# Symmetric planar non collinear relative equilibria for the Lennard Jones potential 3 body problem with two equal masses

Save this PDF as:

Size: px
Start display at page:

Download "Symmetric planar non collinear relative equilibria for the Lennard Jones potential 3 body problem with two equal masses"

## Transcription

1 Monografías de la Real Academia de Ciencias de Zaragoza. 25: , (2004). Symmetric planar non collinear relative equilibria for the Lennard Jones potential 3 body problem with two equal masses M. Corbera, J. Llibre and E. Pérez Chavela Departament d Informàtica i Matemàtica. Universitat de Vic Vic. Barcelona. Spain. Departament de Matemàtiques. Universitat Autònoma de Barcelona Bellaterra. Barcelona. Spain. Departamento de Matemáticas. Universidad Autónoma Metropolitana-I México D.F. México. Abstract In this paper we study the planar relative equilibria for a system of three point particles with only two equal masses moving under the action of a Lennard Jones potential. A central configuration is a special position of the particles where the position and acceleration vectors of each particle with respect to the center of mass are proportional, and the constant of proportionality is the same for all particles. Since the Lennard Jones potential depends only on the mutual distances among the particles, it is invariant under rotations. In a convenient rotating frame the orbits coming from central configurations become equilibrium points, the relative equilibria. Due to the form of the potential, the relative equilibria depend on the size of the system, that is, depend strongly of the momentum of inertia I of the system. In this work we characterize the symmetric planar non collinear relative equilibria and we give the values of I depending on the parameters of the Lennard Jones potential for which the number of relative equilibria changes. Key words and expressions: Central configurations, Lennard Jones potential, relative equilibria. MSC: 70F10, 70H05, 34C23. 93

2 1 Introduction In order to get an accurate model to study the action of the intermolecular and gravitational forces at the same time, many authors from physics, astrophysics, astronomy and chemistry have introduced new kinds of potentials, with a structure different from the classical Newtonian and Coulombian potentials. In this way, one potential that has been used very often in those branches of science is the Lennard Jones potential, which is the one studied in this paper. For instance, it is used to model the nature and stability of small clusters of interacting particles in crystal growth, random geometry of liquids, or in the theory of homogeneous nucleation, see [4] and [8]. This potential also appears in molecular dynamics to simulate many particle systems ranging from solids, liquids, gases, and biomolecules on Earth. Also it appears in the study of the motion of stars and galaxies in the Universe among other applications. This work is based on the previous work [2]. In [2] the authors studied the equilibria and the relative equilibria of the planar Lennard Jones 2 and 3 body problem when all the particles have equal masses. A relative equilibrium solution is a solution such that the configuration of the three particles remains invariant under a convenient rotation. This configuration is central, this is equivalent to say that the position and acceleration vectors of each particle with respect to the center of mass are proportional with the same constant of proportionality. Since the Lennard Jones potential is invariant under rotations but it is not invariant under homothecies, the relative equilibria depend on the size of the system, that is, depend on the momentum of inertia I of the system. This does not happen in other planar problems, like for instance the planar Newtonian 3 body problem (see for a definition [3] or [6]). In this paper we consider the planar Lennard Jones 3 body problem with masses m 1, m 2 and m 3 when we have only two particles with equal masses. Without loss of generality we shall take m 1 = m 2. In particular, we find the planar non collinear equilibrium points (see Theorem 2), we analyze the symmetric planar non collinear central configurations and we give the bifurcation values of I, depending on the parameters of the Lennard Jones potential, for which the number of central configurations changes (see Theorems 6 and 9). When we say a symmetric planar non collinear central configuration we mean that the triangle formed by the three particles of a central configuration has an axis of symmetry passing through m 3. In [2] it has been proved that when the three particles are equal, all planar non collinear central configurations are symmetric. Here we show that when the three particles are not equal there exist also non symmetric central configurations. 94

3 2 Equations of Motion We consider two particles m 1 and m 2 with the same mass and a third one m 3 with different mass that are moving in the Euclidean plane. The forces between every pair of particles are given by a Lennard Jones potential energy. Let q i R 2 denote the position of the particle i in an inertial coordinate system, and let q = (q 1,q 2,q 3 ). The Lennard Jones potential is a spherically symmetric non bounded interaction between two particles given by [ (R0 ) 12 φ(r) = D 0 2 r ( R0 r ) 6 ], (1) where r is the distance between the particles, R 0 is the equilibrium separation of two interacting particles and it corresponds to the minimum of φ(r), and D 0 = φ(r 0 ) is sometimes called the well depth. The function (1) is equivalent to the following one by using the relationships R 0 = 2 1/6 σ and D 0 = ε [ (σ ) 12 ( σ ) ] 6 φ(r) = 4ε, r r where σ is the arithmetic mean of the two van der Waals radii of the two interacting particles. Let σ 11 and ε 11 be the parameters of the Lennard Jones potential corresponding to interactions between the two particles m 1 and m 2 with equal masses; and let σ 22 and ε 22 be the parameters corresponding to interactions between a pair of particles with mass m 3. Cross interactions between particles of different masses are computed using the Lorentz Berthelot combining rules: (see [1]) σ 12 = 1 2 (σ 11 + σ 22 ), ε 12 = ε 11 ε 22. Choosing the units of mass, length and time conveniently we can think that the particles with mass m 1 = m 2 have mass 1, radius σ = 1/(2 1/6 ) (which corresponds to take an equilibrium separation equal to 1), and an interaction energy ε = 1; and the particle m 3 has mass m, radius σ (equilibrium separation equal to R 0 ), and an interaction energy ε. Using the Lorentz Berthelot combining rules we have that σ 12 = 1 ( /6 + R ) 0 2 1/6, ε 12 = ε. Then, denoting by ρ the R 0 corresponding to (1) for an interaction between a pair of particles with masses 1 and m, we get that ρ = 1 2 (1 + R 0). In short, from (1), the potential energy of the three particles is given by U = 1 r r [ ( ) ρ 12 ( ) ] ρ 6 ε 2 + [ ( ρ ε r 13 r r 23 ) 12 ( ) ] ρ 6 2 r 23, (2)

4 where r ij = q i q j is the distance between the particles i and j. The Newton s equations of the planar motion associated to potential (2) are M q = U(q), (3) where M =diag(1, 1, 1, 1, m, m) is a 6 6 diagonal matrix, and the dot denotes derivative with respect to the time t. Equations (3) are only defined on the configuration space = {(q 1,q 2,q 3 ) R 6 : q i q j }. The center of mass of the particles is R = 1 2+m (q 1 + q 2 + mq 3 ). In what follows we will assume that the center of mass of the particles is fixed at the origin. 3 Equilibrium Solutions The simplest type of solutions of system (3) are the equilibrium points; that is, when the 3 particles are at rest for all t R. Then, an equilibrium point of (3) is a solution satisfying the equation U(q) = 0. We denote by R 12 = r 12, R 13 = r 13 /ρ and R 23 = r 23 /ρ, then the potential energy (2) becomes U(R 12, R 13, R 23 ) = 1 R R ( 1 ε R ) R ( 1 ε R ) R23 6 We note that R 12, R 13 and R 23 are functions of the variables q i, for i = 1, 2, 3.. (4) In order to solve equation U(q) = 0 we will use the following lemma proved in [2]. Lemma 1 Let u = f(x) be a function with x = (x 1, x 2,..., x n ), x 1 = g 1 (y), x 2 = g 2 (y),..., x n = g n (y), y = (y 1, y 2,..., y m ) and m n. If rank (A) = n being A = then f(x) = 0 if and only if u(y) = 0. x 1 x n... y 1 y x 1 x n... y m y m, Using Lemma 1 we have that if rank (A) = 3 being R 12 R 13 R 23 q 11 q 21 1 q 11 q 31 q 11 q 11 q 11 0 r 12 ρ r 13 R 12 R 13 R 23 q 12 q 22 1 q 12 q 32 q 12 q 12 q 12 0 r 12 ρ r 13 R 12 R 13 R 23 q 11 q 21 1 q 21 q 31 0 A = q 21 q 21 q 21 R 12 R 13 R 23 = r 12 ρ r 23 q 12 q 22 1 q 22 q 32 0 q 22 q 22 q 22 r 12 ρ r 23 R 12 R 13 R q 11 q 31 1 q 21 q 31 q 31 q 31 q 31 ρ r 13 ρ r 23 R 12 R 13 R q 12 q 32 1 q 22 q 32 q 32 q 32 q 32 ρ r 13 ρ r 23 96,

5 then U(q) = 0 if and only if U(R 12, R 13, R 23 ) = 0. Here, q i = (q i1, q i2 ) for i = 1, 2, 3. After some computations we see that rank (A) = 3 if and only if q 11 q 12 1 det q 21 q q 31 q 32 1 This determinant is twice the oriented area of the triangle formed by the 3 particles. In short, if q 1, q 2 and q 3 are not collinear, then U(R 12, R 13, R 23 ) = 0 if and only if U(q) = 0. In this paper we do not consider the collinear case. Therefore, the planar non collinear equilibrium points of the Lennard Jones 3 body problem (3) are given by the solutions of the equation U(R 12, R 13, R 23 ) = 12 ( R12 13 R12 7 ) 12 ε ( R13 13 R13 7 ) 12 ε ( R23 13 R23 7 ) = We solve the equation R 13 R 7 = 0 obtaining a unique positive real root R = 1. So, U(R 12, R 13, R 23 ) = 0 if and only if R 12 = R 13 = R 23 = 1. Therefore, we have infinitely many planar non collinear equilibrium points of the Lennard Jones 3 body problem (3) which are characterized by the following result. Theorem 2 The planar non collinear equilibrium points of the Lennard Jones 3 body problem (3) are given by the set { (q 1,q 2,q 3 ) R 6 : q 1 q 2 = 1, q 1 q 3 = q 2 q 3 = ρ, q 3 = 1 } m (q 1 + q 2 ). We note that in a planar equilibrium point of the Lennard Jones 3 body problem (3), the three particles are at the vertices of an isosceles triangle, equilateral if ρ = 1. 4 Relative Equilibrium Solutions Another simple type of solutions are the relative equilibrium solutions; that is, solutions of (3) that become an equilibrium point in a uniformly rotating coordinate system. These solutions are characterized as follows. Let R(θ) and J denote the 6 6 block diagonal matrices with 3 blocks of size 2 2 of the form ( ) ( ) cos θ sinθ 0 1, and, sin θ cos θ

6 respectively, over the diagonal of the 6 6 matrix. We define a new coordinate vector x R 6 by q = R(ωt)x, where the constant ω is the angular velocity of the uniform rotating coordinate system. In this new coordinate system the equation of motion (3) becomes Mẍ + 2ωJMẋ = U(x) + ω 2 Mx. (5) Then a configuration x is central if and only if x is an equilibrium point of system (5). That is, if and only if U(x) + ω 2 Mx = 0, for some ω. If x is a central configuration, then q = R(ωt)x is a relative equilibrium solution of system (3). Moreover q = R(ωt)x, is a periodic solution of system (3) with period T = 2π/ ω. The study of central configurations can be seen as a problem of Lagrange multipliers where we are looking for critical points of the potential U on the ellipsoid {x : (1/2)x T Mx = I} where I > 0 is a constant. Thus, x is a central configuration if it is a solution of system F(x) = 0, i(x) I = 0, (6) where F(x) = U(x) + ω 2 (i(x) I) and i(x) = 1 2 xt Mx is the moment of inertia of the configuration. Since we have chosen the origin of the coordinates at the center of mass of the three particles, i(x) can be written in terms of the mutual distances r ij, i.e. i(x) = 1 2(2 + m) (r mr mr 2 23) = 1 2(2 + m) (R mρ 2 R mρ 2 R 2 23). The potential U depends on x through the mutual distances r ij, and it is given by (4). Therefore, we can think that F depends on x through R ij. Proceeding as in Section 3 we can see that if x 1, x 2 and x 3 are not collinear, then F(R 12, R 13, R 23 ) = 0 if and only if F(x) = 0. Therefore, from (6), the planar non collinear central configurations of the Lennard Jones 3 body problem (3) are given by the solutions of system ( 1 12 R ) R m R 12ω 2 = 0, 12 ( 1 ε R ) R mρ2 2 + m R 13ω 2 = 0, 12 ( 1 ε R ) (7) R mρ2 2 + m R 23ω 2 1 = 0, 2(2 + m) (R mρ2 R mρ2 R23 2 ) = I. From the first three equations of (7) we have ω 2 12(2 + m) = 1 R ( ε 1 R12 8 = mρ 2 R ) R13 8 = ( ε 1 mρ 2 R ) R23 8. (8) We set s 12 = R 2 12, s 13 = R 2 13, s 23 = R 2 23, α = mρ 2 and C = 2(2 + m)i, then using (8) a solution of (7) is a solution of the system 1 s 7 1 ( ε 1 12 s 4 = 12 α s 7 1 ) 1 13 s 4, 13 s s 4 = ε α ( 1 s ) s 4, s 12 + αs 13 + αs 23 = C, (9) 23

7 satisfying that ω 2 > 0. Next we analyze the solutions of (9) depending on C, α and ε. We consider the first two equations of (9). Let f(a) = a 7 a 4. We note that lim f(a) =, lim a 0 + a at the point a = a = ( 7 4 (see Figure 1). f(a) = 0, f(1) = 0, f(a) < 0 when a > 1, and f(a) has a minimum ) 1/3 ( = with β = f(a ) = 12 4 ) 1/ = f(a) 2 1 K β -0.5 a 1 a 2 a Figure 1: Plot of f(a). a We note that the first two equations of (9) can be written as f(s 12 ) = ε α K, f(s 13) = f(s 23 ) = K, (10) for some K R. Since in order to have a solution of (7) we need that ω 2 > 0, we are only interested in values of s ij such that f(s ij ) < 0. Then, the solutions of (7) come from solutions of (10) such that K [β, 0) (see Figure 1) and additionally ε K [β, 0). α Therefore, if ε α, then we can take values of K [β, 0). Whereas if ε > α, then we can take values of K [α β/ ε, 0). Fixed an admissible value of K, we can find two values a 1 a 2 satisfying that f(a i ) = K (see Figure 1), and two values a 1 a 2 satisfying that f(a i ) = ε K. Combining these values we obtain eight types of solutions of (10) α which are detailed in cases (1) (8) of Table 1. We note that the case ω = 0 corresponds to the equilibrium points of the planar Lennard Jones 3 body problem (3) given by Theorem 2. These equilibrium points have moment of inertia I = C = 1+2α. 2(2+m) 2(2+m) The planar non collinear central configurations of the Lennard Jones 3 body problem (3) are triangles with sides r 12, r 13 and r 23 that could be equilateral, isosceles or scalene. In Table 1 we give the solutions of (10) in the variables r 12 = R 12 = s 12, r 13 = ρ R 13 = ρ s 13 and r 23 = ρ R 23 = ρ s 23. We see that if the solutions of (10) define a triangle (i.e. the mutual distances r ij satisfy the conditions r 12 < r 13 + r 23, r 13 < r 12 + r 23 and r 23 < r 12 + r 13 ), then the solutions of types (1) (4) give central configurations that are isosceles triangles, whereas the solutions of types (5) (8) give central configurations that are scalene triangles, except perhaps for a particular set of values of m, ρ and ε. 99

8 In the variables s 12, s 13, s 23 In the variables r 12, r 13, r 23 (1) s 12 = a 1, s 13 = s 23 = a 1 r 12 = a 1, r 13 = r 23 = ρ a 1, (2) s 12 = a 2, s 13 = s 23 = a 1 r 12 = a 2, r 13 = r 23 = ρ a 1, (3) s 12 = a 1, s 13 = s 23 = a 2 r 12 = a 1, r 13 = r 23 = ρ a 2, (4) s 12 = a 2, s 13 = s 23 = a 2 r 12 = a 2, r 13 = r 23 = ρ a 2, (5) s 12 = a 1, s 13 = a 1, s 23 = a 2 r 12 = a 1, r 13 = ρ a 1, r 23 = ρ a 2, (6) s 12 = a 2, s 13 = a 1, s 23 = a 2 r 12 = a 2, r 13 = ρ a 1, r 23 = ρ a 2, (7) s 12 = a 1, s 13 = a 2, s 23 = a 1 r 12 = a 1, r 13 = ρ a 2, r 23 = ρ a 1, (8) s 12 = a 2, s 13 = a 2, s 23 = a 1 r 12 = a 2, r 13 = ρ a 2, r 23 = ρ a 1. Table 1: Types of solutions of (10). In this work we consider only symmetric planar non collinear central configurations given by solutions of (7) of the form r 13 = r 23, or equivalently solutions of (9) with s 13 = s 23. System (9) when s 13 = s 23 becomes 1 s 7 1 ( ε 1 12 s 4 = 12 α s 7 1 ) 13 s 4, 13 s αs 13 = C. (11) 5 Symmetric Planar Non Collinear Central Configurations When ε = α The case ε = α = m = 1 has been studied in [2]. Here, we analyze the case ε = α and m 1. The results that we obtain in this case are similar to the results obtained when ε = α = m = 1. It is easy to see that if ε = α, then a 1 = a 1 and a 2 = a 2. Then, the types of symmetric solutions of (10) given in Table 1 when ε = α are the ones in Table 2. (1) s 12 = s 13 = s 23 = a 1 = C (1 + 2α,(1 + 2α)a ], (2) s 12 = a 2, s 13 = s 23 = a 1 = C (a + 2α, ), (3) s 12 = a 1, s 13 = s 23 = a 2 = C (1 + 2αa, ), (4) s 12 = s 13 = s 23 = a 2 = C [(1 + 2α)a, ). Table 2: Symmetric solutions of (10) when ε = α. From Figure 1 we see that a 1 (1, a ] and a 2 [a, ). Then we can find lower and upper bounds for the value of C for each type of solutions, which are specified in Table 2. We note that the lower bounds given in Table 2 are not necessarily the infima. It is easy to check, from Table 2, that for any admissible value of C there are at most 3 different central configurations. On the other hand, from Figure 1, we see that a 1 as a function of K is a decreasing function, whereas a 2 as a function of K is an increasing 100

9 function. Therefore, for each C (1 + 2α, (1 + 2α)a ] we have a solution of (11) of type (1) and for each C [(1 + 2α)a, ) we have a solution of (11) of type (4). We note that a 2 when K 0. Then we can find C max (a + 2α, 1 + 2αa, (1 + 2α)a ) = (1 + 2α)a such that there exist three different solutions of (11) for all C > C. On the other hand if C (1 + 2α, C ) with C = min (a + 2α, 1 + 2αa, (1 + 2α)a ) there exists only one solution of (11). For values of C (C, C ) we can have one, two or three different solutions of (11) depending on the value of C, ε and α. It is not difficult to see that C = 1 + 2αa for 0 < α < 1/2 and C = a + 2α for α > 1/2. Now we analyze the bifurcation values of C for which the number of solutions of (11) changes. From the above discussion we know that there exists at least one bifurcation value C (C, C ). From the second equation of (11) we have that s 12 = C 2 s 13 α. (12) Substituting s 12 into the first equation of (11) with ε = α, we obtain the equation where g 1 (s 13, α, C) = C (1 + 2α)s 13, and g 1 (s 13, α, C) g 2 (s 13, α, C) = 0, (13) g 2 (s 13, α, C) = C 6 + s 13 ( C C 5 α ) + s 13 2 ( C C 4 α 60 C 4 α 2) + s 13 3 ( C 3 + C 6 + 8C 3 α 40 C 3 α C 3 α 3) + s 13 4 ( C 2 + C 5 + 6C 2 α 12 C 5 α 24 C 2 α C 2 α C 2 α 4) + s 13 5 ( C + C 4 + 4C α 10 C 4 α 12 C α C 4 α C α 3 80 C α C α 5) + s 13 6 ( 1 + C 3 + 2α 8 C 3 α 4 α C 3 α 2 + 8α C 3 α 3 16 α α 5 64 α 6) + s 13 7 ( 6 C 2 α + 24C 2 α 2 80 C 2 α C 2 α 4) + s 13 8 ( 12 C α 2 32 C α C α C α 5) + s 13 9 ( 8 α α 4 32 α α 6). Solving equation g 1 (s 13, α, C) = 0 with respect to s 13 we get s 13 = C. Then, from (12) 1+2 α we have that s 12 = C. We note that the solution s 1+2 α 12 = s 13 = C is either of type (1) 1+2 α or of type (4) in Table 2. We can see easily that the solution of (11) s 12 = s 13 = C, 1+2 α satisfies that ω 2 > 0 if and only if C > 1 + 2α. Moreover, in order to have a symmetric planar non collinear central configuration of the Lennard Jones 3 body problem (3) we need that r 12 < 2r 13, or equivalently, we need that s 12 < 4α m s 13. We note that for the solution s 12 = s 13 = C 1+2 α ρ > 1/2). In short, we have proved the following result. this condition is satisfied only when m < 4α (i.e. when Proposition 3 Fixed ρ > 1/2, there exists a symmetric planar non collinear central configuration x = (x 1,x 2,x 3 ) of the Lennard Jones 3 body problem (3) for each C > 1 + 2mρ 2 satisfying that C x 1 x 2 = 1 + 2mρ 2, x C 1 x 3 = x 2 x 3 = ρ 1 + 2mρ 2, x 3 = 1 m (x 1 + x 2 ), 101

10 and having moment of inertia I = C. 2(2+m) Next we analyze the bifurcation values C(α) for which the number of positive real solutions s 13 (C, α) of equation g 2 (s 13, C, α) = 0 changes. We have seen that there exists at least one bifurcation value C(α) (C, C ). In particular, this bifurcation value satisfies that C(α) > 1 + 2α. In order to simplify the computations we will take 1 + 2α as a lower bound for the bifurcation values C(α). Proposition 4 For every α > 0 there is a unique bifurcation value C 1 (α) for the number of positive real solutions s 13 of the equation g 2 (s 13, C, α) = 0. Proof: The number of positive real solutions of g 2 (s 13, C, α) = 0 changes either when a negative real solution is transformed into a positive one, by passing through the solution s 13 = 0, or when a pair of complex conjugate solutions are transformed to a pair of positive real solutions, by passing through a double positive real solution. Since the coefficient of the independent term of g 2 (s 13, C, α) is always negative for C > 1 + 2α, there is no bifurcation value C 1 (α) > 1 + 2α coming from passing a negative real solution of g 2 (s 13, C, α) = 0 to a positive one. On the other hand, a solution s 13 (C, α) of g 2 (s 13, C, α) = 0 is a double solution if it is a solution of system g 2 (s 13, C, α) = 0, g 3 (s 13, C, α) = d g 2 d s 13 (s 13, C, α) = 0. (14) Therefore, the bifurcation values C 1 (α), coming from passing a pair of complex conjugate solutions to a pair of positive real solutions, are given by the solutions C = C(α) of system (14). In order to solve system (14) we compute the resultant (see [5] and [7] for more information about resultants) of g 2 (s 13, C, α) and g 3 (s 13, C, α) with respect to s 13 obtaining the polynomial P(C, α) = 512 C 30 α 9 ( 1 + 2α) ( 1 + 4α 2) P 1 (C, α), where P 1 (C, α) is a polynomial of degree 30 in the variable C. We note that if α = 1/2, then P(C, α) = 0, so, this case is treated aside. The solutions C 1 (α) of P 1 (C, α) = 0 are possible bifurcation values. We know that P 1 (C, α) = 0 has at least one solution C 1 (α) (C, C ). Now we shall see that, for all α > 0, P 1 (C, α) = 0 has a unique real solution C 1 (α) satisfying that C 1 (α) > 1 + 2α. First we analyze the case α = 1/2. If we compute the resultant of g 2 (s 13, C, 1/2) and g 3 (s 13, C, 1/2) with respect to s 13 we obtain the polynomial P(C) = 8C 32 ( 14 + C 3) ( C C C C 12) 2. This polynomial has a unique positive real solution with C > 1 + 2α = 2 which is given by C = C 1 = Analyzing the solutions of g 2 (s 13, C, 1/2) = 0 for C near C 1, we see that C 1 is a bifurcation value for the solutions of g 2 (s 13, C, 1/2) =

11 Now we analyze the bifurcation values α for which the number of real solutions C 1 (α) > 1 + 2α of equation P 1 (C, α) = 0 changes. As above, the number of real solutions of P 1 (C, α) = 0 with C 1 (α) > 1 + 2α changes, either when a solution C 1 (α) < 1 + 2α is transformed to a solution C 1 (α) > 1 + 2α by passing through the solution C 1 (α) = 1 + 2α, or when a pair of complex conjugate solutions are transformed to two positive real solutions by passing through a double positive real solution with C 1 (α) > 1 + 2α. We see that P 1 (1 + 2α, α) < 0 for all α > 0. Then, there is no bifurcation values α coming from passing a solution C 1 (α) of P 1 (C, α) = 0 through the value 1 + 2α in the positive sense. The bifurcation values α coming from passing a pair of complex solutions of P 1 (C, α) = 0 to two positive real solutions through a double positive real solution are given by the α s solutions of the system P 1 (C, α) = 0, d P 1 d C (C, α) = 24C2 P 2 (C, α) = 0. (15) As above we solve system (15) by computing the resultant of P 1 (C, α) and P 2 (C, α) with respect to C (we note that we are not interested in solutions of (15) with C = 0). We obtain a polynomial G(α) of degree 762 in the variable α, whose real positive roots are α 1 = , α 2 = , α 3 = , α 4 = 0.5, α 5 = , α 6 = , α 7 = We have analyzed the solutions of P 1 (C, α) = 0 near the bifurcation values α i and we have seen that for all α > 0 there exists a unique real solution C 1 (α) of P 1 (C, α) = 0 satisfying that C 1 (α) > 1 + 2α. Moreover, this solution corresponds to a bifurcation value for the solutions of equation g 2 (s 13, C, α) = 0. Up to here, we have analyzed the number of solutions of g 1 (s 13, C, α) = 0 and g 2 (s 13, C, α) = 0 separately. Since we are interested in the bifurcation values of (13), we must find also the values of C for which the solutions of those two equations coincide. We can see that there exists a unique value C = C 2 (α) = 71 3 (1+2 α) satisfying this condition. This value is obtained by substituting the solution s 13 = C into g 1+2α 2(s 13, C, α) and solving the ( resulting equation g C 2, C, α) = 0 with respect to C. 1+2α Analyzing the solutions of (13) near the bifurcation values C 1 (α) and C 2 (α) we obtain de following result. Proposition 5 Suppose that ε = α. Fixed α > 0, we can find two bifurcation values C 1 = C 1 (α) and C 2 = C 2 (α) = 71 3 (1+2 α), with C 0 = 1+2α < C 1 (α) C 2 (α), at which the number of positive real solutions of equation (13) changes. Fixed α > 0, the number(#) of solutions C > C 0 of equation (13) is given in Table 3. We also give their type (T), according to Table 2, and their multiplicity (M). 103

12 α > 1/2 α = 1/2 α < 1/2 C (C 0, C 1 ) C = C 1 C (C 1, C 2 ) C = C 2 C (C 2, ) # T M # T M # T M # T M # T M 1 (2) 1 1 (1) 1 1 (1) 1 1 (2) 1 1 (1) 1 1 (3) 1 1 (2) 2 2 (2) 1 1 (4) 2 1 (4) 1 C (C 0, C 1 ) C = C 1 = C 2 C > C 2 # T M # T M # T M 1 (2) 1 1 (1) 1 1 (4) 3 1 (3) 1 1 (4) 1 C (C 0, C 1 ) C = C 1 C (C 1, C 2 ) C = C 2 C (C 2, ) # T M # T M # T M # T M # T M 1 (2) 1 1 (1) 1 1 (1) 1 1 (3) 1 1 (1) 1 1 (3) 1 1 (3) 2 2 (3) 1 1 (4) 2 1 (4) 1 Table 3: The number (#), type (T) and multiplicity (M) of solutions C > C 0 of (13). The solutions of (13) give planar non collinear central configuration of the Lennard Jones 3 body problem (3) if s 12 < 4αs m 13; that is, if ϕ(s 13, C, α) < 0 with ϕ(s 13, C, α) = C 2αs 13 4αs m 13. We have analyzed previously the central configurations coming from solutions of equation g 1 (s 13, C, α) = 0, now we analyze the central configurations coming from solutions of equation g 2 (s 13, C, α) = 0. We see that there is a unique value of C for which the solution of equation ϕ(s 13, C, α) = 0 is a solution of equation g 2 (s 13, C, α) = 0. This value is given by C mα = (2 + m) 2 m ( m 6 + 4m 5 α + 16m 4 α m 3 α m 2 α mα α 6 (m + 4α) (m α 2 ) )1 3, and it corresponds to a collinear central configuration. So, if s 13 (C, α) is a solution of equation g 2 (s 13, C, α) = 0 such that ϕ(s 13 (C mα, α), C mα, α) = 0, then the number of planar non collinear central configurations coming from solutions of g 2 (s 13, C, α) = 0 changes at C = C mα. Fixed α > 0, we can see that C mα when m 0 and when m, and C mα has a minimum at m = µ and C µα = C 1 (α). The number of central configurations coming from the solutions of (16) given by Proposition 5 is summarized in the following result. Theorem 6 Suppose that ε = α. Let C 1 = C 1 (α) and C 2 = C 2 (α), with C 0 = 1+2α < C 1 (α) C 2 (α), be the bifurcation values given in Proposition 5; and let µ = µ(α) be the minimum of C µα. Fixed α > 0 and m > 0, the number of symmetric planar non collinear central configurations of the Lennard Jones 3 body problem (3) having moment of inertia 104

13 I = C changes at C = C 2(2+m) 1 = C 1 (α), C = C 2 = C 2 (α) and C = C m = C mα. The number (#) of symmetric planar non collinear central configurations for fixed α > 0, C > C 0 and m > 0 is summarized in Table 4. In this table, µ 1 = µ 1(α) < µ and µ 2 = µ 2(α) > µ are values such that C µ i α = C 2. m (0, µ 1 ) C (C 0, C 1 ) C 1 (C 1, C 2 ) C 2 (C 2, C m) [C m, ) # α > 1/2 m = µ 1 C (C 0, C 1 ) C 1 (C 1, C 2 ) C 2 = C µ 1 (C 2, ) # m = (µ 1, µ) C (C 0, C 1 ) C 1 (C 1, C m) [C m, C 2 ) C 2 (C 2, ) # m = µ C (C 0, C 1 ) C 1 = C µ (C 1, C 2 ) C 2 (C 2, ) # m = (µ, µ 2 ) C (C 0, C 1 ) C 1 (C 1, C m] (C m, C 2 ) C 2 (C 2, ) # m = µ 2 C (C 0, C 1 ) C 1 (C 1, C 2 ) C 2 = C µ 2 (C 2, ) # m = (µ 2, ) C (C 0, C 1 ) C 1 (C 1, C 2 ) C 2 (C 2, C m] (C m, ) # α = 1/2 m (0, µ) m = µ m (µ, ) C (C 0, C 1 ) C 1 (C 1, C m) [C m, ) # C (C 0, C 1 ) C 1 = C µ (C 1, ) # C (C 0, C 1 ) C 1 (C 1, C m] (C m, ) # m (0, µ 1 ) C (C 0, C 1 ) C 1 (C 1, C 2 ) C 2 (C 2, C m) [C m, ) # α < 1/2 m = µ 1 C (C 0, C 1 ) C 1 (C 1, C 2 ) C 2 = C m 1 (C 2, ) # m = (µ 1, µ) C (C 0, C 1 ) C 1 (C 1, C m) [C m, C 2 ) C 2 (C 2, ) # m = µ C (C 0, C 1 ) C 1 = C µ (C 1, C 2 ) C 2 (C 2, ) # m = (µ, µ 2 ) C (C 0, C 1 ) C 1 (C 1, C m] (C m, C 2 ) C 2 (C 2, ) # m = µ 2 C (C 0, C 1 ) C 1 (C 1, C 2 ) C 2 = C µ 2 (C 2, ) # m = (µ 2, ) C (C 0, C 1 ) C 1 (C 1, C 2 ) C 2 (C 2, C m] (C m, ) # Table 4: The number (#) of central configurations for ε = α. 6 Symmetric Planar Non Collinear Central Configurations When ε α Now we analyze the case ε α. We start giving some preliminary results, and then we will find the bifurcation values of C for which the number of central configurations changes for a fixed value α = 2. From numerical experiments, it seems that the bifurcation pattern for C is qualitatively the same for all α > 0, but this problem is still open. When ε < α, let a 1 < a 2 be the values satisfying that f(a i) = ε α β, let a 1 a 2 denote the values such that f(a i ) = K for some K [β, 0), and let a 1 < a 2 denote the values of a, such that f(a i ) = ε α K. Since ε < α it is easy to see that a 1 (1, a ], a 2 [a, ), a 1 (1, a 1] and a 2 [a 2, ) with a 1 < a

14 When ε > α, let a 1 < a 2 be the values satisfying f(a i) = α ε β, let a 1 < a 2 denote the values such that f(a i ) = K for some K [ α ε β, 0), and let a 1 a 2 denote the values such that f(a i ) = ε α K. In this case a 1 (1, a 1], a 2 [a 2, ), a 1 (1, a ] and a 2 [a, ). Finding lower and upper bounds for the value of C for each type of symmetric solutions of Table 1, we obtain Table 5. ε < α ε > α (1) s 12 = a 1 s 13 = s 23 = a 1 = C (1 + 2α,a 1 + 2α a ] C (1 + 2α, a + 2α a 1 ], (2) s 12 = a 2 s 13 = s 23 = a 1 = C (a 2 + 2α, ) C (a + 2α, ), (3) s 12 = a 1 s 13 = s 23 = a 2 = C (1 + 2α a, ) C (1 + 2α a 2, ), (4) s 12 = a 2 s 13 = s 23 = a 2 = C [a 2 + 2α a, ) C [a + 2α a 2, ). Table 5: Symmetric solutions of (10) when ε α. As in the case ε = α, a 1 and a 1 are decreasing functions as functions of K, whereas a 2 and a 2 are increasing functions as functions of K. Therefore, when ε < α, for each C (1+2α,a 1 +2α a ] we have a solution of (11) of type (1), and for each C [a 2 +2α a, ) we have a solution of (11) of type (4). When ε < α, for each C (1 + 2α, a + 2α a 1] we have a solution of (11) of type (1) and for each C [a + 2α a 2, ) we have a solution of (11) of type (4). On the other hand, if K 0, then a 2 and a 2. Therefore, we can find C max (a 1 + 2α a, a 2 + 2α,a 2 + 2α a ) when ε < α, and C max (a + 2α a 1, a + 2α, 1 + 2α a 2) when ε > α such that there exist three different solutions of (11) for all C > C. Let C = min (a 1 + 2α a, a 2 + 2α,a 2 + 2α a ) when ε < α, and C = min (a + 2α a 1, a + 2α, 1 + 2α a 2) when ε > α. If C (1 + 2α, C ), then there exists only one solution of (11). For values of C (C, C ) we can have one, two or three different solutions of (11) depending on the values of C, ε and α. 6.1 Bifurcation values for ε α and α = 2 Now we analyze the bifurcation values of C for the solutions of (11) fixed the value α = 2. Proceeding in a similar way that in the case ε = α we know that there exists at least one bifurcation value C(ε) (C, C ). Moreover, this bifurcation value satisfies that C(ε) > 1 + 2α = 5, and 5 is taken as a lower bound for C(ε). In order to simplify the computations, we set ɛ = ε. From the second equation of (11) we have that s 12 = C 2s 13 α. Substituting s 12 into the first equation of (11), for α = 2 we obtain equation h 1 (s 13, ɛ, C) = 0, (16) where h 1 (s 13, ɛ, C) = C 7 ɛ + 28C 6 s 13 ɛ 336 C 5 s ɛ + s ( C 4 ɛ + C 7 ɛ ) + 106

15 s 13 4 ( 8960 C 3 ɛ 28 C 6 ɛ ) + s 13 5 ( C 2 ɛ + 336C 5 ɛ ) + s 13 6 ( C ɛ 2240 C 4 ɛ ) + s 13 7 ( 2 2 C ɛ C 3 ɛ ) + s 13 8 ( 24 C C 2 ɛ ) + s 13 9 ( 96 C C ɛ) + s ( ɛ). Next we will analyze the bifurcation values C(ɛ) for which the number of positive real solutions of equation (16) changes. We will proceed in a similar way as in the proof of Proposition 4. The number of positive real solutions of h 1 (s 13, C, ɛ) = 0 changes, either when a negative real solution is transformed to a positive one, or when a pair of complex conjugate solutions are transformed to a pair of positive real solutions. Since the coefficient of the independent term of h 1 (s 13, C, ɛ) = 0 is always negative for C > 5 and ɛ > 0, there is no bifurcation value C(ɛ) > 5 coming from passing a negative real solution of h 1 (s 13, C, ɛ) = 0 to a positive one. On the other hand, the bifurcation values C(ɛ) coming from passing a pair of complex conjugate solutions to a pair of real solutions are given by the values of C as functions of ɛ of the solutions of system h 1 (s 13, C, ɛ) = 0, h 2 (s 13, C, ɛ) = d h 1 d s 13 (s 13, ɛ, C) = 0. (17) In order to solve system (17) we compute the resultant of h 1 (s 13, C, ɛ) and h 2 (s 13, C, ɛ) with respect to s 13 obtaining the polynomial Q(C, ɛ) = C 42 ɛ 6 ( ɛ) Q 1 (C, ɛ), where Q 1 (C, ɛ) is a polynomial of degree 36 in the variable C. We note that if ɛ = 1/128, then Q(C, ɛ) = 0, so, this case is treated aside. The solutions C(ɛ) of Q 1 (C, ɛ) = 0 provide the bifurcation values C(ɛ). When ɛ = 1/128, the resultant of the polynomials h 1 (s 13, C, 1/128) and h 2 (s 13, C, 1/128) is a polynomial Q(C) of degree 77 in the variable C. This polynomial has a unique real root satisfying that C > 5 which is C = Analyzing the solutions of equations (16) with ɛ = 1/128 for C near we see that C = is a bifurcation value where one positive real solution of (16) bifurcates to three real positive solutions of (16). We analyze the bifurcation values ɛ for which the number of real positive solutions C(ɛ), with C(ɛ) > 5, of equation Q 1 (C, ɛ) = 0 changes. We see that Q 1 (5, ɛ) < 0 for all ɛ > 0, then there is no bifurcation value ɛ coming from solutions C(ɛ) < 5 which pass to solutions C(ɛ) > 5. The bifurcation values ɛ coming from passing a pair of complex solutions of Q 1 (C, ɛ) = 0 to a pair of real solutions of Q 1 (C, ɛ) = 0 are given by the values of ɛ solution of system Q 1 (C, ɛ) = 0, d Q 1 d C (C, ɛ) = 24C2 Q 2 (C, ɛ) = 0. (18) 107

16 We solve system (18) by computing the resultant of Q 1 (C, ɛ) and Q 2 (C, ɛ) with respect to C. We obtain a polynomial H(ɛ) of degree 357 in the variable ɛ, whose real positive roots are ɛ 1 = , ɛ 2 = , ɛ 3 = , ɛ 4 = , ɛ 5 = , ɛ 6 = , ɛ 7 = 2, ɛ 8 = Analyzing the solutions of Q 1 (C, ɛ) = 0 for values of ɛ close to ɛ i, we obtain the following result. Lemma 7 Fixed ɛ > 0, we have the following number of solutions C(ɛ) of equation Q 1 (C, ɛ) = 0 such that C(ɛ) > 5. (a) For ɛ < 2 there exists a unique solution, C 1 (ɛ), with multiplicity 1. (b) For ɛ = 2 there exist two different solutions, C 1 (ɛ) < C 2 (ɛ); C 1 (ɛ) with multiplicity 1 and C 2 (ɛ) with multiplicity 2. (c) For ɛ (2, ) there exist three different solutions, C 1 (ɛ) < C 2 (ɛ) < C 3 (ɛ), with multiplicity 1. (d) For ɛ = there exist two different solutions, C 1 (ɛ) < C 3 (ɛ); C 1 (ɛ) with multiplicity 2 and C 3 (ɛ) with multiplicity 1. (e) For ɛ > there exist a unique solution, C 3 (ɛ), with multiplicity 1. Analyzing the solutions of equation (16) near the bifurcation values C i (ɛ) given in Lemma 7 we obtain the following result. Proposition 8 Suppose that α = 2 and ɛ = ε. Let C i = C i (ɛ) be the bifurcation values given in Lemma 7. Fixed ɛ > 0 the number(#) of solutions of equation (16) for C > 5 is given in Table 6. ɛ < 2 ɛ = 2 ɛ (2, ) ɛ = ɛ > C (5, C 1 ) C 1 (C 1, ) # C (5, C 1 ) C 1 (C 1, C 2 ) C 2 (C 2, ) # C (5, C 1 ) C 1 (C 1, C 2 ) C 2 (C 2, C 3 ) C 3 (C 3, ) # C (5, C 1 ) C 1 (C 1, C 3 ) C 3 (C 3, ) # C (5, C 3 ) C 3 (C 3, ) # Table 6: The number (#) of solutions of equation (16) with C >

17 C 3 5 In order to count the number of planar non collinear central configurations of the Lennard Jones 3 body problem (3) that come from solutions of (16), we proceed in a similar way as in Section 5. The solutions of (16) give planar non collinear central configuration of the Lennard Jones 3 body problem (3) if s 12 < 8 m s 13; that is, if ϕ(s 13, C) < 0 with ϕ(s 13, C) = C 4s 13 8 m s 13. We see that there is a unique value of C for which the solution of equation ϕ(s 13, C) = 0 is a solution of equation (16). This value is given by C mɛ = 2 + m 2 m ( m 7 ) ɛ 3, m ɛ and it corresponds to a collinear central configuration. So, if s 13 (C, ɛ) is a solution of equation (16) such that ϕ(s 13 (C mɛ ), C mɛ ) = 0, then the number of planar non collinear central configurations coming from solutions of (16) changes at C = C mɛ. Fixed ɛ > 0 and ɛ 2, we analyze the properties of the function C mɛ as a function of m (see Figure 2 for details). When ɛ = 2 we have that ε = α = 2, and this case has been studied in Section 5. C 15 C 3 C 2 C 1 5 µ 1 µ 2 µ 3 µ 1 µ 2 µ 5 µ 3 µ 4 a) b) µ 1 µ 2 µ3 c) Figure 2: Plot of C mɛ. 109

18 If ɛ (0, 2), then C mɛ when m 0 + ; C mɛ has a minimum at a point m = µ 1 = µ 1 (ɛ) with C µ1 ɛ = C 1 (ɛ), where C 1 (ɛ) is the bifurcation value given in Lemma 7; C mɛ when m µ 2 with µ 2 = µ 2 (ɛ) = ɛ 1 4. For m > µ 2, C mɛ is an increasing function such that C mɛ when m µ + 2 ; C mɛ = 0 when m = ɛ 1 7; C mɛ < 5 when m (µ 2, µ 3 ) with µ 3 = 8; and C mɛ when m (see Figure 2 a)). We note that µ 1 < µ 2 < ɛ 1 7 < µ 3. If ɛ (2, ) where ɛ = is the bifurcation value for ɛ given in Lemma 7, then C mɛ when m 0 + ; C mɛ has a minimum at a point m = µ 1 = µ 1 (ɛ) with C µ1 ɛ = C 1 (ɛ); C mɛ has a maximum at a point m = µ 2 = µ 2 (ɛ) with C µ2 ɛ = C 2 (ɛ); C mɛ = 5 when m = µ 3 = 8; C mɛ = 0 when m = ɛ 1 7; C mɛ when m µ 4 with µ 4 = µ 4 (ɛ) = ɛ 1 4; C mɛ when m µ + 4 ; C mɛ has a minimum at a point m = µ 5 = µ 5 (ɛ) with C µ5 ɛ = C 3 (ɛ); and C mɛ when m (see Figure 2 b)). Here C 1 (ɛ), C 2 (ɛ) and C 3 (ɛ) are the bifurcation values given in Lemma 7. We note that µ 1 < µ 2 < µ 3 < ɛ 1 7 < µ 4 < µ 5. If ɛ = , then C mɛ when m 0 + ; C mɛ has an inflection point at m = µ(ɛ) = µ(ɛ) with C µɛ = C 1 (ɛ); C mɛ = 5 when m = µ 1 = 8; C mɛ = 0 when m = ɛ 1 7; C mɛ when m µ 2 with µ 2 = µ 2 (ɛ) = ɛ 1 4; C mɛ when m µ + 2 ; C mɛ has a minimum at a point m = µ 3 = µ 3 (ɛ) with C µ3 ɛ = C 3 (ɛ); and C mɛ when m. Here C 1 (ɛ) and C 3 (ɛ) are the bifurcation values given in Lemma 7. We note that µ < µ 1 < ɛ 1 7 < µ 2 < µ 3. If ɛ > , then, for C (0, µ 2 ) with µ 2 = ɛ 1 4, C mɛ is a decreasing function such that C mɛ when m 0 + ; C mɛ = 5 when m = µ 1 = 8; C mɛ = 0 when m = ɛ 1 7; C mɛ when m µ 2 with µ 2 = ɛ 1 4. Moreover, C mɛ when m µ + 2 ; C mɛ has a minimum at a point m = µ 3 with C µ3 ɛ = C 3 (ɛ) where C 3 (ɛ) is the bifurcation value given in Lemma 7; and C mɛ when m (see Figure 2 c)). We note that µ 1 < ɛ 1 7 < µ 2 < µ 3. The number of central configurations coming from the solutions of (16) given by Proposition 8 is summarized in the following result. Theorem 9 Let C 1 = C 1 (ɛ), C 2 = C 2 (ɛ) and C 3 = C 3 (ɛ), with 5 < C 1 (ɛ) C 2 (ɛ) C 3 (ɛ), be the bifurcation values given in Proposition 8; and let µ i = µ i (ɛ) be the values defined above. Fixed ɛ > 0 and m > 0, the number of symmetric planar non collinear central configurations of the Lennard Jones 3 body problem (3) having moment of inertia C I = changes at C = C 2(2+m) 1 = C 1 (ɛ), C = C 2 = C 2 (ɛ), C = C 3 = C 3 (ɛ) and C = C m = C mɛ. (a) Fixed ɛ (0, 2), the number (#) of symmetric planar non collinear central configurations for C > 5 and m > 0 is summarized in Table 7. In this table, µ = µ (ɛ) > µ 3 is a value such that C µ ɛ = C

19 m (0, µ 1 ) C (5, C 1 ) C 1 (C 1, C m ) [C m, ) # m = µ 1 C (5, C 1 ) C 1 = C µ1 (C 1, ) # m = (µ 1, µ 2 ) m = [µ 2, µ 3 ] m = (µ 3, µ ) C (5, C 1 ) C 1 (C 1, C m ] (C m, ) # C (5, C 1 ) C 1 (C 1, ) # C (5, C m ] (C m, C 1 ) C 1 (C 1, ) # m = µ C (5, C 1 ) C 1 = C µ (C 1, ) # m = (µ, ) C (5, C 1 ) C 1 (C 1, C m ] (C m, ) # Table 7: The number (#) of central configurations fixed ɛ (0, 2). (b) If ɛ = 2, then ε = α = 2. Therefore the number (#) of symmetric planar non collinear central configurations for C > 5 and m > 0 is given by Theorem 6 (see Table 4). (c) Fixed ɛ (2, ), the number (#) of symmetric planar non collinear central configurations for C > 5 and m > 0 is summarized in Table 8. In this table, µ 1 = µ 1(ɛ), µ 2 = µ 2(ɛ) and µ 3 = µ 3(ɛ) are values such that µ 1 < µ 2 < µ 2 < µ 2 < µ 3 < µ 4 < µ 5 and C µ 1 ɛ = C 3, C µ 2 ɛ = C 2 and C µ 3 ɛ = C 1. (d) Fixed ɛ , the number (#) of symmetric planar non collinear central configurations for C > 5 and m > 0 is summarized in Table 9. In this table, µ = µ (ɛ) < µ 1 is a value such that C µ ɛ = C

20 m (0, µ 1) m = µ 1 m = (µ 1, µ 2) m = µ 2 m = (µ 2, µ 1 ) C (5, C 1 ) C 1 (C 1, C 2 ) C 2 (C 2, C 3 ) C 3 (C 3, C m ) [C m, ) # C (5, C 1 ) C 1 (C 1, C 2 ) C 2 (C 2, C 3 ) C 3 = C µ 1 (C 3, ) # C (5, C 1 ) C 1 (C 1, C 2 ) C 2 (C 2, C m ) [C m, C 3 ) C 3 (C 3, ) # C (5, C 1 ) C 1 (C 1, C 2 ) C 2 = C µ 2 (C 2, C 3 ) C 3 (C 3, ) # C (5, C 1 ) C 1 (C 1, C m ) [C m, C 2 ) C 2 (C 2, C 3 ) C 3 (C 3, ) # m = µ 1 C (5, C 1 ) C 1 = C µ1 (C 1, C 2 ) C 2 (C 2, C 3 ) C 3 (C 3, ) # m = (µ 1, µ 2 ) C (5, C 1 ) C 1 (C 1, C m ] (C m, C 2 ) C 2 (C 2, C 3 ) C 3 (C 3, ) # m = µ 2 C (5, C 1 ) C 1 (C 1, C 2 ) C 2 = C µ2 (C 2, C 3 ) C 3 (C 3, ) # m = (µ 2, µ 3) m = µ 3 m = (µ 3, µ 3 ) m = [µ 3, µ 4 ] m = (µ 4, µ 5 ) C (5, C 1 ) C 1 (C 1, C m ) [C m, C 2 ) C 2 (C 2, C 3 ) C 3 (C 3, ) # C (5, C 1 ) C 1 = C µ 3 (C 1, C 2 ) C 2 (C 2, C 3 ) C 3 (C 3, ) # C (5, C m ) [C m, C 1 ) C 1 (C 1, C 2 ) C 2 (C 2, C 3 ) C 3 (C 3, ) # C (5, C 1 ) C 1 (C 1, C 2 ) C 2 (C 2, C 3 ) C 3 (C 3, ) # C (5, C 1 ) C 1 (C 1, C 2 ) C 2 (C 2, C 3 ) C 3 (C 3, C m ) [C m, ) # m = µ 5 C (5, C 1 ) C 1 (C 1, C 2 ) C 2 (C 2, C 3 ) C 3 = C µ5 (C 3, ) # m = (µ 5, ) C (5, C 1 ) C 1 (C 1, C 2 ) C 2 (C 2, C 3 ) C 3 (C 3, C m ] C m, ) # Table 8: The number (#) of central configurations fixed ɛ (2, ). 112

### Central configuration in the planar n + 1 body problem with generalized forces.

Monografías de la Real Academia de Ciencias de Zaragoza. 28: 1 8, (2006). Central configuration in the planar n + 1 body problem with generalized forces. M. Arribas, A. Elipe Grupo de Mecánica Espacial.

### Families of symmetric periodic orbits in the three body problem and the figure eight

Monografías de la Real Academia de Ciencias de Zaragoza. 25: 229 24, (24). Families of symmetric periodic orbits in the three body problem and the figure eight F. J. Muñoz-Almaraz, J. Galán and E. Freire

### Orbits of the Lennard-Jones Potential

Orbits of the Lennard-Jones Potential Prashanth S. Venkataram July 28, 2012 1 Introduction The Lennard-Jones potential describes weak interactions between neutral atoms and molecules. Unlike the potentials

### State of Stress at Point

State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

### 1 Spherical Kinematics

ME 115(a): Notes on Rotations 1 Spherical Kinematics Motions of a 3-dimensional rigid body where one point of the body remains fixed are termed spherical motions. A spherical displacement is a rigid body

### Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

### Lecture L22-2D Rigid Body Dynamics: Work and Energy

J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

### Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

### DYNAMICS OF GALAXIES

DYNAMICS OF GALAXIES 2. and stellar orbits Piet van der Kruit Kapteyn Astronomical Institute University of Groningen the Netherlands Winter 2008/9 and stellar orbits Contents Range of timescales Two-body

### Figure 1.1 Vector A and Vector F

CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

### Classification and reduction of polynomial Hamiltonians with three degrees of freedom

Monografías de la Real Academia de Ciencias de Zaragoza. 22: 101 109, (2003). Classification and reduction of polynomial Hamiltonians with three degrees of freedom S. Gutiérrez, J. Palacián and P. Yanguas

### THEORETICAL MECHANICS

PROF. DR. ING. VASILE SZOLGA THEORETICAL MECHANICS LECTURE NOTES AND SAMPLE PROBLEMS PART ONE STATICS OF THE PARTICLE, OF THE RIGID BODY AND OF THE SYSTEMS OF BODIES KINEMATICS OF THE PARTICLE 2010 0 Contents

### Rotation Rate of a Trajectory of an Algebraic Vector Field Around an Algebraic Curve

QUALITATIVE THEORY OF DYAMICAL SYSTEMS 2, 61 66 (2001) ARTICLE O. 11 Rotation Rate of a Trajectory of an Algebraic Vector Field Around an Algebraic Curve Alexei Grigoriev Department of Mathematics, The

### 3. INNER PRODUCT SPACES

. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### Dynamics and Control of an Elastic Dumbbell Spacecraft in a Central Gravitational Field

Dynamics Control of an Elastic Dumbbell Spacecraft in a Central Gravitational Field Amit K. Sanyal, Jinglai Shen, N. Harris McClamroch 1 Department of Aerospace Engineering University of Michigan Ann Arbor,

### 15.062 Data Mining: Algorithms and Applications Matrix Math Review

.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

### 6. ISOMETRIES isometry central isometry translation Theorem 1: Proof:

6. ISOMETRIES 6.1. Isometries Fundamental to the theory of symmetry are the concepts of distance and angle. So we work within R n, considered as an inner-product space. This is the usual n- dimensional

### 1 Scalars, Vectors and Tensors

DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY, MADRAS PH350 Classical Physics Handout 1 8.8.2009 1 Scalars, Vectors and Tensors In physics, we are interested in obtaining laws (in the form of mathematical

### Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

### DERIVATION OF ORBITS IN INVERSE SQUARE LAW FORCE FIELDS

MISN-0-106 DERIVATION OF ORBITS IN INVERSE SQUARE LAW FORCE FIELDS Force Center (also the coordinate center) satellite DERIVATION OF ORBITS IN INVERSE SQUARE LAW FORCE FIELDS by Peter Signell 1. Introduction..............................................

### Extra-solar massive planets with small semi-major axes?

Monografías de la Real Academia de Ciencias de Zaragoza. 25: 115 120, (2004). Extra-solar massive planets with small semi-major axes? S. Fernández, D. Giuliodori and M. A. Nicotra Observatorio Astronómico.

### The dynamic equation for the angular motion of the wheel is R w F t R w F w ]/ J w

Chapter 4 Vehicle Dynamics 4.. Introduction In order to design a controller, a good representative model of the system is needed. A vehicle mathematical model, which is appropriate for both acceleration

### First Semester Learning Targets

First Semester Learning Targets 1.1.Can define major components of the scientific method 1.2.Can accurately carry out conversions using dimensional analysis 1.3.Can utilize and convert metric prefixes

### (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)

Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following

### A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

### PHYS 251 HONOURS CLASSICAL MECHANICS 2014 Homework Set 6 Solutions

PHYS 51 HONOURS CLASSICAL MECHANICS 014 Homework Set 6 Solutions 6.5. Spring on a T Let the l-rod be horizontal (parallel to the x axis at t = 0. Then, as it rotates with constant angular frequency ω,

### Lecture 34: Principal Axes of Inertia

Lecture 34: Principal Axes of Inertia We ve spent the last few lectures deriving the general expressions for L and T rot in terms of the inertia tensor Both expressions would be a great deal simpler if

### Physics 53. Rotational Motion 1. We're going to turn this team around 360 degrees. Jason Kidd

Physics 53 Rotational Motion 1 We're going to turn this team around 360 degrees. Jason Kidd Rigid bodies To a good approximation, a solid object behaves like a perfectly rigid body, in which each particle

### Adequate Theory of Oscillator: A Prelude to Verification of Classical Mechanics Part 2

International Letters of Chemistry, Physics and Astronomy Online: 213-9-19 ISSN: 2299-3843, Vol. 3, pp 1-1 doi:1.1852/www.scipress.com/ilcpa.3.1 212 SciPress Ltd., Switzerland Adequate Theory of Oscillator:

### Torque Analyses of a Sliding Ladder

Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while

### Matrices in Statics and Mechanics

Matrices in Statics and Mechanics Casey Pearson 3/19/2012 Abstract The goal of this project is to show how linear algebra can be used to solve complex, multi-variable statics problems as well as illustrate

### MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted

### Lecture L18 - Exploring the Neighborhood: the Restricted Three-Body Problem

S. Widnall 16.07 Dynamics Fall 008 Version 1.0 Lecture L18 - Exploring the Neighborhood: the Restricted Three-Body Problem The Three-Body Problem In Lecture 15-17, we presented the solution to the two-body

### Central Configurations A Problem for the Twenty-first Century

Central Configurations A Problem for the Twenty-first Century Donald G Saari Institute for Mathematical Behavioral Sciences University of California, Irvine, CA 9697-5100 What does it take to qualify as

### Mean Value Coordinates

Mean Value Coordinates Michael S. Floater Abstract: We derive a generalization of barycentric coordinates which allows a vertex in a planar triangulation to be expressed as a convex combination of its

### MCS 563 Spring 2014 Analytic Symbolic Computation Wednesday 15 January. Elimination Methods

Elimination Methods In this lecture we define projective coordinates, give another application, explain the Sylvester resultant method, illustrate how to cascade resultants to compute discriminant, and

### Notes on Elastic and Inelastic Collisions

Notes on Elastic and Inelastic Collisions In any collision of 2 bodies, their net momentus conserved. That is, the net momentum vector of the bodies just after the collision is the same as it was just

### Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

### DISTANCE DEGREE PROGRAM CURRICULUM NOTE:

Bachelor of Science in Electrical Engineering DISTANCE DEGREE PROGRAM CURRICULUM NOTE: Some Courses May Not Be Offered At A Distance Every Semester. Chem 121C General Chemistry I 3 Credits Online Fall

### Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving

### Similarity and Diagonalization. Similar Matrices

MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

### Molecular-Orbital Theory

Molecular-Orbital Theory 1 Introduction Orbitals in molecules are not necessarily localized on atoms or between atoms as suggested in the valence bond theory. Molecular orbitals can also be formed the

### DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: dsorton1@gmail.com Abstract: There are many longstanding

### Is there chaos in Copenhagen problem?

Monografías de la Real Academia de Ciencias de Zaragoza 30, 43 50, (2006). Is there chaos in Copenhagen problem? Roberto Barrio, Fernando Blesa and Sergio Serrano GME, Universidad de Zaragoza Abstract

### THREE DIMENSIONAL GEOMETRY

Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

### Geometric Transformations

Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted

### Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum

Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic

### Practice Final Math 122 Spring 12 Instructor: Jeff Lang

Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6

### MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced

### Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

### UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

### Chapter 11 Equilibrium

11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

### DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x

Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of

### Simple harmonic motion

PH-122- Dynamics Page 1 Simple harmonic motion 02 February 2011 10:10 Force opposes the displacement in A We assume the spring is linear k is the spring constant. Sometimes called stiffness constant Newton's

### Lecture 14 More reading: Wolfson 10,11

Lecture 14 Rotational Motion (continued) Center of mass The center of mass of an object is defined as RR cccc = ii rr iimm ii, ii mm ii rr dddd dddd (14.1) In words, this definition means that the position

### Lecture L3 - Vectors, Matrices and Coordinate Transformations

S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

### School of Biotechnology

Physics reference slides Donatello Dolce Università di Camerino a.y. 2014/2015 mail: donatello.dolce@unicam.it School of Biotechnology Program and Aim Introduction to Physics Kinematics and Dynamics; Position

### Factoring Patterns in the Gaussian Plane

Factoring Patterns in the Gaussian Plane Steve Phelps Introduction This paper describes discoveries made at the Park City Mathematics Institute, 00, as well as some proofs. Before the summer I understood

### Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

### Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

### The Characteristic Polynomial

Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

### x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability

### Isaac Newton s (1642-1727) Laws of Motion

Big Picture 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/7/2007 Lecture 1 Newton s Laws, Cartesian and Polar Coordinates, Dynamics of a Single Particle Big Picture First

### Inner Product Spaces

Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

### DYNAMICS OF A TETRAHEDRAL CONSTELLATION OF SATELLITES-GYROSTATS

7 th EUROMECH Solid Mechanics Conference J. Ambrosio et.al. (eds.) Lisbon, Portugal, 7 11 September 2009 DYNAMICS OF A TETRAHEDRAL CONSTELLATION OF SATELLITES-GYROSTATS Alexander A. Burov 1, Anna D. Guerman

### IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

### Starting algorithms for partitioned Runge-Kutta methods: the pair Lobatto IIIA-IIIB

Monografías de la Real Academia de Ciencias de Zaragoza. : 49 8, 4). Starting algorithms for partitioned Runge-Kutta methods: the pair Lobatto IIIA-IIIB I. Higueras and T. Roldán Departamento de Matemática

### We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model

CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant

### Three Body Problem for Constant Angular Velocity

Three Body Problem for Constant Angular Velocity P. Coulton Department of Mathematics Eastern Illinois University Charleston, Il 61920 Corresponding author, E-mail: cfprc@eiu.edu 1 Abstract We give the

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

### A generalization of some well-known distances and related isometries

MATHEMATICAL COMMUNICATIONS 21 Math. Commun. 16(2011), 21 35. A generalization of some well-known distances and related isometries Harun Barış Çolakoğlu 1, and Rüstem Kaya 1 1 Department of Mathematics

### Physics 11 Fall 2012 Practice Problems 6 - Solutions

Physics 11 Fall 01 Practice Problems 6 - s 1. Two points are on a disk that is turning about a fixed axis perpendicular to the disk and through its center at increasing angular velocity. One point is on

### A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of Rou-Huai Wang 1. Introduction In this note we consider semistable

### ALGEBRA I A PLUS COURSE OUTLINE

ALGEBRA I A PLUS COURSE OUTLINE OVERVIEW: 1. Operations with Real Numbers 2. Equation Solving 3. Word Problems 4. Inequalities 5. Graphs of Functions 6. Linear Functions 7. Scatterplots and Lines of Best

### Lecture 2: Potential Theory I

Astr 509: Astrophysics III: Stellar Dynamics Winter Quarter 2005, University of Washington, Željko Ivezić Lecture 2: Potential Theory I Spherical Systems and Potential Density Pairs 1 Potential Theory

### A B = AB sin(θ) = A B = AB (2) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product

1 Dot Product and Cross Products For two vectors, the dot product is a number A B = AB cos(θ) = A B = AB (1) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product

### Gravity Field and Dynamics of the Earth

Milan Bursa Karel Pec Gravity Field and Dynamics of the Earth With 89 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo HongKong Barcelona Budapest Preface v Introduction 1 1 Fundamentals

### Orbital Dynamics of an Ellipsoidal Body

Orbital Dynamics of an Ellipsoidal Body Akash Gupta Indian Institute of Technology Kanpur The purpose of this article is to understand the dynamics about an irregular body like an asteroid or a comet by

### Physics 41 HW Set 1 Chapter 15

Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

### Molecular Dynamics Simulations

Molecular Dynamics Simulations Yaoquan Tu Division of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH) 2011-06 1 Outline I. Introduction II. Molecular Mechanics Force Field III. Molecular

### Rotational Motion. Description of the motion. is the relation between ω and the speed at which the body travels along the circular path.

Rotational Motion We are now going to study one of the most common types of motion, that of a body constrained to move on a circular path. Description of the motion Let s first consider only the description

### Maximizing Angle Counts for n Points in a Plane

Maximizing Angle Counts for n Points in a Plane By Brian Heisler A SENIOR RESEARCH PAPER PRESENTED TO THE DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE OF STETSON UNIVERSITY IN PARTIAL FULFILLMENT OF

### Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### How is a vector rotated?

How is a vector rotated? V. Balakrishnan Department of Physics, Indian Institute of Technology, Madras 600 036 Appeared in Resonance, Vol. 4, No. 10, pp. 61-68 (1999) Introduction In an earlier series

### Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005

Dynamics of Iain M. Banks Orbitals Richard Kennaway 12 October 2005 Note This is a draft in progress, and as such may contain errors. Please do not cite this without permission. 1 The problem An Orbital

### Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts

CHAPTER 13 ector Algebra Ü13.1. Basic Concepts A vector in the plane or in space is an arrow: it is determined by its length, denoted and its direction. Two arrows represent the same vector if they have

### Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

### Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like

### Concepts in Calculus III

Concepts in Calculus III Beta Version UNIVERSITY PRESS OF FLORIDA Florida A&M University, Tallahassee Florida Atlantic University, Boca Raton Florida Gulf Coast University, Ft. Myers Florida International

### CALCULUS 2. 0 Repetition. tutorials 2015/ Find limits of the following sequences or prove that they are divergent.

CALCULUS tutorials 5/6 Repetition. Find limits of the following sequences or prove that they are divergent. a n = n( ) n, a n = n 3 7 n 5 n +, a n = ( n n 4n + 7 ), a n = n3 5n + 3 4n 7 3n, 3 ( ) 3n 6n

### Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series

1 Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series a n n=1 n(x + 2) n 5 n 1. n(x + 2)n Solution: Do the ratio test for the absolute convergence. Let a n =. Then,

### The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., 12-15 July 2000. Derive 5: The Easiest... Just Got Better!

The Fourth International DERIVE-TI9/89 Conference Liverpool, U.K., -5 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de technologie supérieure 00, rue Notre-Dame Ouest Montréal