# After your registration is complete and your proctor has been approved, you may take the Credit by Examination for GEOM 1B.

Save this PDF as:

Size: px
Start display at page:

## Transcription

2 EXAM OBJECTIVES Be sure you are able to perform each of the tasks in the following skill areas to prepare yourself for the Geometry 1B CBE. The actual exam will contain the formula chart included with this practice exam. When you take your examination, be sure to show all of your work and do not leave any questions blank. Similarity Decide whether polygons are similar and to use similarity statements Find corresponding lengths, areas and perimeters of similar polygons Use the AA, SSS, and SAS Similarity Theorems Prove slope criteria using similar triangles Use Triangle Proportionality Theorem and Converse along with other similarity theorems Right Triangles and Trigonometry Circles Use the Pythagorean Theorem and Converse Classify triangles Find side lengths of special right triangles and apply special triangle relationships Use geometric means Solve problems using similar right triangles Use the tangent ratio Use the sine and cosine ratios Use the inverse trigonometric ratios Solve right triangles Find the areas of triangles Use the Law of Sines to solve triangles Use the Law of Cosines to solve triangles Identify special lines and segments of circles Draw, identify, and use properties of tangents and common tangents Find arc measures Identify congruent arcs Prove circles are similar

3 Use chords to find arc measures and arc lengths Use inscribed angles and polygons Find angle and arc measures Use circumscribed angles Use segments of chords, tangents, and secants Write and graph equations of circles Write coordinate proofs involving circles Circumference and Area Use the Formulas for circumference, area of a circle and population density Use arc lengths to find measures Measure angles in radians Find and use areas of sectors Find areas of regular polygons, kites, and rhombuses Find angle measures of regular polygons Find areas of composite figures Find the effects of proportional and non-proportional dimension changes Surface Area and Volume Classify solids Describe cross sections of, and sketch solids of revolution Find and use lateral and total surface areas of right prisms and cylinders Find and use lateral and total surface areas of regular pyramids and right cones Find and use volumes of prisms and cylinders Find and use volumes of pyramids and cones Find surface areas and volumes of spheres Compare Euclidean and spherical geometries Find distances on a sphere Find areas of spherical triangles Probability Find sample spaces Find theoretical and experimental probabilities 3

4 Determine the dependence or independence of events Find independent and dependent probabilities Find conditional probabilities Create two-way tables Use relative and conditional relative frequencies to find conditional probabilities Find probabilities of compound events Find permutations and combinations Construct and interpret probability distributions and binomial distributions 4

5 TERMS AND VOCABULARY The following terms and vocabulary words can and may be used in the exam. You should be able to identify and define each: triangle triangle A Adjacent arcs Angle of depression Angle of elevation Antipodal points Apothem of a regular polygon Approximation Arc length Axis of revolution B Binomial distribution C Cavalieri's Principle Center of a circle Central angle of a regular polygon Central angle of a circle Chord of a circle Chord of a sphere Circle Circumference Circumscribed angle Circumscribed circle Combination Common tangent Compass Compound event Concentric circles Conditional probability Congruent circles Congruent arcs Construction Corresponding parts Cosine Cross section D Dependent events Diameter Dimension Dimensional analysis Disjoint E Edge Event Experimental probability External segment F Face G Geometric mean Geometric probability Great circle I Independent events Inscribed angle Inscribed polygon Intercepted arc Inverse cosine Inverse sine Inverse tangent L Lateral area Lateral edges Lateral faces Lateral surface of a cone Law of Cosines Law of Sines M Major arc Measure of a major arc Measure of a minor arc Minor arc N N factorial Net O Oblique cone Oblique cylinder Oblique prism Outcome Overlapping events 5

6 P Permutation Point of tangency Polyhedron Population density Probability distribution Probability experiment Probability of an event Proof Proportional statement Proportionality Pythagorean Theorem R Radian Radius of a circle Radius of a regular polygon Random variable Ratio Regular pyramid Right cones Right cylinder Right prism S Sample space Scale factor Secant Secant segment Sector of a circle Segments of a chord Semicircle Similar arcs Similar figures Similarity Similarity statement Similarity transformation Simplified radical form Sine Slant height of a regular pyramid Slant height of a right cone Solid of revolution Solving a right triangle Special right triangle Standard equation of a circle Standard position Subtend Surface area T Tangent Tangent circles Tangent of a circle Tangent segment Theoretical probability Trigonometric ratio Two-way table V Vertex Vertex of a cone Vertex of a polyhedron Vertex of a pyramid Volume 6

7 GEOM 1B Formula Chart Segment and Slope Formulas ax1+ bx Partitioning a Segment: a+ b ; with endpoints at coordinates x 1 and x, that partitions the segment in the ratio of b : a. Point Slope Form: y y = m( x x ) 1 1 y y1 Slope: m = x x 1 Slope Intercept Form: y = mx + b Sum of Interior Angles of a Polygon: (n )180 Congruence Transformations Translation Coordinate Notation: (x, y) (x + a, y + b) Reflection Coordinate Notation: About the x-axis: (x, y) (x, y) About the y-axis: (x, y) ( x, y) About y = x: (x, y) (y, x) About y = x: (x, y) ( y, x) Rotation Coordinate Notation About the Origin: 90-degree counterclockwise: (x, y) ( y, x) 180-degree counterclockwise: (x, y) ( x, y) 70-degree counterclockwise: (x, y) (y, x) Similarity Transformation: Dilation coordinate notation about the origin:(x, y) (kx, ky), where k is the scale factor 7

8 Perimeter and Area Formulas Perimeter: sum of all sides Circumference of a Circle: C = π r Area Square: A = s Rectangle: A= lw Parallelogram: A= bh Triangle: 1 A = bh Trapezoid: 1 A = ( b1+ b ) h Regular Polygon: 1 A = ap a = apothem, p = perimeter Circle A = π r Surface Area and Volume Formulas for Solids Prisms Lateral Area: LA= ph p = perimeter of base, h = height of figure Surface Area: SA = ph + B B = area of base Volume: V = Bh Cylinder Lateral Area: LA = π rh Surface Area: SA = πrh + πr Volume: V = π r h Pyramid Lateral Area: Surface Area: Volume: 1 LA= ps s = slant height 1 SA = ps + B 1 V = Bh 3 8

9 Cone Lateral Area: LA = π rs Surface Area: Volume: Sphere Surface Area: Volume: Right Triangle formulas SA = πrs + πr 1 V = π r h 3 SA = 4π r 4 V = π r 3 3 Geometric Mean x is the geometric mean of two values a and b if x a = b or x = ab x Similar Triangle Theorems altitude is the geometric mean between H 1 and H altitude = H1 H L 1 is the geometric mean between H 1 and H L1 = H1 H L is the geometric mean between H and H L = H H Special Right Triangles Right Triangle Right Triangle 9

10 Midpoint Formula M x + x y + y 1 1 =, Trig Formulas: SOH CAH TOA Sine: Cosine: Tangent: opposite leg sin A = hypotenuse adjacent leg cos A = hypotenuse opposite leg tan A = adjacent leg Distance formula ( ) ( ) d = x x + y y Circle Formulas 1 1 Circle in Standard Form: ( ) ( ) x h + y k = r at center (h, k) and radius r 10

11 Area of Triangle Formula in Spherical Geometry πr A= m A+ m B+ m C 180 ( 180 ) Area of the Sector of a Circle arc measure A= πr 360 Conditional Probability ( / A) P B = ( and B) P( A) P A Permutations For n objects: P = n! n n For n objects taken r at a time: Combinations Formula n P r = n! ( n r)! The number of combinations of n objects taken r at a time, where r n, is given by: n C r = n! n r! r! ( ) 11

12 GEOM 1B Practice Exam The following practice exam represents the form and types of questions on the Credit-by- Examination that you will take. Approximately one third of the problems on the GEOM 1B CBE will be in multiple choice format. The other two thirds of the exam will be in short answer or free response format. Answer the questions below on your own paper. 1. Find the area of the spherical triangle TUV. Find the exact answer in terms of π, and the approximation rounded to the nearest tenths place.. Jennie rides her bike 6 kilometers south and then 1 kilometer east. Use the Pythagorean Theorem to find how far she is from her starting point at the end of her ride. Draw and label a diagram of the situation. Round your answer to the nearest hundredth of a kilometer. 3. A roof has a cross section that is a right triangle. The diagram shows the approximate dimensions of this cross section. Find the height h of the roof as a mixed number. 1

13 4. You are measuring the height of a tree. You stand 55 feet from the base of the tree. The angle of elevation from the ground to the top of the tree is 49. Find the height of the tree to the nearest foot. A. 11 ft. B. 70 ft. C. 63 ft. D. 58 ft. E. None of the above 5. On the axis provided named a, sketch the solid produced by rotating the figure around the given axis b. Then identify and describe the solid. Find the exact volume of the resulting solid in terms of π. 6. Using a straight edge, draw a plane that vertically intersects the following solid. Then state what kind of two-dimensional figure is formed by the cross section of the plane and the solid. What are the dimensions of the two-dimensional cross section? 13

14 7. By what factor does doubling all the linear dimensions of the figure below, affect the perimeter, and affect the area? A. Perimeter factor = ; area factor = B. Perimeter factor = ; area factor = 4 C. Perimeter factor = 4; area factor = 4 D. Perimeter factor = 4; area factor = 8 E. None of the above 8. A table top is in the shape of a regular heptagon with 13 inch sides. What is the area of the table top rounded to the nearest tenths place? A in. B in. C in. D in. E. None of the above 9. Find the volume, lateral surface area, and total surface area of the cylinder, all in terms of π. 14

15 10. A super-large pizza was purchased for a party. Pictured is the pizza with a couple of slices taken out. How much pizza in square inches, remains to serve the guests at the party. How much was taken? Round to the nearest hundredths place. 11. The point (, 8) is on a circle with the center at ( 4, 7). Write the standard equation of the circle. 1. You throw a dart at the board shown. Your dart is equally likely to hit any point inside the square board. What is the probability that your dart lands on one of the two solid sectors in the larger sector? Write the probability as a percent rounded to the tenths place. 15

16 GEOM 1B Practice Exam Answer Key: in km ft. 4. C. 63 ft. 5. Cylinder Radius of 5 and height of 1; V =300 π units 3 6. Triangle Height of 18 and base of 14 16

17 7. B. Perimeter factor = ; area factor = 4 8. C in. 9. L.A. = 90 π cm ; S.A. = 16 π cm ; V. = 70 π cm Pizza remaining = in ; pizza remaining = in 11. (x + 4) + (y 7) = π 34.1%

18 Texas Essential Knowledge and Skills GEOM I Geometry Geometry, Adopted 01. (One-Half Credit) (a) General requirements. Students shall be awarded one credit for successful completion of this course. Prerequisite: Algebra I. (b) Introduction. (1) The desire to achieve educational excellence is the driving force behind the Texas essential knowledge and skills for mathematics, guided by the college and career readiness standards. By embedding statistics, probability, and finance, while focusing on fluency and solid understanding, Texas will lead the way in mathematics education and prepare all Texas students for the challenges they will face in the 1st century. () The process standards describe ways in which students are expected to engage in the content. The placement of the process standards at the beginning of the knowledge and skills listed for each grade and course is intentional. The process standards weave the other knowledge and skills together so that students may be successful problem solvers and use mathematics efficiently and effectively in daily life. The process standards are integrated at every grade level and course. When possible, students will apply mathematics to problems arising in everyday life, society, and the workplace. Students will use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution. Students will select appropriate tools such as real objects, manipulatives, paper and pencil, and technology and techniques such as mental math, estimation, and number sense to solve problems. Students will effectively communicate mathematical ideas, reasoning, and their implications using multiple representations such as symbols, diagrams, graphs, and language. Students will use mathematical relationships to generate solutions and make connections and predictions. Students will analyze mathematical relationships to connect and communicate mathematical ideas. Students will display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication. (3) In Geometry, students will build on the knowledge and skills for mathematics in Kindergarten-Grade 8 and Algebra I to strengthen their mathematical reasoning skills in geometric contexts. Within the course, students will begin to focus on more precise terminology, symbolic representations, and the development of proofs. Students will explore concepts covering coordinate and transformational geometry; logical argument and constructions; proof and congruence; similarity, proof, and trigonometry; two- and three-dimensional figures; circles; and probability. Students will connect previous knowledge from Algebra I to Geometry through the coordinate and transformational geometry strand. In the logical arguments and constructions strand, students are expected to create formal constructions using a straight edge and compass. Though this course is primarily Euclidean geometry, students should complete the course with an understanding that non-euclidean geometries exist. In proof and congruence, students will use deductive reasoning to justify, prove and apply theorems about geometric figures. Throughout the standards, the term "prove" means a formal proof to be shown in a paragraph, a flow chart, or two-column formats. Proportionality is the unifying component of the similarity, proof, and trigonometry strand. Students will use their proportional reasoning skills to prove and apply theorems and solve problems in this strand. The two- and three-dimensional figure strand focuses on the application of formulas in multi-step situations since students have developed background knowledge in two- and three-dimensional figures. Using patterns to identify geometric properties, students will apply theorems about circles to determine relationships between special segments and angles in circles. Due to the emphasis of probability and statistics in the college and career readiness standards, standards dealing with probability have been added to the geometry curriculum to ensure students have proper exposure to these topics before pursuing their post-secondary education. (4) These standards are meant to provide clarity and specificity in regards to the content covered in the high school geometry course. These standards are not meant to limit the methodologies used to convey this knowledge to students. Though the standards are written in a particular order, they are not necessarily meant to be taught in the given order. In the standards, the phrase "to solve problems" includes both contextual and non-contextual problems unless specifically stated. (5) Statements that contain the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples. (c) Knowledge and skills. (1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to: (A) apply mathematics to problems arising in everyday life, society, and the workplace; (B) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution; (C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems; (D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate; (E) create and use representations to organize, record, and communicate mathematical ideas; (F) analyze mathematical relationships to connect and communicate mathematical ideas; and (G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication. 18

19 () Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the one- and two-dimensional coordinate systems to verify geometric conjectures. The student is expected to: (A) determine the coordinates of a point that is a given fractional distance less than one from one end of a line segment to the other in one- and two-dimensional coordinate systems, including finding the midpoint; (B) derive and use the distance, slope, and midpoint formulas to verify geometric relationships, including congruence of segments and parallelism or perpendicularity of pairs of lines; and (C) determine an equation of a line parallel or perpendicular to a given line that passes through a given point. (3) Coordinate and transformational geometry. The student uses the process skills to generate and describe rigid transformations (translation, reflection, and rotation) and non-rigid transformations (dilations that preserve similarity and reductions and enlargements that do not preserve similarity). The student is expected to: (A) describe and perform transformations of figures in a plane using coordinate notation; (B) determine the image or pre-image of a given two-dimensional figure under a composition of rigid transformations, a composition of nonrigid transformations, and a composition of both, including dilations where the center can be any point in the plane; (C) identify the sequence of transformations that will carry a given pre-image onto an image on and off the coordinate plane; and (D) identify and distinguish between reflectional and rotational symmetry in a plane figure. (4) Logical argument and constructions. The student uses the process skills with deductive reasoning to understand geometric relationships. The student is expected to: (A) distinguish between undefined terms, definitions, postulates, conjectures, and theorems; (B) identify and determine the validity of the converse, inverse, and contrapositive of a conditional statement and recognize the connection between a biconditional statement and a true conditional statement with a true converse; (C) verify that a conjecture is false using a counterexample; and (D) compare geometric relationships between Euclidean and spherical geometries, including parallel lines and the sum of the angles in a triangle. (5) Logical argument and constructions. The student uses constructions to validate conjectures about geometric figures. The student is expected to: (A) investigate patterns to make conjectures about geometric relationships, including angles formed by parallel lines cut by a transversal, criteria required for triangle congruence, special segments of triangles, diagonals of quadrilaterals, interior and exterior angles of polygons, and special segments and angles of circles choosing from a variety of tools; (B) construct congruent segments, congruent angles, a segment bisector, an angle bisector, perpendicular lines, the perpendicular bisector of a line segment, and a line parallel to a given line through a point not on a line using a compass and a straightedge; (C) use the constructions of congruent segments, congruent angles, angle bisectors, and perpendicular bisectors to make conjectures about geometric relationships; and (D) verify the Triangle Inequality theorem using constructions and apply the theorem to solve problems. (6) Proof and congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two-column, paragraph, and flow chart. The student is expected to: (A) verify theorems about angles formed by the intersection of lines and line segments, including vertical angles, and angles formed by parallel lines cut by a transversal and prove equidistance between the endpoints of a segment and points on its perpendicular bisector and apply these relationships to solve problems; (B) prove two triangles are congruent by applying the Side-Angle-Side, Angle-Side-Angle, Side-Side-Side, Angle-Angle-Side, and Hypotenuse- Leg congruence conditions; (C) apply the definition of congruence, in terms of rigid transformations, to identify congruent figures and their corresponding sides and angles; (D) verify theorems about the relationships in triangles, including proof of the Pythagorean Theorem, the sum of interior angles, base angles of isosceles triangles, midsegments, and medians, and apply these relationships to solve problems; and (E) prove a quadrilateral is a parallelogram, rectangle, square, or rhombus using opposite sides, opposite angles, or diagonals and apply these relationships to solve problems. (7) Similarity, proof, and trigonometry. The student uses the process skills in applying similarity to solve problems. The student is expected to: (A) apply the definition of similarity in terms of a dilation to identify similar figures and their proportional sides and the congruent corresponding angles; and (B) apply the Angle-Angle criterion to verify similar triangles and apply the proportionality of the corresponding sides to solve problems. (8) Similarity, proof, and trigonometry. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two-column, paragraph, and flow chart. The student is expected to: 19

20 (A) prove theorems about similar triangles, including the Triangle Proportionality theorem, and apply these theorems to solve problems; and (B) identify and apply the relationships that exist when an altitude is drawn to the hypotenuse of a right triangle, including the geometric mean, to solve problems. (9) Similarity, proof, and trigonometry. The student uses the process skills to understand and apply relationships in right triangles. The student is expected to: (A) determine the lengths of sides and measures of angles in a right triangle by applying the trigonometric ratios sine, cosine, and tangent to solve problems; and (B) apply the relationships in special right triangles and and the Pythagorean theorem, including Pythagorean triples, to solve problems. (10) Two-dimensional and three-dimensional figures. The student uses the process skills to recognize characteristics and dimensional changes of two- and three-dimensional figures. The student is expected to: (A) identify the shapes of two-dimensional cross-sections of prisms, pyramids, cylinders, cones, and spheres and identify three-dimensional objects generated by rotations of two-dimensional shapes; and (B) determine and describe how changes in the linear dimensions of a shape affect its perimeter, area, surface area, or volume, including proportional and non-proportional dimensional change. (11) Two-dimensional and three-dimensional figures. The student uses the process skills in the application of formulas to determine measures of two- and three-dimensional figures. The student is expected to: (A) apply the formula for the area of regular polygons to solve problems using appropriate units of measure; (B) determine the area of composite two-dimensional figures comprised of a combination of triangles, parallelograms, trapezoids, kites, regular polygons, or sectors of circles to solve problems using appropriate units of measure; (C) apply the formulas for the total and lateral surface area of three-dimensional figures, including prisms, pyramids, cones, cylinders, spheres, and composite figures, to solve problems using appropriate units of measure; and (D) apply the formulas for the volume of three-dimensional figures, including prisms, pyramids, cones, cylinders, spheres, and composite figures, to solve problems using appropriate units of measure. (1) Circles. The student uses the process skills to understand geometric relationships and apply theorems and equations about circles. The student is expected to: (A) apply theorems about circles, including relationships among angles, radii, chords, tangents, and secants, to solve non-contextual problems; (B) apply the proportional relationship between the measure of an arc length of a circle and the circumference of the circle to solve problems; (C) apply the proportional relationship between the measure of the area of a sector of a circle and the area of the circle to solve problems; (D) describe radian measure of an angle as the ratio of the length of an arc intercepted by a central angle and the radius of the circle; and (E) show that the equation of a circle with center at the origin and radius r is x + y = r and determine the equation for the graph of a circle with radius r and center (h, k), (x - h) + (y - k) =r. (13) Probability. The student uses the process skills to understand probability in real-world situations and how to apply independence and dependence of events. The student is expected to: (A) develop strategies to use permutations and combinations to solve contextual problems; (B) determine probabilities based on area to solve contextual problems; (C) identify whether two events are independent and compute the probability of the two events occurring together with or without replacement; (D) apply conditional probability in contextual problems; and (E) apply independence in contextual problems. Source: The provisions of this adopted to be effective September 10, 01, 37 TexReg

### A Correlation of Pearson Texas Geometry Digital, 2015

A Correlation of Pearson Texas Geometry Digital, 2015 To the Texas Essential Knowledge and Skills (TEKS) for Geometry, High School, and the Texas English Language Proficiency Standards (ELPS) Correlations

### GEOMETRY CONCEPT MAP. Suggested Sequence:

CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

### Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter C. High School

High School 111.C. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter C. High School Statutory Authority: The provisions of this Subchapter C issued under the Texas Education

### Geometry Essential Curriculum

Geometry Essential Curriculum Unit I: Fundamental Concepts and Patterns in Geometry Goal: The student will demonstrate the ability to use the fundamental concepts of geometry including the definitions

### Chapter 1: Essentials of Geometry

Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

### Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

### Geometry Enduring Understandings Students will understand 1. that all circles are similar.

High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

### Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

# 30-60 right triangle, 441-442, 684 A Absolute value, 59 Acute angle, 77, 669 Acute triangle, 178 Addition Property of Equality, 86 Addition Property of Inequality, 258 Adjacent angle, 109, 669 Adjacent

### Overview Mathematical Practices Congruence

Overview Mathematical Practices Congruence 1. Make sense of problems and persevere in Experiment with transformations in the plane. solving them. Understand congruence in terms of rigid motions. 2. Reason

### Conjectures. Chapter 2. Chapter 3

Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

### Geometry. Higher Mathematics Courses 69. Geometry

The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and

### Week 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test

Thinkwell s Homeschool Geometry Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Geometry! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson plan

### New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

COURSE OVERVIEW The geometry course is centered on the beliefs that The ability to construct a valid argument is the basis of logical communication, in both mathematics and the real-world. There is a need

### Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade

Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Standards/Content Padrões / Conteúdo Learning Objectives Objetivos de Aprendizado Vocabulary Vocabulário Assessments Avaliações Resources

### Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

### Geometry Math Standards and I Can Statements

Geometry Math Standards and I Can Statements Unit 1 Subsection A CC.9-12.G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions

### GEOMETRY COMMON CORE STANDARDS

1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,

### Geometry Chapter 1 Vocabulary. coordinate - The real number that corresponds to a point on a line.

Chapter 1 Vocabulary coordinate - The real number that corresponds to a point on a line. point - Has no dimension. It is usually represented by a small dot. bisect - To divide into two congruent parts.

### Geometry Texas Mathematics: Unpacked Content

Geometry Texas Mathematics: Unpacked Content What is the purpose of this document? To increase student achievement by ensuring educators understand specifically what the new standards mean a student must

### CONJECTURES - Discovering Geometry. Chapter 2

CONJECTURES - Discovering Geometry Chapter C-1 Linear Pair Conjecture - If two angles form a linear pair, then the measures of the angles add up to 180. C- Vertical Angles Conjecture - If two angles are

### Centroid: The point of intersection of the three medians of a triangle. Centroid

Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:

### Coordinate Coplanar Distance Formula Midpoint Formula

G.(2) Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the oneand two-dimensional coordinate systems to

### Topics Covered on Geometry Placement Exam

Topics Covered on Geometry Placement Exam - Use segments and congruence - Use midpoint and distance formulas - Measure and classify angles - Describe angle pair relationships - Use parallel lines and transversals

### Middle Grades Mathematics 5 9

Middle Grades Mathematics 5 9 Section 25 1 Knowledge of mathematics through problem solving 1. Identify appropriate mathematical problems from real-world situations. 2. Apply problem-solving strategies

### Florida Geometry EOC Assessment Study Guide

Florida Geometry EOC Assessment Study Guide The Florida Geometry End of Course Assessment is computer-based. During testing students will have access to the Algebra I/Geometry EOC Assessments Reference

### 56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.

6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which

### 2, 3 1, 3 3, 2 3, 2. 3 Exploring Geometry Construction: Copy &: Bisect Segments & Angles Measure & Classify Angles, Describe Angle Pair Relationship

Geometry Honors Semester McDougal 014-015 Day Concepts Lesson Benchmark(s) Complexity Level 1 Identify Points, Lines, & Planes 1-1 MAFS.91.G-CO.1.1 1 Use Segments & Congruence, Use Midpoint & 1-/1- MAFS.91.G-CO.1.1,

### Geometry Credit Recovery

Geometry Credit Recovery COURSE DESCRIPTION: This is a comprehensive course featuring geometric terms and processes, logic, and problem solving. Topics include parallel line and planes, congruent triangles,

### Definitions, Postulates and Theorems

Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

### Geometry. Unit 1. Transforming and Congruence. Suggested Time Frame 1 st Six Weeks 22 Days

Geometry Unit 1 Transforming and Congruence Title Suggested Time Frame 1 st Six Weeks 22 Days Big Ideas/Enduring Understandings Module 1 Tools of geometry can be used to solve real-world problems. Variety

### Wallingford Public Schools - HIGH SCHOOL COURSE OUTLINE

Wallingford Public Schools - HIGH SCHOOL COURSE OUTLINE Course Title: Geometry Course Number: A 1223, G1224 Department: Mathematics Grade(s): 10-11 Level(s): Academic and General Objectives that have an

### Module 3 Congruency can be used to solve real-world problems. What happens when you apply more than one transformation to

Transforming and Congruence *CISD Safety Net Standards: G.3C, G.4C Title Big Ideas/Enduring Understandings Module 1 Tools of geometry can be used to solve real-world problems. Variety of representations

### A COURSE OUTLINE FOR GEOMETRY DEVELOPED BY ANN SHANNON & ASSOCIATES FOR THE BILL & MELINDA GATES FOUNDATION

A COURSE OUTLINE FOR GEOMETRY DEVELOPED BY ANN SHANNON & ASSOCIATES FOR THE BILL & MELINDA GATES FOUNDATION JANUARY 2014 Geometry Course Outline Content Area G0 Introduction and Construction G-CO Congruence

### Scope & Sequence MIDDLE SCHOOL

Math in Focus is a registered trademark of Times Publishing Limited. Houghton Mifflin Harcourt Publishing Company. All rights reserved. Printed in the U.S.A. 06/13 MS77941n Scope & Sequence MIDDLE SCHOOL

### CRLS Mathematics Department Geometry Curriculum Map/Pacing Guide. CRLS Mathematics Department Geometry Curriculum Map/Pacing Guide

Curriculum Map/Pacing Guide page of 6 2 77.5 Unit : Tools of 5 9 Totals Always Include 2 blocks for Review & Test Activity binder, District Google How do you find length, area? 2 What are the basic tools

### Name Geometry Exam Review #1: Constructions and Vocab

Name Geometry Exam Review #1: Constructions and Vocab Copy an angle: 1. Place your compass on A, make any arc. Label the intersections of the arc and the sides of the angle B and C. 2. Compass on A, make

### alternate interior angles

alternate interior angles two non-adjacent angles that lie on the opposite sides of a transversal between two lines that the transversal intersects (a description of the location of the angles); alternate

### Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter B. Middle School

Middle School 111.B. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter B. Middle School Statutory Authority: The provisions of this Subchapter B issued under the Texas Education

### Geometry Honors: Extending 2 Dimensions into 3 Dimensions. Unit Overview. Student Focus. Semester 2, Unit 5: Activity 30. Resources: Online Resources:

Geometry Honors: Extending 2 Dimensions into 3 Dimensions Semester 2, Unit 5: Activity 30 Resources: SpringBoard- Geometry Online Resources: Geometry Springboard Text Unit Overview In this unit students

### Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)

Mathematical Sentence - a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement

### KS4 Curriculum Plan Maths FOUNDATION TIER Year 9 Autumn Term 1 Unit 1: Number

KS4 Curriculum Plan Maths FOUNDATION TIER Year 9 Autumn Term 1 Unit 1: Number 1.1 Calculations 1.2 Decimal Numbers 1.3 Place Value Use priority of operations with positive and negative numbers. Simplify

### BASIC GEOMETRY GLOSSARY

BASIC GEOMETRY GLOSSARY Acute angle An angle that measures between 0 and 90. Examples: Acute triangle A triangle in which each angle is an acute angle. Adjacent angles Two angles next to each other that

### Georgia Standards of Excellence Mathematics

Georgia Standards of Excellence Mathematics Standards GSE Geometry K-12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical understanding

### Larson, R. and Boswell, L. (2016). Big Ideas Math, Algebra 2. Erie, PA: Big Ideas Learning, LLC. ISBN

ALG B Algebra II, Second Semester #PR-0, BK-04 (v.4.0) To the Student: After your registration is complete and your proctor has been approved, you may take the Credit by Examination for ALG B. WHAT TO

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### Framework for developing schemes of work for the geometry curriculum for ages 14-16

Framework for developing schemes of work for the geometry curriculum for ages 14-16 CURRICULUM GRADES G - F GRADES E - D GRADES C - B GRADES A A* INVESTIGATION CONTEXT Distinguish Know and use angle, Construct

### Blue Springs School District Geometry - Syllabus 1 Credit Hour

Teacher: Mr. Jakob Estep Plan: 2 nd Hour (8:20-9:10) School Phone Number: (816) 224-1315 Email: jestep@bssd.net Blue Springs School District Geometry - Syllabus 1 Credit Hour 2014-2015 Textbook: Course

### 10.1: Areas of Parallelograms and Triangles

10.1: Areas of Parallelograms and Triangles Important Vocabulary: By the end of this lesson, you should be able to define these terms: Base of a Parallelogram, Altitude of a Parallelogram, Height of a

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### Chapter 8 Geometry We will discuss following concepts in this chapter.

Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles

### Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

### of one triangle are congruent to the corresponding parts of the other triangle, the two triangles are congruent.

2901 Clint Moore Road #319, Boca Raton, FL 33496 Office: (561) 459-2058 Mobile: (949) 510-8153 Email: HappyFunMathTutor@gmail.com www.happyfunmathtutor.com GEOMETRY THEORUMS AND POSTULATES GEOMETRY POSTULATES:

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### CSU Fresno Problem Solving Session. Geometry, 17 March 2012

CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news

### of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property

### Geometry Notes PERIMETER AND AREA

Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

### Math, Grades 6-8 TEKS and TAKS Alignment

111.22. Mathematics, Grade 6. 111.23. Mathematics, Grade 7. 111.24. Mathematics, Grade 8. (a) Introduction. (1) Within a well-balanced mathematics curriculum, the primary focal points are using ratios

### Geometry: A Common Core Program

1 Tools of Geometry This chapter begins by addressing the building blocks of geometry which are the point, the line, and the plane. Students will construct line segments, midpoints, bisectors, angles,

### Geometry Regents Review

Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

### Review for Final - Geometry B

Review for Final - Geometry B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A model is made of a car. The car is 4 meters long and the model is 7 centimeters

### CAMI Education linked to CAPS: Mathematics

- 1 - TOPIC 1.1 Whole numbers _CAPS Curriculum TERM 1 CONTENT Properties of numbers Describe the real number system by recognizing, defining and distinguishing properties of: Natural numbers Whole numbers

### Su.a Supported: Identify Determine if polygons. polygons with all sides have all sides and. and angles equal angles equal (regular)

MA.912.G.2 Geometry: Standard 2: Polygons - Students identify and describe polygons (triangles, quadrilaterals, pentagons, hexagons, etc.), using terms such as regular, convex, and concave. They find measures

### 10-4 Inscribed Angles. Find each measure. 1.

Find each measure. 1. 3. 2. intercepted arc. 30 Here, is a semi-circle. So, intercepted arc. So, 66 4. SCIENCE The diagram shows how light bends in a raindrop to make the colors of the rainbow. If, what

Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are

### 1.6 Powers of 10 and standard form Write a number in standard form. Calculate with numbers in standard form.

Unit/section title 1 Number Unit objectives (Edexcel Scheme of Work Unit 1: Powers, decimals, HCF and LCM, positive and negative, roots, rounding, reciprocals, standard form, indices and surds) 1.1 Number

### 12 Surface Area and Volume

12 Surface Area and Volume 12.1 Three-Dimensional Figures 12.2 Surface Areas of Prisms and Cylinders 12.3 Surface Areas of Pyramids and Cones 12.4 Volumes of Prisms and Cylinders 12.5 Volumes of Pyramids

### 2006 ACTM STATE GEOMETRY EXAM

2006 TM STT GOMTRY XM In each of the following you are to choose the best (most correct) answer and mark the corresponding letter on the answer sheet provided. The figures are not necessarily drawn to

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of

### GCSE Maths Linear Higher Tier Grade Descriptors

GSE Maths Linear Higher Tier escriptors Fractions /* Find one quantity as a fraction of another Solve problems involving fractions dd and subtract fractions dd and subtract mixed numbers Multiply and divide

Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

### Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

### ALG 1A Algebra I, First Semester PR-10254, BK (v.3.0) To the Student:

ALG 1A Algebra I, First Semester PR-10254, BK-10255 (v.3.0) To the Student: After your registration is complete and your proctor has been approved, you may take the Credit by Examination for ALG 1A. WHAT

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.

PERIMETER AND AREA In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. Perimeter Perimeter The perimeter of a polygon, denoted by P, is the

### Year 8 - Maths Autumn Term

Year 8 - Maths Autumn Term Whole Numbers and Decimals Order, add and subtract negative numbers. Recognise and use multiples and factors. Use divisibility tests. Recognise prime numbers. Find square numbers

### Mathematics Standards

1 Table of Contents Mathematics Standards Subject Pages Algebra 1-2 2-4 Algebra 3-4 5-6 AP Calculus AB and BC Standards 7 AP Statistics Standards 8 Consumer Math 9 Geometry 1-2 10-11 Honors Differential

### 0810ge. Geometry Regents Exam 0810

0810ge 1 In the diagram below, ABC XYZ. 3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm. Which two statements identify

### MATHEMATICS Grade 6 Standard: Number, Number Sense and Operations

Standard: Number, Number Sense and Operations Number and Number C. Develop meaning for percents including percents greater than 1. Describe what it means to find a specific percent of a number, Systems

### Math Foundations IIB Grade Levels 9-12

Math Foundations IIB Grade Levels 9-12 Math Foundations IIB introduces students to the following concepts: integers coordinate graphing ratio and proportion multi-step equations and inequalities points,

### Geometry, Final Review Packet

Name: Geometry, Final Review Packet I. Vocabulary match each word on the left to its definition on the right. Word Letter Definition Acute angle A. Meeting at a point Angle bisector B. An angle with a

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### Higher Geometry Problems

Higher Geometry Problems ( Look up Eucidean Geometry on Wikipedia, and write down the English translation given of each of the first four postulates of Euclid. Rewrite each postulate as a clear statement

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

### 8 th Grade Pre-Algebra Textbook Alignment Revised 4/28/2010

Revised 4/28/2010 September Lesson Number & Name GLCE Code & Skill #1 N.MR.08.10 Calculate weighted averages such as course grades, consumer price indices, and sports ratings. #2 D.AN.08.01 Determine which

### Course: Math 7. engage in problem solving, communicating, reasoning, connecting, and representing

Course: Math 7 Decimals and Integers 1-1 Estimation Strategies. Estimate by rounding, front-end estimation, and compatible numbers. Prentice Hall Textbook - Course 2 7.M.0 ~ Measurement Strand ~ Students

### Common Core State Standard I Can Statements 8 th Grade Mathematics. The Number System (NS)

CCSS Key: The Number System (NS) Expressions & Equations (EE) Functions (F) Geometry (G) Statistics & Probability (SP) Common Core State Standard I Can Statements 8 th Grade Mathematics 8.NS.1. Understand

### Utah Core Curriculum for Mathematics

Core Curriculum for Mathematics correlated to correlated to 2005 Chapter 1 (pp. 2 57) Variables, Expressions, and Integers Lesson 1.1 (pp. 5 9) Expressions and Variables 2.2.1 Evaluate algebraic expressions

### Lesson List

2016-2017 Lesson List Table of Contents Operations and Algebraic Thinking... 3 Number and Operations in Base Ten... 6 Measurement and Data... 9 Number and Operations - Fractions...10 Financial Literacy...14

### NEW MEXICO Grade 6 MATHEMATICS STANDARDS

PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical

### Prentice Hall Algebra 2 2011 Correlated to: Colorado P-12 Academic Standards for High School Mathematics, Adopted 12/2009

Content Area: Mathematics Grade Level Expectations: High School Standard: Number Sense, Properties, and Operations Understand the structure and properties of our number system. At their most basic level

### DRAFT. Geometry EOC Item Specifications

DRAFT Geometry EOC Item Specifications The release of the updated FSA Test Item Specifications is intended to provide greater specificity for item writers in developing items to be field tested in 2016.

### Distance, Midpoint, and Pythagorean Theorem

Geometry, Quarter 1, Unit 1.1 Distance, Midpoint, and Pythagorean Theorem Overview Number of instructional days: 8 (1 day = 45 minutes) Content to be learned Find distance and midpoint. (2 days) Identify

### PUBLIC SCHOOLS OF EDISON TOWNSHIP OFFICE OF CURRICULUM AND INSTRUCTION GEOMETRY HONORS. Middle School and High School

PUBLIC SCHOOLS OF EDISON TOWNSHIP OFFICE OF CURRICULUM AND INSTRUCTION GEOMETRY HONORS Length of Course: Elective/Required: Schools: Term Required Middle School and High School Eligibility: Grades 8-12

### 3. Lengths and areas associated with the circle including such questions as: (i) What happens to the circumference if the radius length is doubled?

1.06 Circle Connections Plan The first two pages of this document show a suggested sequence of teaching to emphasise the connections between synthetic geometry, co-ordinate geometry (which connects algebra

### GEOMETRY FINAL EXAM REVIEW

GEOMETRY FINL EXM REVIEW I. MTHING reflexive. a(b + c) = ab + ac transitive. If a = b & b = c, then a = c. symmetric. If lies between and, then + =. substitution. If a = b, then b = a. distributive E.