HOW TO SELECT VARISTORS

Size: px
Start display at page:

Download "HOW TO SELECT VARISTORS"

Transcription

1 HOW TO SELECT VARISTORS We have three alternatives: - selection of the varistors suitable for the operating voltage of the application - calculating the surge current, energy absorption and average power dissipation - the maximum possible voltage rise in case of overvoltage at the selected varistor we compare then with the electric strength of the component or circuit to be protected. 1ST STEP To get the lowest possible protection level you should select a varistor type with a voltage rating which is adequate to the operating voltage of your application or lies only slightly above. You should also count on a possible increase in operating voltage, that is at least 10% on supply lines. You can select varistors with higher operating voltage ratings as well, especially when an extremely low leakage current is more important than the lowest protection level possible. 2ND STEP As soon as we stated the maximum operating voltage, we've reduced the number of appropriate varistors to a maximum of 8 types - at 220 V ac, the 8 types of V250 (V250K5 - V250S40). Now we need to define the loading which the varistor is to withstand. Then we must compare those values with the maximum permissible values, which are specified in our catalogue. We can select any varistor having ratings for maximum surge current, energy absorption and average power dissipation that lie above the values determined for our application. To avoid ambiguity in assignments of the circuit data and the varistor data we should make the following distinction: - maximum possible load values of the varistor, which result from the electrical specifications of the environment - identification marked with " " - maximum permissible ratings of the varistor which are limited by its surge current and energy absorption handling capability - identification marked with "max" The above stated we can see also from the following designations: i i max W W max

2 P P max When estimating the load values of a varistor we should assume the worst case condition - 2 that the varistor has to absorb the entire stored energy 12Li of a switched-off coil. In this way we will always include an additional safety margin owing to losses in the other components of the circuit. 2.1 SURGE CURRENT The maximum surge current value of the varistor depends on the pulse width and the required number of repetitions. It can be taken from the derating curves, allowing for these two parameters. The maximum possible surge current value we use then as basis for comparison. The deratings specify maximum values for rectangular surge current waves. To enable the comparison with these maximum ratings, we should convert the actual surge current wave of any shape to an adequate rectangular wave. The easiest method is to use the graphical rectangle method shown below. Figure 1. At the peak value the surge current wave converts to a rectangle of equal area. t R is the duration of the equivalent rectangular wave and is the same as the pulse width in the derating curves. We need the period T for calculating the average power dissipation resulting from periodic energy input. We could then conclude that it is the surge current which is required for selection and not the surge voltage wave causing this current.

3 The very low internal impedance of supply lines at operating frequency is very often used, incorrectly, to calculate the current's amplitude for travelling waves on power and transmission lines. At frequencies in the khz and MHz range the greater characteristic impedance of the line determines the ratio of surge voltage to current Ω 100 Z ,01 0,1 1 f MHz Figure 2. In the graph above you can see the typical values for a supply line. 2.2 ENERGY ABSORPTION Energy absorption is associated with a surge current flowing through the varistor: t 1 t vtit ()()dt 0 We can solve this integral in graphical form by conversion to an equivalent rectangular current and voltage function. If we have made the determination of the current (flowing through the varistor) with a storage oscilloscope and the conversion to an equivalent rectangle, then we can determine the energy absorption of the varistor by multiplication with the maximum voltage drop v occurring at the varistor: W = v i t R [ J] v [V] i [ A] t R [ A] v - taken from the corresponding V/I curve as the value related to i or - it can be determined by oscilloscope as the maximum voltage drop at the varistor. If the overvoltages result from switching off inductors, the "worst-case" principle can also be used for calculating the required energy handling capability of the varistor.

4 The value of the absorbed energy cannot be greater than the energy stored in the inductor: W = 1/2 L i [J] L [H] i [A] You should always include a safety margin owing to losses in other components of the circuit to be protected. The duration of free-running processes (when switching off inductors) lie generally in the range of milliseconds. The energy values determined on the basis of equation can be compared with adequate accuracy with 2 ms tabulated values of the standard table in our catalogue ; since, in this case, the maximum absorption of the varistors is almost independent of the energy input time. The above described comparison of energy values means that it is not necessary to determine the surge current and pulse width in accordance with 2.1 SURGE CURRENT 2.3 POWER DISSIPATION If we have determined the varistors according to the previous steps, then the power dissipation, resulting from the applied operating voltage, is negligibly low. If varistors absorb energy periodically, it is subject to the average power dissipation: W v i tr P = = [ W ] T [s] = cycle time T T E is the value of an individual absorption cycle - calculated on the basis of the rectangle method. According to the figure 1, T means the cycle time. By solving this equation for T, it is possible to calculate the minimum time, which must elapse prior to a renewed energy absorption without exceeding the maximum average power dissipation of the varistor: T min = W P max [] s Metal oxide varistors are less suitable for "static" continuous loading - voltage stabilisation. For this purpose we should use components developed for continuous duty (Z diodes). 3RD STEP The maximum possible voltage rise in the event of an overvoltage can be checked with the aid of the V/I characteristics. The value can be read off directly (for the most unfavourable position of the varistor in the tolerance field) if the surge current is known.

5 In case that the determined voltage value exceeds the electric strength of the components to be protected, we have those possibilities available (in order to lower the protection level): - Dispensing with the safety margin to a certain extent Example: For work at 220 V ac line voltage, choose varistors "V230" instead of "V250" - Improved matching to the operating voltage by series connection Example: 320 V ac line voltage + 10% results in approximately 350 V ac. In this case, we should select varistor type V385. However, if two varistors of type V175 are connected in series, this produces the behaviour of a V350 type with a 35 V lower protection level. - Selection of a closer tolerance field We select, for example, a special type which utilises only the lower half of the standard tolerance field. This reduces the protection level by 10%.

NTC thermistors for inrush current limiting

NTC thermistors for inrush current limiting NTC thermistors for inrush current limiting Summary NTC thermistors for inrush current limiting, as all NTCs, are made of polycrystalline mixed oxide ceramics. They suppress high inrush current surges,

More information

DATA SHEET. BYW95 series Fast soft-recovery controlled avalanche rectifiers DISCRETE SEMICONDUCTORS Jun 07

DATA SHEET. BYW95 series Fast soft-recovery controlled avalanche rectifiers DISCRETE SEMICONDUCTORS Jun 07 DISCRETE SEMICONDUCTORS DATA SHEET handbook, columns M3D8 Supersedes data of December 979 996 Jun 7 FEATURES Glass passivated High maximum operating temperature Low leakage current Excellent stability

More information

Current and Temperature Ratings

Current and Temperature Ratings Document 361-1 Current and Temperature Ratings Introduction This application note describes: How to interpret Coilcraft inductor current and temperature ratings Our current ratings measurement method and

More information

Harmonic Distortion of the AC Power Line

Harmonic Distortion of the AC Power Line Introduction Adjustable frequency drives have become the standard method of control for heating, ventilating and air conditioning (HVAC) systems due to precise control and very significant energy savings.

More information

Switching Regulator IC Series Inductor Calculation for Buck Converter IC

Switching Regulator IC Series Inductor Calculation for Buck Converter IC Switching Regulator C Series nductor Calculation for Buck Converter C No.107ECY01 This application note covers the steps required in choosing the inductor and to calculate the value used in buck regulator

More information

1 of 8 2/7/2014 7:52 AM

1 of 8 2/7/2014 7:52 AM 1 of 8 2/7/2014 7:52 AM EDN MOMENT 1st untethered spacewalk is taken, February 7, 1984 Search Login Register Soo Man (Sweetman) Kim, Vishay -February 07, 2014 Share Tweet 0 Like 0 For many years, the load

More information

Pulse Withstanding Thick Film Chip Resistor-SMDP Series. official distributor of

Pulse Withstanding Thick Film Chip Resistor-SMDP Series. official distributor of Product: Pulse Withstanding Thick Film Chip Resistor-SMDP Series Size: /// official distributor of Pulse Withstanding Thick Film Chip Resistor-SMDP Series 1. Scope -This specification applies to ~ sizes

More information

30BQ040 SCHOTTKY RECTIFIER. I F(AV) = 3.0Amp V R = 40V. Bulletin PD rev. G 07/04. Description/ Features. Major Ratings and Characteristics

30BQ040 SCHOTTKY RECTIFIER. I F(AV) = 3.0Amp V R = 40V. Bulletin PD rev. G 07/04. Description/ Features. Major Ratings and Characteristics 30BQ040 SCHOTTKY RECTIFIER 3 Amp I F(AV) = 3.0Amp V R = 40V Major Ratings and Characteristics Characteristics 30BQ040 Units I F(AV) Rectangular 3.0 A waveform V RRM 40 V I FSM @ t p = 5 µs sine 2000 A

More information

Electrical Specifications. Maximum Maximum Resistance Working Overload Temperature Voltage(1) Voltage Coefficient 400V 500V. Mechanical Specifications

Electrical Specifications. Maximum Maximum Resistance Working Overload Temperature Voltage(1) Voltage Coefficient 400V 500V. Mechanical Specifications Features: Thin Film Technology for precision and stability Excellent power to size ratio Exhibits good pulse power characteristics RoHS compliant / lead-free Type / Code Package Size Power Rating (Watts)

More information

GE s Thermometrics Product Line. NTC Inrush Current Limiters CL Series

GE s Thermometrics Product Line. NTC Inrush Current Limiters CL Series NTC Inrush Current Limiters CL Series Inrush Current Limiter Q&A 1. What is Current Limiting? Current limiting is the practice in electrical or electronic circuits of imposing an upper limit on the current

More information

Features. Symbol JEDEC TO-220AB

Features. Symbol JEDEC TO-220AB Data Sheet June 1999 File Number 2253.2 3A, 5V,.4 Ohm, N-Channel Power MOSFET This is an N-Channel enhancement mode silicon gate power field effect transistor designed for applications such as switching

More information

Electrical Resonance

Electrical Resonance Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

More information

High Performance Schottky Rectifier, 3.0 A

High Performance Schottky Rectifier, 3.0 A High Performance Schottky Rectifier, 3. A Cathode Anode SMC PRODUCT SUMMARY Package SMC I F(AV) 3. A V R 4 V V F at I F.46 V I RM 3 ma at 25 C T J max. 5 C Diode variation Single die E AS 6. mj FEATURES

More information

Schottky Rectifier, 1.0 A

Schottky Rectifier, 1.0 A Schottky Rectifier, 1.0 A VS-BQ040-M3 Cathode Anode PRODUCT SUMMARY Package SMB I F(AV) 1.0 A V R 40 V V F at I F 0.38 V I RM 9 ma at 125 C T J max. 150 C Diode variation Single die E AS 3.0 mj FEATURES

More information

Schottky Rectifier, 1 A

Schottky Rectifier, 1 A Schottky Rectifier, 1 A BQPbF FEATURES SMB Cathode Anode Small foot print, surface mountable Low forward voltage drop High frequency operation Available RoHS* COMPLIANT Guard ring for enhanced ruggedness

More information

Current Probes. User Manual

Current Probes. User Manual Current Probes User Manual ETS-Lindgren L.P. reserves the right to make changes to any product described herein in order to improve function, design, or for any other reason. Nothing contained herein shall

More information

Application Note AN-949

Application Note AN-949 Application Note AN-949 Current Ratings of Power Semiconductors and hermal esign able of Contents 1. What is a current rating?... Page. Current ratings of power semiconductors... 3. Continuous current

More information

Selecting IHLP Composite Inductors for Non-Isolated Converters Utilizing Vishay s Application Sheet

Selecting IHLP Composite Inductors for Non-Isolated Converters Utilizing Vishay s Application Sheet VISHAY DALE www.vishay.com Magnetics Selecting IHLP Composite Inductors for Non-Isolated Converters INTRODUCTION This application note will provide information to assist in the specification of IHLP composite

More information

8ETH06 8ETH06S 8ETH06-1 8ETH06FP

8ETH06 8ETH06S 8ETH06-1 8ETH06FP Bulletin PD-0746 rev. D 03/03 8ETH06 8ETH06S 8ETH06-8ETH06FP Hyperfast Rectifier Features Hyperfast Recovery Time Low Forward Voltage Drop Low Leakage Current 75 C Operating unction Temperature UL E78996

More information

NUP2105L, SZNUP2105L. Dual Line CAN Bus Protector SOT 23 DUAL BIDIRECTIONAL VOLTAGE SUPPRESSOR 350 W PEAK POWER

NUP2105L, SZNUP2105L. Dual Line CAN Bus Protector SOT 23 DUAL BIDIRECTIONAL VOLTAGE SUPPRESSOR 350 W PEAK POWER Dual Line CAN Bus Protector The SZ/NUP215L has been designed to protect the CAN transceiver in high speed and fault tolerant networks from ESD and other harmful transient voltage events. This device provides

More information

3EZ6.2D5 Series. 3 Watt DO-41 Surmetic 30 Zener Voltage Regulators

3EZ6.2D5 Series. 3 Watt DO-41 Surmetic 30 Zener Voltage Regulators EZ6.D Series Watt DO- Surmetic Zener Voltage Regulators This is a complete series of Watt Zener diodes with limits and excellent operating characteristics that reflect the superior capabilities of silicon-oxide

More information

Current Rating of Power Semiconductors

Current Rating of Power Semiconductors VISHAY SILICONIX Power MOSFEs Application Note AN-949 ABLE OF CONENS Page What Is Current Rating?... Current Ratings for Power Semiconductors... Continuous Current Rating... Switching uty Cycle Ratings...

More information

Surge-Trap SPD Application Information

Surge-Trap SPD Application Information What is the Surge-Trap SPD? The Surge-Trap is a branded surge protection device (SPD) that utilizes Mersen s patented thermally protected metal oxide varistor (TPMOV ) technology. This technology eliminates

More information

HARMONICS - Understanding the Facts - Part 3 Richard P. Bingham

HARMONICS - Understanding the Facts - Part 3 Richard P. Bingham HARMONICS - Understanding the Facts - Part 3 Richard P. Bingham Abstract Understanding what is important to know about harmonics can be challenging for those without extensive electrical engineering backgrounds.

More information

CHAPTER 3 ANALYSIS OF SWITHCHED MODE PWM INVERTER

CHAPTER 3 ANALYSIS OF SWITHCHED MODE PWM INVERTER 31 CHAPTER 3 ANALYSIS OF SWITHCHED MODE PWM INVERTER 3.1 INTRODUCTION Fixed DC power can be converted into AC power at desired output voltage and frequency by using a power electronics circuit, called

More information

A Simple Current-Sense Technique Eliminating a Sense Resistor

A Simple Current-Sense Technique Eliminating a Sense Resistor INFINITY Application Note AN-7 A Simple Current-Sense Technique Eliminating a Sense Resistor Copyright 998 A SIMPE CURRENT-SENSE TECHNIQUE EIMINATING A SENSE RESISTOR INTRODUCTION A sense resistor R S,

More information

Design Considerations for an LLC Resonant Converter

Design Considerations for an LLC Resonant Converter Design Considerations for an LLC Resonant Converter Hangseok Choi Power Conversion Team www.fairchildsemi.com 1. Introduction Growing demand for higher power density and low profile in power converter

More information

High Performance Schottky Rectifier, 1.0 A

High Performance Schottky Rectifier, 1.0 A High Performance Schottky Rectifier, 1. A VS-BQ3-M3 Cathode Anode SMB PRODUCT SUMMARY Package SMB I F(AV) 1. A V R 3 V V F at I F.42 V I RM max. 15 ma at 125 C T J max. 15 C Diode variation Single die

More information

10MQ100N SCHOTTKY RECTIFIER. I F(AV) = 2.1Amp V R = 100V. Bulletin PD-20520 rev. M 07/04. Major Ratings and Characteristics. Description/ Features

10MQ100N SCHOTTKY RECTIFIER. I F(AV) = 2.1Amp V R = 100V. Bulletin PD-20520 rev. M 07/04. Major Ratings and Characteristics. Description/ Features 0MQ00N SCHOTTKY RECTIFIER 2. Amp I F(AV) = 2.Amp V R = 00V Major Ratings and Characteristics Characteristics 0MQ00N Units I F DC 2. A V RRM 00 V I FSM @ tp = 5 µs sine 20 A V F @.5Apk, T =25 C 0.68 V J

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC

More information

Example of use: Fuse for a solenoid valve. If the fuse is defective, no information is sent to the electronic component.

Example of use: Fuse for a solenoid valve. If the fuse is defective, no information is sent to the electronic component. Overview Switch and button modules The dimensions of the switch and button modules are adapted to the electronic components in the integral housing. The modules are equipped with the universal clip-on

More information

Application Guide Film Capacitors

Application Guide Film Capacitors Capacitance Change vs. Temperature Insulation Resistance vs. Temperature Polyester Typical Characteristics at 1 khz % Capacitance Change % Capacitance Change Polypropylene Typical Characteristics at 1

More information

Knowing the Surge Protection Device

Knowing the Surge Protection Device Knowing the Surge Protection Device There are so many names for protective devices such as 'lightning barriers', 'surge arresters ', 'lightning protection units', etc. In ideal condition, the surge protection

More information

Ultrafast E Series with High Reverse Energy Capability

Ultrafast E Series with High Reverse Energy Capability MUR8100E is a Preferred Device Ultrafast E Series with High Reverse Energy Capability... designed for use in switching power supplies, inverters and as free wheeling diodes, these state of the art devices

More information

Selecting a Transmission Line for Your Broadcast System

Selecting a Transmission Line for Your Broadcast System Selecting a Transmission Line for Your Broadcast System Introduction This Bulletin presents the procedures broadcasters need for calculating attenuation and power handling parameters to properly design

More information

Solid-state Relay. (Applicable output load) 5 a o 0 C (19 to 264 VAC)

Solid-state Relay. (Applicable output load) 5 a o 0 C (19 to 264 VAC) Solid-state Relay A Wide Range of s with 5- to 0-A Output Currents and Up to 80-VAC/00-VDC Output Voltages All models feature the same compact dimensions to provide a uniform mounting pitch. Built-in varistor

More information

HIGH FREQUENCY TRANSFORMER WITH TRANSFORMER SWITCHOVER

HIGH FREQUENCY TRANSFORMER WITH TRANSFORMER SWITCHOVER OPTIMUM EFFICIENCY AND FLEXIBLE USE HIGH FREQUENCY TRANSFORMER WITH TRANSFORMER SWITCHOVER One of the many requirements of the modern inverter is a broad, coordinated input and MPP voltage range with a

More information

Ceramic transient voltage suppressors, CTVS

Ceramic transient voltage suppressors, CTVS Ceramic transient voltage suppressors, CTVS General technical information Date: July 2014 EPCOS AG 2014. Reproduction, publication and dissemination of this publication, enclosures hereto and the information

More information

STPS40L15CW. 2 x 20 Amps SCHOTTKY RECTIFIER. Case Styles. I F(AV) = 40Amp V R = 15V. Bulletin PD-20622 rev. B 10/06. Description/ Features

STPS40L15CW. 2 x 20 Amps SCHOTTKY RECTIFIER. Case Styles. I F(AV) = 40Amp V R = 15V. Bulletin PD-20622 rev. B 10/06. Description/ Features Bulletin PD-20622 rev. B 0/06 STPS40L5CW SCHOTTKY RECTIFIER 2 x 20 Amps I F(AV) = 40Amp V R = 5V Major Ratings and Characteristics Characteristics Values Units I F(AV) Rectangular 40 A waveform V RRM 5

More information

Power supply circuits

Power supply circuits Power supply circuits Abstract In this lab some different power supply circuits should be characterized. 1 Introduction he four basic constituents of a power supply circuit are the transformer, the rectifier

More information

Input and Output Capacitor Selection

Input and Output Capacitor Selection Application Report SLTA055 FEBRUARY 2006 Input and Output Capacitor Selection Jason Arrigo... PMP Plug-In Power ABSTRACT When designing with switching regulators, application requirements determine how

More information

Description/Features 5.59 (.220) 6.22 (.245) 6.60 (.260) 7.11 (.280).152 (.006).305 (.012) 2.00 (.079) 2.62 (.103).102 (.004) 0.76 (.030) 1.52 (.

Description/Features 5.59 (.220) 6.22 (.245) 6.60 (.260) 7.11 (.280).152 (.006).305 (.012) 2.00 (.079) 2.62 (.103).102 (.004) 0.76 (.030) 1.52 (. MBRS360TR SCHOTTKY RECTIFIER 3 Amp SMC Major Ratings and Characteristics Characteristics MBRS360TR Units I F(AV) Rectangular 3.0 A waveform V RRM 60 V I FSM @ t p = 5 µs sine 790 A V F @ 3.0 Apk, T = 25

More information

XTR-869 mod. Transceiver

XTR-869 mod. Transceiver mod. Transceiver Miniaturized data transceiver module, 100 Kbps maximum speed, 869,85 MHz operating frequency. Band without any duty-cycle restriction in the use time (100%). Pin-Out and block diagram

More information

HFB60HNX20. Ultrafast, Soft Recovery Diode FRED PD-97803A. Features. Description. 1 V R = 200V I F(AV) = 60A. t rr = 50ns CASE STYLE

HFB60HNX20. Ultrafast, Soft Recovery Diode FRED PD-97803A. Features. Description.  1 V R = 200V I F(AV) = 60A. t rr = 50ns CASE STYLE PD-97803A FRED Features Reduced RFI and EMI Reduced RFI and EMI Extensive Characterization of Recovery Parameters Hermetic Surface Mount ESD Rating: Class 3B per MIL-STD-750, Method 20 Ultrafast, Soft

More information

www.jameco.com 1-800-831-4242

www.jameco.com 1-800-831-4242 Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LF411 Low Offset, Low Drift JFET Input Operational Amplifier General Description

More information

CE8301 Series. Introduction. Features. Ordering Information. Applications SMALL PACKAGE PFM CONTROL STEP-UP DC/DC CONVERTER

CE8301 Series. Introduction. Features. Ordering Information. Applications SMALL PACKAGE PFM CONTROL STEP-UP DC/DC CONVERTER SMALL PACKAGE PFM CONTROL STEP-UP DC/DC CONVERTER Introduction The is a CMOS PFM-control step-up switching DC/DC converter that mainly consists of a reference voltage source, an oscillator, and a comparator.

More information

6-PIN DIP RANDOM-PHASE OPTOISOLATORS TRIAC DRIVERS (600 VOLT PEAK)

6-PIN DIP RANDOM-PHASE OPTOISOLATORS TRIAC DRIVERS (600 VOLT PEAK) PACKAGE SCHEMATIC 6 6 ANODE CATHODE 2 6 MAIN TERM. 5 NC* N/C 3 4 MAIN TERM. 6 *DO NOT CONNECT (TRIAC SUBSTRATE) DESCRIPTION The and consist of a AlGaAs infrared emitting diode optically coupled to a non-zero-crossing

More information

RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM

RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM A M A A December 995 SEMICONDUCTOR RFG7N6, RFP7N6, RFS7N6, RFS7N6SM 7A, 6V, Avalanche Rated, N-Channel Enhancement-Mode Power MOSFETs Features 7A, 6V r DS(on) =.4Ω Temperature Compensated PSPICE Model

More information

However, industrial applications may utilize a relay, which short-circuits the ICL path after the inrush sequence.

However, industrial applications may utilize a relay, which short-circuits the ICL path after the inrush sequence. Application note for Inrush Current Limiters (ICL) Turning on electrical devices generally cause high inrush currents which can damage electronic components and cause interruption of the line voltage if

More information

Schottky Rectifier, 3.0 A

Schottky Rectifier, 3.0 A VS-30BQ060-M3 Schottky Rectifier, 3.0 A Cathode Anode SMC PRODUCT SUMMARY Package SMC I F(AV) 3.0 A V R 60 V V F at I F 0.52 V I RM 20 ma at 125 C T J max. 150 C Diode variation Single die E AS 5.0 mj

More information

AOZ8881. Ultra-Low Capacitance TVS Diode Array. General Description. Features. Applications. Typical Application

AOZ8881. Ultra-Low Capacitance TVS Diode Array. General Description. Features. Applications. Typical Application Ultra-Low Capacitance TS Diode Array General Description The AOZ8881 is a transient voltage suppressor array designed to protect high speed data lines such as HDMI, MDDI, USB, SATA, and Gigabit Ethernet

More information

Following are definitions for major parameters to consider when selecting a power line polarity protection diode for an automotive application.

Following are definitions for major parameters to consider when selecting a power line polarity protection diode for an automotive application. Diode rectifiers are ideal solutions for automotive electronic power line protection and have several important parameters for these applications, including: Forward current, repetitive reverse voltage,

More information

Cree XLamp LED Electrical Overstress

Cree XLamp LED Electrical Overstress Application Note: CLD-AP29.000 Cree XLamp LED Electrical Overstress This application note describes electrical overstress (EOS) events, their effect on Cree XLamp LEDs and some simple methods of protecting

More information

MUR1520 MURB1520 MURB1520-1

MUR1520 MURB1520 MURB1520-1 MUR520 MURB520 MURB520- Ultrafast Rectifier Features Ultrafast Recovery Time Low Forward Voltage Drop Low Leakage Current 75 C Operating Junction Temperature t rr = 35ns I F(AV) = 5Amp V R = 200V Description/

More information

NZQA registered unit standard 20431 version 2 Page 1 of 7. Demonstrate and apply fundamental knowledge of a.c. principles for electronics technicians

NZQA registered unit standard 20431 version 2 Page 1 of 7. Demonstrate and apply fundamental knowledge of a.c. principles for electronics technicians NZQA registered unit standard 0431 version Page 1 of 7 Title Demonstrate and apply fundamental knowledge of a.c. principles for electronics technicians Level 3 Credits 7 Purpose This unit standard covers

More information

DATA SHEET THICK FILM CHIP RESISTORS Introduction

DATA SHEET THICK FILM CHIP RESISTORS Introduction DATA SHEET THICK FILM CHIP RESISTORS Introduction Product Specification Product specification 2 Chip Resistor Surface Mount Data in data sheets is presented - whenever possible -according to a 'format',

More information

Electricity & Electronics 5: Alternating Current and Voltage

Electricity & Electronics 5: Alternating Current and Voltage Electricity & Electronics 5: lternating Current and Voltage lternating Current and Voltage IM This unit looks at several aspects of alternating current and voltage including measurement of frequency and

More information

Data Sheet. IC timers 555 and 556. Features. Typical Absolute maximum ratings - C-MOS

Data Sheet. IC timers 555 and 556. Features. Typical Absolute maximum ratings - C-MOS Data Pack Issued November 00 0 Data Sheet I timers and range of I timers suitable for monostable or astable operation. In the monostable mode these timers are capable of producing accurate delays over

More information

AUTOMOTIVE MOSFET. C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

AUTOMOTIVE MOSFET. C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) PD 9399A AUTOMOTIVE MOSFET Typical Applications Electric Power Steering (EPS) Antilock Braking System (ABS) Wiper Control Climate Control Power Door Benefits Advanced Process Technology Ultra Low OnResistance

More information

30BQ100PbF SCHOTTKY RECTIFIER. 3 Amp. I F(AV) = 3.0Amp V R = 100V. Bulletin PD-20409 rev. C 01/07. Major Ratings and Characteristics

30BQ100PbF SCHOTTKY RECTIFIER. 3 Amp. I F(AV) = 3.0Amp V R = 100V. Bulletin PD-20409 rev. C 01/07. Major Ratings and Characteristics 30BQ00PbF SCHOTTKY RECTIFIER 3 Amp I F(AV) = 3.0Amp V R = 00V Major Ratings and Characteristics Characteristics Values Units I F(AV) Rectangular 3.0 A waveform V RRM 00 V I FSM @ t p = 5 μs sine 800 A

More information

1N5333B Series. 5 Watt Surmetic 40 Zener Voltage Regulators

1N5333B Series. 5 Watt Surmetic 40 Zener Voltage Regulators Preferred Device Watt Surmetic 40 Zener Voltage Regulators This is a complete series of Watt Zener diodes with tight limits and better operating characteristics that reflect the superior capabilities of

More information

IEC 1000-4-2 ESD Immunity and Transient Current Capability for the SP72X Series Protection Arrays

IEC 1000-4-2 ESD Immunity and Transient Current Capability for the SP72X Series Protection Arrays IEC 00-4-2 ESD Immunity and Transient Current Capability for the SP72X Series Protection Arrays Application Note July 1999 AN9612.2 Author: Wayne Austin The SP720, SP721, SP723, and SP724 are protection

More information

ST330C..C SERIES 720A. Features. Typical Applications. Major Ratings and Characteristics. Bulletin I25155 rev. D 04/03. case style TO-200AB (E-PUK)

ST330C..C SERIES 720A. Features. Typical Applications. Major Ratings and Characteristics. Bulletin I25155 rev. D 04/03. case style TO-200AB (E-PUK) ST330C..C SERIES PHASE CONTROL THYRISTORS Hockey Puk Version Features Center amplifying gate Metal case with ceramic insulator International standard case TO-200AB (E-PUK) 720A Typical Applications DC

More information

The R-C series circuit

The R-C series circuit School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 4 The C series circuit 1 Introduction Objectives To study the

More information

Designing a Low Power Flyback Power Supply

Designing a Low Power Flyback Power Supply APPLICATION NOTE INTRODUCTION Bourns is a well-known supplier of standard off-the-shelf high power inductors for power supplies in consumer, medical and automotive applications. Bourns also has a strong

More information

Schottky Rectifier, 1.0 A

Schottky Rectifier, 1.0 A Schottky Rectifier, 1.0 A VS-BQ060PbF Vishay High Power Products FEATURES Small foot print, surface mountable Low forward voltage drop SMB Cathode Anode High frequency operation Guard ring for enhanced

More information

Application Note #49 RF Amplifier Output Voltage, Current, Power, and Impedance Relationship

Application Note #49 RF Amplifier Output Voltage, Current, Power, and Impedance Relationship Application Note #49 RF Amplifier Output Voltage, Current, Power, and Impedance Relationship By: Jason Smith; Manager Applications Engineer and Pat Malloy; Sr. Applications Engineer How much output voltage,

More information

Data Sheet. IC timers 555 and 556. RS stock numbers , , ,

Data Sheet. IC timers 555 and 556. RS stock numbers , , , Data Pack J Issued March 1997 232-2217 Data Sheet IC timers 555 and 556 RS stock numbers 305-478, 305-838, 638-942, 638-958 A range of IC timers suitable for monostable or astable operation. In the monostable

More information

RC NETWORKS SALES GUIDE

RC NETWORKS SALES GUIDE SALES GUIDE INTRODUCTION TO Recent developments in electronic equipment have shown the following trends: Increasing demands for numerical control machines, robotics and technically advanced appliances

More information

Chapter 3. Simulation of Non-Ideal Components in LTSpice

Chapter 3. Simulation of Non-Ideal Components in LTSpice Chapter 3 Simulation of Non-Ideal Components in LTSpice 27 CHAPTER 3. SIMULATION OF NON-IDEAL COMPONENTS IN LTSPICE 3.1 Pre-Lab The answers to the following questions are due at the beginning of the lab.

More information

MEETING TRANSIENT SPECIFICATIONS FOR ELECTRICAL SYSTEMS IN MILITARY VEHICLES

MEETING TRANSIENT SPECIFICATIONS FOR ELECTRICAL SYSTEMS IN MILITARY VEHICLES MEETING TRANSIENT SPECIFICATIONS FOR ELECTRICAL SYSTEMS IN MILITARY VEHICLES By Arthur Jordan Sr. Applications Engineer, Vicor Electrical systems in military vehicles are normally required to meet stringent

More information

48.12. 2 pole, 8 A Safety relay. Screw terminal. 35 mm rail (EN 60715) mounting. 2 CO (DPDT) 8/15 250/400 2,000 500 0.37 8/0.65/0.

48.12. 2 pole, 8 A Safety relay. Screw terminal. 35 mm rail (EN 60715) mounting. 2 CO (DPDT) 8/15 250/400 2,000 500 0.37 8/0.65/0. 48 Series - Relay interface modules 8 A Features 48.12 2 Pole Safety relay interface modules, 15.8 mm wide 48.12-2 Pole 8 A (screw terminal) DC sensitive coils Relay with forcibly guided contacts according

More information

38 Series - Relay interface modules 0.1-2 - 3-5 - 6-8 A

38 Series - Relay interface modules 0.1-2 - 3-5 - 6-8 A 38 Series - Relay interface modules 0.1-2 - 3-5 - 6-8 A Common features Instant ejection of relay by plastic retaining clip Integral coil indication and protection circuit EMR Electromechanical Relays

More information

High-Speed, Low r ON, SPST Analog Switch (1-Bit Bus Switch)

High-Speed, Low r ON, SPST Analog Switch (1-Bit Bus Switch) High-Speed, Low r ON, SPST Analog Switch (1-Bit Bus Switch) DG2301 ishay Siliconix DESCRIPTION The DG2301 is a high-speed, 1-bit, low power, TTLcompatible bus switch. Using sub-micron CMOS technology,

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) 2N2219A 2N2222A DESCRIPTION The 2N2219A and 2N2222A are silicon Planar Epitaxial NPN transistors in Jedec TO-39 (for 2N2219A) and in Jedec TO-18 (for 2N2222A) metal case. They are designed for high speed

More information

Fixed Resistors. PULSE & OVERLOAD CAPABILITY OF WIREWOUND RESISTORS - Application Note

Fixed Resistors. PULSE & OVERLOAD CAPABILITY OF WIREWOUND RESISTORS - Application Note PULSE & OVERLOAD CAPABILITY OF WIREWOUND RESISTORS - Application Note Modern electronic circuits and devices are more sensitive than ever to transients, and this has led to an increased need for transient

More information

Power MOSFET. IRF510PbF SiHF510-E3 IRF510 SiHF510. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20

Power MOSFET. IRF510PbF SiHF510-E3 IRF510 SiHF510. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20 Power MOSFET PRODUCT SUMMARY (V) 100 R DS(on) () = 0.54 Q g max. (nc) 8.3 Q gs (nc) 2.3 Q gd (nc) 3.8 Configuration Single D TO220AB G FEATURES Dynamic dv/dt rating Available Repetitive avalanche rated

More information

STPS20L15DPbF SCHOTTKY RECTIFIER. Case Styles. I F(AV) = 20Amp V R = 15V. Bulletin PD-20873 rev. A 02/07. Major Ratings and Characteristics

STPS20L15DPbF SCHOTTKY RECTIFIER. Case Styles. I F(AV) = 20Amp V R = 15V. Bulletin PD-20873 rev. A 02/07. Major Ratings and Characteristics STPS20L5DPbF SCHOTTKY RECTIFIER 20 Amps I F(AV) = 20Amp V R = 5V Major Ratings and Characteristics Characteristics Values Units I F(AV) Rectangular 20 A waveform V RRM 5 V I FSM @ tp = 5 μs sine 700 A

More information

DG2302. High-Speed, Low r ON, SPST Analog Switch. Vishay Siliconix. (1-Bit Bus Switch with Level-Shifter) RoHS* COMPLIANT DESCRIPTION FEATURES

DG2302. High-Speed, Low r ON, SPST Analog Switch. Vishay Siliconix. (1-Bit Bus Switch with Level-Shifter) RoHS* COMPLIANT DESCRIPTION FEATURES High-Speed, Low r ON, SPST Analog Switch (1-Bit Bus Switch with Level-Shifter) DG2302 DESCRIPTION The DG2302 is a high-speed, 1-bit, low power, TTLcompatible bus switch. Using sub-micron CMOS technology,

More information

Properties of electrical signals

Properties of electrical signals DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Half-wave rectifier

More information

Line Reactors and AC Drives

Line Reactors and AC Drives Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences

More information

1N59xxBRNG Series. 3 W DO-41 Surmetic 30 Zener Voltage Regulators

1N59xxBRNG Series. 3 W DO-41 Surmetic 30 Zener Voltage Regulators W DO-4 Surmetic 0 Zener Voltage Regulators This is a N9xxBRNG series with limits and excellent operating characteristics that reflect the superior capabilities of silicon oxide passivated junctions. All

More information

Pulse Withstanding Chip Resistors

Pulse Withstanding Chip Resistors Resistive Components Pulse Withstanding Chip Resistors PWC Series Today s electronic devices are becoming smaller and smaller. As a result designers are moving more towards surface mount components not

More information

BUZ11. 30A, 50V, 0.040 Ohm, N-Channel Power MOSFET. Features. [ /Title (BUZ1 1) /Subject. (30A, 50V, 0.040 Ohm, N- Channel. Ordering Information

BUZ11. 30A, 50V, 0.040 Ohm, N-Channel Power MOSFET. Features. [ /Title (BUZ1 1) /Subject. (30A, 50V, 0.040 Ohm, N- Channel. Ordering Information Data Sheet June 1999 File Number 2253.2 [ /Title (BUZ1 1) /Subject (3A, 5V,.4 Ohm, N- Channel Power MOS- FET) /Autho r () /Keywords (Intersil Corporation, N- Channel Power MOS- FET, TO- 22AB ) /Creator

More information

Power MOSFET FEATURES. IRF610PbF SiHF610-E3 IRF610 SiHF610. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 200 V Gate-Source Voltage V GS ± 20

Power MOSFET FEATURES. IRF610PbF SiHF610-E3 IRF610 SiHF610. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 200 V Gate-Source Voltage V GS ± 20 Power MOSFET PRODUCT SUMMARY (V) 00 R DS(on) ( ) = 1.5 Q g (Max.) (nc) 8. Q gs (nc) 1.8 Q gd (nc) 4.5 Configuration Single FEATURES Dynamic dv/dt Rating Repetitive Avalanche Rated Fast Switching Ease of

More information

Experiment A5. Hysteresis in Magnetic Materials

Experiment A5. Hysteresis in Magnetic Materials HYSTERESIS IN MAGNETIC MATERIALS A5 1 Experiment A5. Hysteresis in Magnetic Materials Objectives This experiment illustrates energy losses in a transformer by using hysteresis curves. The difference betwen

More information

Power MOSFET FEATURES. IRF740PbF SiHF740-E3 IRF740 SiHF740. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 400 V Gate-Source Voltage V GS ± 20

Power MOSFET FEATURES. IRF740PbF SiHF740-E3 IRF740 SiHF740. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 400 V Gate-Source Voltage V GS ± 20 Power MOSFET PRODUCT SUMMARY (V) 400 R DS(on) (Ω) = 0.55 Q g (Max.) (nc) 63 Q gs (nc) 9.0 Q gd (nc) 3 Configuration Single FEATURES Dynamic dv/dt Rating Repetitive Avalanche Rated Fast Switching Ease of

More information

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49 Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large

More information

K817P/ K827PH/ K847PH. Optocoupler with Phototransistor Output. Vishay Semiconductors. Description. Applications. Features.

K817P/ K827PH/ K847PH. Optocoupler with Phototransistor Output. Vishay Semiconductors. Description. Applications. Features. Optocoupler with Phototransistor Output Description The K817P/ K827PH/ K847PH consist of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in an 4-lead up to 16 lead plastic

More information

Application Note. AC and DC Reactors for Filtering of Harmonic Currents. Harmonics. Introduction. Causes of Power Line Distortion

Application Note. AC and DC Reactors for Filtering of Harmonic Currents. Harmonics. Introduction. Causes of Power Line Distortion Application Note Harmonics AC and DC Reactors for Filtering of Harmonic Currents Introduction Variable frequency drives have been used in industrial applications for years because of their ability to provide

More information

Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E

Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E Power supplies EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E EE328 POWER ELECTRONICS Outline of lecture Introduction to power supplies Modelling a power transformer

More information

38 Series - Relay interface modules 0.1-2 - 3-5 - 6-8 - 16 A

38 Series - Relay interface modules 0.1-2 - 3-5 - 6-8 - 16 A 38 Series - Relay interface modules 0.1-2 - 3-5 - 6-8 - 16 A 38 SERIES Common features Instant ejection of relay by plastic retaining clip Integral coil indication and protection circuit EMR Electromechanical

More information

A wave lab inside a coaxial cable

A wave lab inside a coaxial cable INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S0143-0807(04)76273-X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera

More information

Small Signal Fast Switching Diode

Small Signal Fast Switching Diode Small Signal Fast Switching Diode MECHANICAL DATA Case: SOD- Weight: approx.. mg Packaging codes/options: 8/K per " reel (8 mm tape), K/box 08/K per 7" reel (8 mm tape), K/box FEATURES Silicon epitaxial

More information

IMMUNITY TESTING FOR THE CE MARK By Rodger Gensel, Product Line Applications Specialist

IMMUNITY TESTING FOR THE CE MARK By Rodger Gensel, Product Line Applications Specialist IMMUNITY TESTING FOR THE CE MARK By Rodger Gensel, Product Line Applications Specialist SUMMARY The European Union (EU) currently has 25 member countries with 2 additional countries to be added in 2007.

More information

STPS5L60. Power Schottky rectifier. Description. Features

STPS5L60. Power Schottky rectifier. Description. Features Power Schottky rectifier Datasheet - production data Description Power Schottky rectifier suited for switch mode power supplies and high frequency inverters. This device is intended for use in low voltage

More information

Electronic timer CT-VBS.17+18 OFF-delayed without auxiliary voltage, for DC contactors Data sheet

Electronic timer CT-VBS.17+18 OFF-delayed without auxiliary voltage, for DC contactors Data sheet Characteristics Single-function OFF-delay timer for DC contactors, without auxiliary voltage Width.5 mm CDC 5 6 F3 Approvals A culus E CCC CT-VBS a Circuit diagram b Marker label Marks a CE b C-Tick Order

More information

B. 1.3 Ω D Ω (Total 1 mark)

B. 1.3 Ω D Ω (Total 1 mark) Practice Test: 30 marks (39 minutes) Additional Problem: 5 marks (37 minutes) 1. One electronvolt is equal to A. 1.6 10 19 C. B. 1.6 10 19 J. C. 1.6 10 19 V. D. 1.6 10 19 W.. In the circuit below, which

More information

Small Signal Fast Switching Diode FEATURES PART ORDERING CODE INTERNAL CONSTRUCTION TYPE MARKING REMARKS

Small Signal Fast Switching Diode FEATURES PART ORDERING CODE INTERNAL CONSTRUCTION TYPE MARKING REMARKS Small Signal Fast Switching Diode MARKING (example only) Bar = cathode marking XY = type code X Y 6 MECHANICAL DATA Case: SOD- Weight: approx.. mg Packaging codes/options: 8/K per " reel (8 mm tape), K/box

More information

PULSE WITHSTANDING CHIP RESISTORS - Application Note

PULSE WITHSTANDING CHIP RESISTORS - Application Note Today s electronic devices are becoming smaller and smaller. As a result designers are moving more towards surface mount components not only for new designs but also to design out large axial and other

More information