ e j ] ( j).

19 Again from (W's C) ( φ 1 P[1/ 2 ( ej e j+1 )] ) = P[1/ 2 ( e j δ j+1 e j+1 )] ( φ 1 P[1/ 2 ( ej + i e j+1 )] ) = P[1/ 2 ( e j ε j+1 e j+1 )] where δ j+1 = ε j+1 = 1 (1 j < N).

20 Again from (W's C) φ 1 ( P[1/ 2 ( ej e j+1 )] ) = P[1/ 2 ( e j δ j+1 e j+1 )] φ 1 ( P[1/ 2 ( ej + i e j+1 )] ) = P[1/ 2 ( e j ε j+1 e j+1 )] where δ j+1 = ε j+1 = 1 (1 j < N). Therefore 2 = 1 + δj+1 ε j+1, and consequently δ j+1 = ±iε j+1 (j < N).

21 Again from (W's C) φ 1 ( P[1/ 2 ( ej e j+1 )] ) = P[1/ 2 ( e j δ j+1 e j+1 )] φ 1 ( P[1/ 2 ( ej + i e j+1 )] ) = P[1/ 2 ( e j ε j+1 e j+1 )] where δ j+1 = ε j+1 = 1 (1 j < N). Therefore 2 = 1 + δj+1 ε j+1, and consequently δ j+1 = ±iε j+1 (j < N). We dene φ 2 ( ) := U φ 1 ( )U, where 1 If ε 2 = iδ 2, then let U be the unitary operator such that U e 1 = e 1, k U e k = e k (k > 1). 2 If ε 2 = iδ 2, then let U be the antiunitary operator dened by the equations above. j=2 δ j

22 Moreover, φ 2 (P[ e j ]) = P[ e j ] ( j), φ 2 (P[1/ 2 ( e j e j+1 )]) = P[1/ 2 ( e j e j+1 )] ( j), φ 2 (P[1/ 2 ( e 1 + i e 2 )]) = P[1/ 2 ( e 1 + i e 2 )].

23 Moreover, φ 2 (P[ e j ]) = P[ e j ] ( j), φ 2 (P[1/ 2 ( e j e j+1 )]) = P[1/ 2 ( e j e j+1 )] ( j), φ 2 (P[1/ 2 ( e 1 + i e 2 )]) = P[1/ 2 ( e 1 + i e 2 )]. We also have φ 2 (P[1/ 2 ( e j + i e j+1 )]) = P[1/ 2 ( e j ± i e j+1 )] (1 < j < N).

24 Moreover, φ 2 (P[ e j ]) = P[ e j ] ( j), φ 2 (P[1/ 2 ( e j e j+1 )]) = P[1/ 2 ( e j e j+1 )] ( j), φ 2 (P[1/ 2 ( e 1 + i e 2 )]) = P[1/ 2 ( e 1 + i e 2 )]. We also have φ 2 (P[1/ 2 ( e j + i e j+1 )]) = P[1/ 2 ( e j ± i e j+1 )] (1 < j < N). Assume that there exists an index j > 1 for which φ 2 (P[1/ 2 ( e j + i e j+1 )]) = P[1/ 2 ( e j i e j+1 )] holds. We may assume that this j is the rst such index.

25 Claim Then φ 2 (P[v j 1 e j 1 + t e j + v j+1 e j+1 ]) = P[v j 1 e j 1 + t e j + v j+1 e j+1 ] holds for every t > 0, v j 1 0, v j+1 0, v j t 2 + v j+1 2 = 1.

26 Claim Then φ 2 (P[v j 1 e j 1 + t e j + v j+1 e j+1 ]) = P[v j 1 e j 1 + t e j + v j+1 e j+1 ] holds for every t > 0, v j 1 0, v j+1 0, v j t 2 + v j+1 2 = 1. Proof of Claim An easy calculation.

27 Claim Then φ 2 (P[v j 1 e j 1 + t e j + v j+1 e j+1 ]) = P[v j 1 e j 1 + t e j + v j+1 e j+1 ] holds for every t > 0, v j 1 0, v j+1 0, v j t 2 + v j+1 2 = 1. Proof of Claim An easy calculation. Now, let x = 1 2 e j e j e j+1, y = i 2 e j e j + i 2 e j+1.

28 Claim Then φ 2 (P[v j 1 e j 1 + t e j + v j+1 e j+1 ]) = P[v j 1 e j 1 + t e j + v j+1 e j+1 ] holds for every t > 0, v j 1 0, v j+1 0, v j t 2 + v j+1 2 = 1. Proof of Claim An easy calculation. Now, let x = 1 2 e j e j e j+1, y = i 2 e j e j + i 2 e j+1. Claim and (W's C) implies 2/4 = i/4 + 1/4 i/2 = i/4 + 1/4 + i/2 = 10/4, which is a contradiction.

29 Claim Then φ 2 (P[v j 1 e j 1 + t e j + v j+1 e j+1 ]) = P[v j 1 e j 1 + t e j + v j+1 e j+1 ] holds for every t > 0, v j 1 0, v j+1 0, v j t 2 + v j+1 2 = 1. Proof of Claim An easy calculation. Now, let x = 1 2 e j e j e j+1, y = i 2 e j e j + i 2 e j+1. Claim and (W's C) implies 2/4 = i/4 + 1/4 i/2 = i/4 + 1/4 + i/2 = 10/4, which is a contradiction. Therefore φ 2 is the identity mapping on P 1, and φ(p[ u]) = WP[ u]w with W = VU.

30 Remarks The proof is short and elementary, it does not contain any serious computations.

31 Remarks The proof is short and elementary, it does not contain any serious computations. The non-separable case can be proven as a consequence of the separable case (technical).

32 Remarks The proof is short and elementary, it does not contain any serious computations. The non-separable case can be proven as a consequence of the separable case (technical). It works for the general case (bijcetivity of φ or separability of H is not assumed).

33 Remarks The proof is short and elementary, it does not contain any serious computations. The non-separable case can be proven as a consequence of the separable case (technical). It works for the general case (bijcetivity of φ or separability of H is not assumed). Note that we could consider φ: P 1 (H) P 1 (K) with some Hilbert spaces H and K.

34 Remarks The proof is short and elementary, it does not contain any serious computations. The non-separable case can be proven as a consequence of the separable case (technical). It works for the general case (bijcetivity of φ or separability of H is not assumed). Note that we could consider φ: P 1 (H) P 1 (K) with some Hilbert spaces H and K. The proof is similar (but easier) in real Hilbert spaces.

35 References 1/2 E. P. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektrum, Fredrik Vieweg und Sohn, J. S. Lomont and P. Mendelson, The Wigner unitary-antiunitary theorem, Ann. Math. 78 (1963), V. Bargmann, Note on Wigner's theorem on symmetry operations, J. Math. Phys. 5 (1964), U. Uhlhorn, Representation of symmetry transformations in quantum mechanics, Ark. Fysik 23 (1963),

36 References 2/2 L. Molnár, Wigner's unitary-antiunitary theorem via Herstein's theorem on Jordan homeomorphisms, J. Nat. Geom. 10 (1996), L. Molnár, An algebraic approach to Wigner's unitary-antiunitary theorem, J. Austral. Math. Soc. 65 (1998), Gy. P. Gehér, An elementary proof for the non-bijective version of Wigner's theorem, to appear in Phys. Lett. A.

37 This research was also supported by the European Union and the State of Hungary, co-nanced by the European Social Fund in the framework of TÁMOP A/2-11/ 'National Excellence Program'

38 Thank You for Your Kind Attention

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators

Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators University of Szeged, Bolyai Institute 29th July 2013, Gothenburg Banach Algebras and Applications 1 Introduction, Motivation Directed

More information

WHEN DOES A CROSS PRODUCT ON R n EXIST?

WHEN DOES A CROSS PRODUCT ON R n EXIST? WHEN DOES A CROSS PRODUCT ON R n EXIST? PETER F. MCLOUGHLIN It is probably safe to say that just about everyone reading this article is familiar with the cross product and the dot product. However, what

More information

Lecture 1: Schur s Unitary Triangularization Theorem

Lecture 1: Schur s Unitary Triangularization Theorem Lecture 1: Schur s Unitary Triangularization Theorem This lecture introduces the notion of unitary equivalence and presents Schur s theorem and some of its consequences It roughly corresponds to Sections

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

Let H and J be as in the above lemma. The result of the lemma shows that the integral

Let H and J be as in the above lemma. The result of the lemma shows that the integral Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

α = u v. In other words, Orthogonal Projection

α = u v. In other words, Orthogonal Projection Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

More information

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

More information

INVARIANT METRICS WITH NONNEGATIVE CURVATURE ON COMPACT LIE GROUPS

INVARIANT METRICS WITH NONNEGATIVE CURVATURE ON COMPACT LIE GROUPS INVARIANT METRICS WITH NONNEGATIVE CURVATURE ON COMPACT LIE GROUPS NATHAN BROWN, RACHEL FINCK, MATTHEW SPENCER, KRISTOPHER TAPP, AND ZHONGTAO WU Abstract. We classify the left-invariant metrics with nonnegative

More information

Invariant Metrics with Nonnegative Curvature on Compact Lie Groups

Invariant Metrics with Nonnegative Curvature on Compact Lie Groups Canad. Math. Bull. Vol. 50 (1), 2007 pp. 24 34 Invariant Metrics with Nonnegative Curvature on Compact Lie Groups Nathan Brown, Rachel Finck, Matthew Spencer, Kristopher Tapp and Zhongtao Wu Abstract.

More information

Notes on metric spaces

Notes on metric spaces Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.

More information

Finite dimensional C -algebras

Finite dimensional C -algebras Finite dimensional C -algebras S. Sundar September 14, 2012 Throughout H, K stand for finite dimensional Hilbert spaces. 1 Spectral theorem for self-adjoint opertors Let A B(H) and let {ξ 1, ξ 2,, ξ n

More information

Finite dimensional topological vector spaces

Finite dimensional topological vector spaces Chapter 3 Finite dimensional topological vector spaces 3.1 Finite dimensional Hausdorff t.v.s. Let X be a vector space over the field K of real or complex numbers. We know from linear algebra that the

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

Triangle deletion. Ernie Croot. February 3, 2010

Triangle deletion. Ernie Croot. February 3, 2010 Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,

More information

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors. 3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

More information

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein) Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p

More information

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish

More information

Inner products on R n, and more

Inner products on R n, and more Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +

More information

and s n (x) f(x) for all x and s.t. s n is measurable if f is. REAL ANALYSIS Measures. A (positive) measure on a measurable space

and s n (x) f(x) for all x and s.t. s n is measurable if f is. REAL ANALYSIS Measures. A (positive) measure on a measurable space RAL ANALYSIS A survey of MA 641-643, UAB 1999-2000 M. Griesemer Throughout these notes m denotes Lebesgue measure. 1. Abstract Integration σ-algebras. A σ-algebra in X is a non-empty collection of subsets

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

Asymptotic behaviour of Hilbert space operators with applications

Asymptotic behaviour of Hilbert space operators with applications Asymptotic behaviour of Hilbert space operators with applications A Dissertation Presented for the Doctor of Philosophy Degree György Pál Gehér Supervisor: László Kérchy Professor Doctoral School in Mathematics

More information

1.2 Solving a System of Linear Equations

1.2 Solving a System of Linear Equations 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables

More information

On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules

On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules Journal of Linear and Topological Algebra Vol. 04, No. 02, 2015, 53-63 On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules M. Rashidi-Kouchi Young Researchers and Elite Club Kahnooj

More information

160 CHAPTER 4. VECTOR SPACES

160 CHAPTER 4. VECTOR SPACES 160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results

More information

Some other convex-valued selection theorems 147 (2) Every lower semicontinuous mapping F : X! IR such that for every x 2 X, F (x) is either convex and

Some other convex-valued selection theorems 147 (2) Every lower semicontinuous mapping F : X! IR such that for every x 2 X, F (x) is either convex and PART B: RESULTS x1. CHARACTERIZATION OF NORMALITY- TYPE PROPERTIES 1. Some other convex-valued selection theorems In this section all multivalued mappings are assumed to have convex values in some Banach

More information

0 0 such that f x L whenever x a

0 0 such that f x L whenever x a Epsilon-Delta Definition of the Limit Few statements in elementary mathematics appear as cryptic as the one defining the limit of a function f() at the point = a, 0 0 such that f L whenever a Translation:

More information

EXTENSIONS OF MAPS IN SPACES WITH PERIODIC HOMEOMORPHISMS

EXTENSIONS OF MAPS IN SPACES WITH PERIODIC HOMEOMORPHISMS BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 78, Number 4, July 1972 EXTENSIONS OF MAPS IN SPACES WITH PERIODIC HOMEOMORPHISMS BY JAN W. JAWOROWSKI Communicated by Victor Klee, November 29, 1971

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

Math 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010

Math 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010 Math 550 Notes Chapter 7 Jesse Crawford Department of Mathematics Tarleton State University Fall 2010 (Tarleton State University) Math 550 Chapter 7 Fall 2010 1 / 34 Outline 1 Self-Adjoint and Normal Operators

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

PRIME FACTORS OF CONSECUTIVE INTEGERS

PRIME FACTORS OF CONSECUTIVE INTEGERS PRIME FACTORS OF CONSECUTIVE INTEGERS MARK BAUER AND MICHAEL A. BENNETT Abstract. This note contains a new algorithm for computing a function f(k) introduced by Erdős to measure the minimal gap size in

More information

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Every Positive Integer is the Sum of Four Squares! (and other exciting problems)

Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer

More information

Polynomial Degree and Lower Bounds in Quantum Complexity: Collision and Element Distinctness with Small Range

Polynomial Degree and Lower Bounds in Quantum Complexity: Collision and Element Distinctness with Small Range THEORY OF COMPUTING, Volume 1 (2005), pp. 37 46 http://theoryofcomputing.org Polynomial Degree and Lower Bounds in Quantum Complexity: Collision and Element Distinctness with Small Range Andris Ambainis

More information

Smarandache Curves in Minkowski Space-time

Smarandache Curves in Minkowski Space-time International J.Math. Combin. Vol.3 (2008), 5-55 Smarandache Curves in Minkowski Space-time Melih Turgut and Süha Yilmaz (Department of Mathematics of Buca Educational Faculty of Dokuz Eylül University,

More information

9 Multiplication of Vectors: The Scalar or Dot Product

9 Multiplication of Vectors: The Scalar or Dot Product Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

More information

Representation of functions as power series

Representation of functions as power series Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions

More information

Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

More information

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers

More information

CONTINUOUS REINHARDT DOMAINS PROBLEMS ON PARTIAL JB*-TRIPLES

CONTINUOUS REINHARDT DOMAINS PROBLEMS ON PARTIAL JB*-TRIPLES CONTINUOUS REINHARDT DOMAINS PROBLEMS ON PARTIAL JB*-TRIPLES László STACHÓ Bolyai Institute Szeged, Hungary stacho@math.u-szeged.hu www.math.u-szeged.hu/ Stacho 13/11/2008, Granada László STACHÓ () CONTINUOUS

More information

RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis

RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis RANDOM INTERVAL HOMEOMORPHISMS MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis This is a joint work with Lluís Alsedà Motivation: A talk by Yulij Ilyashenko. Two interval maps, applied

More information

1. Let P be the space of all polynomials (of one real variable and with real coefficients) with the norm

1. Let P be the space of all polynomials (of one real variable and with real coefficients) with the norm Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 005-06-15 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

More information

Introduction to Topology

Introduction to Topology Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................

More information

ON THE NUMBER OF REAL HYPERSURFACES HYPERTANGENT TO A GIVEN REAL SPACE CURVE

ON THE NUMBER OF REAL HYPERSURFACES HYPERTANGENT TO A GIVEN REAL SPACE CURVE Illinois Journal of Mathematics Volume 46, Number 1, Spring 2002, Pages 145 153 S 0019-2082 ON THE NUMBER OF REAL HYPERSURFACES HYPERTANGENT TO A GIVEN REAL SPACE CURVE J. HUISMAN Abstract. Let C be a

More information

THE BANACH CONTRACTION PRINCIPLE. Contents

THE BANACH CONTRACTION PRINCIPLE. Contents THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,

More information

arxiv:quant-ph/0603009v3 8 Sep 2006

arxiv:quant-ph/0603009v3 8 Sep 2006 Deciding universality of quantum gates arxiv:quant-ph/0603009v3 8 Sep 2006 Gábor Ivanyos February 1, 2008 Abstract We say that collection of n-qudit gates is universal if there exists N 0 n such that for

More information

FINITE DIMENSIONAL ORDERED VECTOR SPACES WITH RIESZ INTERPOLATION AND EFFROS-SHEN S UNIMODULARITY CONJECTURE AARON TIKUISIS

FINITE DIMENSIONAL ORDERED VECTOR SPACES WITH RIESZ INTERPOLATION AND EFFROS-SHEN S UNIMODULARITY CONJECTURE AARON TIKUISIS FINITE DIMENSIONAL ORDERED VECTOR SPACES WITH RIESZ INTERPOLATION AND EFFROS-SHEN S UNIMODULARITY CONJECTURE AARON TIKUISIS Abstract. It is shown that, for any field F R, any ordered vector space structure

More information

Orthogonal Projections and Orthonormal Bases

Orthogonal Projections and Orthonormal Bases CS 3, HANDOUT -A, 3 November 04 (adjusted on 7 November 04) Orthogonal Projections and Orthonormal Bases (continuation of Handout 07 of 6 September 04) Definition (Orthogonality, length, unit vectors).

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Invertible elements in associates and semigroups. 1

Invertible elements in associates and semigroups. 1 Quasigroups and Related Systems 5 (1998), 53 68 Invertible elements in associates and semigroups. 1 Fedir Sokhatsky Abstract Some invertibility criteria of an element in associates, in particular in n-ary

More information

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

0.1 Phase Estimation Technique

0.1 Phase Estimation Technique Phase Estimation In this lecture we will describe Kitaev s phase estimation algorithm, and use it to obtain an alternate derivation of a quantum factoring algorithm We will also use this technique to design

More information

INTRODUCTION TO TOPOLOGY

INTRODUCTION TO TOPOLOGY INTRODUCTION TO TOPOLOGY ALEX KÜRONYA In preparation January 24, 2010 Contents 1. Basic concepts 1 2. Constructing topologies 13 2.1. Subspace topology 13 2.2. Local properties 18 2.3. Product topology

More information

Section 4.4 Inner Product Spaces

Section 4.4 Inner Product Spaces Section 4.4 Inner Product Spaces In our discussion of vector spaces the specific nature of F as a field, other than the fact that it is a field, has played virtually no role. In this section we no longer

More information

FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 2. OPERATORS ON HILBERT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 2. OPERATORS ON HILBERT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 2. OPERATORS ON HILBERT SPACES CHRISTOPHER HEIL 1. Elementary Properties and Examples First recall the basic definitions regarding operators. Definition 1.1 (Continuous

More information

ON FIBER DIAMETERS OF CONTINUOUS MAPS

ON FIBER DIAMETERS OF CONTINUOUS MAPS ON FIBER DIAMETERS OF CONTINUOUS MAPS PETER S. LANDWEBER, EMANUEL A. LAZAR, AND NEEL PATEL Abstract. We present a surprisingly short proof that for any continuous map f : R n R m, if n > m, then there

More information

D. Greenberger, Springer-Verlag, to appear. 1 In: Compendium of Quantum Physics, eds. F. Weinert, K. Hentschel and

D. Greenberger, Springer-Verlag, to appear. 1 In: Compendium of Quantum Physics, eds. F. Weinert, K. Hentschel and Measurement Theory 1 The term measurement theory refers to that part of a physical theory in which the empirical and operational content of the concepts of the theory is determined. Measurements are analyzed

More information

arxiv:quant-ph/9607009v1 11 Jul 1996

arxiv:quant-ph/9607009v1 11 Jul 1996 Distillability of Inseparable Quantum Systems Micha l Horodecki Department of Mathematics and Physics University of Gdańsk, 80 952 Gdańsk, Poland arxiv:quant-ph/9607009v1 11 Jul 1996 Pawe l Horodecki Faculty

More information

1. Let X and Y be normed spaces and let T B(X, Y ).

1. Let X and Y be normed spaces and let T B(X, Y ). Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: NVP, Frist. 2005-03-14 Skrivtid: 9 11.30 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

Methods for Finding Bases

Methods for Finding Bases Methods for Finding Bases Bases for the subspaces of a matrix Row-reduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,

More information

THE KADISON-SINGER PROBLEM IN MATHEMATICS AND ENGINEERING: A DETAILED ACCOUNT

THE KADISON-SINGER PROBLEM IN MATHEMATICS AND ENGINEERING: A DETAILED ACCOUNT THE ADISON-SINGER PROBLEM IN MATHEMATICS AND ENGINEERING: A DETAILED ACCOUNT PETER G. CASAZZA, MATTHEW FICUS, JANET C. TREMAIN, ERIC WEBER Abstract. We will show that the famous, intractible 1959 adison-singer

More information

Wavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let)

Wavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let) Wavelet analysis In the case of Fourier series, the orthonormal basis is generated by integral dilation of a single function e jx Every 2π-periodic square-integrable function is generated by a superposition

More information

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of

More information

Cycles in a Graph Whose Lengths Differ by One or Two

Cycles in a Graph Whose Lengths Differ by One or Two Cycles in a Graph Whose Lengths Differ by One or Two J. A. Bondy 1 and A. Vince 2 1 LABORATOIRE DE MATHÉMATIQUES DISCRÉTES UNIVERSITÉ CLAUDE-BERNARD LYON 1 69622 VILLEURBANNE, FRANCE 2 DEPARTMENT OF MATHEMATICS

More information

Follow links for Class Use and other Permissions. For more information send email to: permissions@pupress.princeton.edu

Follow links for Class Use and other Permissions. For more information send email to: permissions@pupress.princeton.edu COPYRIGHT NOTICE: Ariel Rubinstein: Lecture Notes in Microeconomic Theory is published by Princeton University Press and copyrighted, c 2006, by Princeton University Press. All rights reserved. No part

More information

17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function

17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function 17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

Separation Properties for Locally Convex Cones

Separation Properties for Locally Convex Cones Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam

More information

Mathematical Physics, Lecture 9

Mathematical Physics, Lecture 9 Mathematical Physics, Lecture 9 Hoshang Heydari Fysikum April 25, 2012 Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, 2012 1 / 42 Table of contents 1 Differentiable manifolds 2 Differential

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

The sum of digits of polynomial values in arithmetic progressions

The sum of digits of polynomial values in arithmetic progressions The sum of digits of polynomial values in arithmetic progressions Thomas Stoll Institut de Mathématiques de Luminy, Université de la Méditerranée, 13288 Marseille Cedex 9, France E-mail: stoll@iml.univ-mrs.fr

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

Matrix Representations of Linear Transformations and Changes of Coordinates

Matrix Representations of Linear Transformations and Changes of Coordinates Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under

More information

ENUMERATION OF INTEGRAL TETRAHEDRA

ENUMERATION OF INTEGRAL TETRAHEDRA ENUMERATION OF INTEGRAL TETRAHEDRA SASCHA KURZ Abstract. We determine the numbers of integral tetrahedra with diameter d up to isomorphism for all d 1000 via computer enumeration. Therefore we give an

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

More information

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013 Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

More information

1 Inner Products and Norms on Real Vector Spaces

1 Inner Products and Norms on Real Vector Spaces Math 373: Principles Techniques of Applied Mathematics Spring 29 The 2 Inner Product 1 Inner Products Norms on Real Vector Spaces Recall that an inner product on a real vector space V is a function from

More information

Some stability results of parameter identification in a jump diffusion model

Some stability results of parameter identification in a jump diffusion model Some stability results of parameter identification in a jump diffusion model D. Düvelmeyer Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany Abstract In this paper we discuss

More information

CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC. 1. Introduction

CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC. 1. Introduction Acta Math. Univ. Comenianae Vol. LXXXI, 1 (2012), pp. 71 77 71 CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC E. BALLICO Abstract. Here we study (in positive characteristic) integral curves

More information

Quantum Physics II (8.05) Fall 2013 Assignment 4

Quantum Physics II (8.05) Fall 2013 Assignment 4 Quantum Physics II (8.05) Fall 2013 Assignment 4 Massachusetts Institute of Technology Physics Department Due October 4, 2013 September 27, 2013 3:00 pm Problem Set 4 1. Identitites for commutators (Based

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

5 Homogeneous systems

5 Homogeneous systems 5 Homogeneous systems Definition: A homogeneous (ho-mo-jeen -i-us) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x +... + a n x n =.. a m

More information

Tools for parsimonious edge-colouring of graphs with maximum degree three. J.L. Fouquet and J.M. Vanherpe. Rapport n o RR-2010-10

Tools for parsimonious edge-colouring of graphs with maximum degree three. J.L. Fouquet and J.M. Vanherpe. Rapport n o RR-2010-10 Tools for parsimonious edge-colouring of graphs with maximum degree three J.L. Fouquet and J.M. Vanherpe LIFO, Université d Orléans Rapport n o RR-2010-10 Tools for parsimonious edge-colouring of graphs

More information

MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Factoring Dickson polynomials over finite fields

Factoring Dickson polynomials over finite fields Factoring Dickson polynomials over finite fiels Manjul Bhargava Department of Mathematics, Princeton University. Princeton NJ 08544 manjul@math.princeton.eu Michael Zieve Department of Mathematics, University

More information