GE Multilin technical note

Size: px
Start display at page:

Download "GE Multilin technical note"

Transcription

1 Digital Energy Multilin GE Multilin technical note eutral voltage unbalance function at grounded wye capacitor banks GE publication number: GET-8544 Copyright 00 GE Multilin eutral voltage unbalance function at grounded wye capacitor banks Introduction The C70 neutral overvoltage unbalance function (ASI 59U) compensates for both the system unbalance ( 0 ), and the bank inherent unbalance using balancing factors k AB and k AC. The operating quantity equation for a perfectly balanced bank (k AB = k AC = ) takes the following familiar simplified form. op = X 0 (Eq ) In this equation, X is a bank neutral point voltage and 0 is a bus (system voltage) which can either calculated from phase voltages or supplied externally from broken delta T. It is preferable to have the bus voltage supplied from a three-phase voltage T, since the C70 can compensate for bank inherent unbalance by applying balancing coefficients. The auto-setting procedure is available to automatically calculate these coefficients. For greater sensitivity and security, the relay applies the differential principle with the restraint quantity rest calculated as follows. rest = X + 0 The neutral overvoltage unbalance element operates if: (Eq ) op > S rest (Eq 3) Where S is a user-programmable slope factor. The neutral overvoltage unbalance element can be applied to both ungrounded and grounded capacitor banks. Applying neutral overvoltage unbalance to ungrounded banks appears logical and simple. However, it may not be so obvious for grounded banks. In this case, the banks are grounded through a neutral capacitor with a single-phase T across the capacitor or grounded through a CT to measure the neutral current or equivalent neutral voltage. This application note attempts to clarify the C70 application for these type of grounded bank configurations. GE MULTILI TECHICAL OTE EUTAL OLTAGE UBALACE FUCTIO AT GOUDED WYE CAPACITO BAKS

2 eutral point voltage equivalent The following figure depicts two possible grounding arrangements for the capacitor bank. Grounded through neutral capacitor. Grounded through neutral CT. In any configuration the value of the resistor has to be chosen so that the voltage which appears at the neutral point (one phase voltage at the bus equals zero) across resistor through the CT/auxiliary T input matches the bus 0 value. Figure : eutral arrangement for grounded wye banks Alternative: measured bus 30 Phase CT bank T Phase T bank C70 Capacitor Bank Protection and Control System T Alternative CT In the case of neutral CT configuration, it can be achieved by calculating value of the resistor in neutral CT secondary as follows: A.CD BLL ( ) CT = S B T (Eq 4) In the above equation: B(LL) is bus phase-to-phase bus voltage (in k). S B is the bank reactive power rating (in MA). T is the auxiliary T input ratio setting, which may be same as bus T ratio or used to achieve balance if an exact resistor value is not possible. CT is the neutral CT ratio. The voltage derived from the current in the neutral secondary resistor is shifted 90 from the bus 0 voltage. The relay automatically compensates for this if the eutral oltage Unbalance Ground setting is programmed as CTx (grnd). GE MULTILI TECHICAL OTE EUTAL OLTAGE UBALACE FUCTIO AT GOUDED WYE CAPACITO BAKS

3 GEEAL CALCULATIOS Application example Consider a capacitor bank with the following ratings. Bus phase-to-phase bus voltage B(LL) =69k. Bank reactive power rating S B =6.MA. 900 ka capacitor can rated 9.9 k. Phase T ratio is 600:. T secondary = 67. eutral CT is 75/5A. Each capacitor can consists from = 0 capacitor sections. Two capacitors cans are connected in series (P = ) and there are three parallel strings (S = 3) in each phase. Figure : Sample bank configuration 69 k Measured bus /5A Phase CT bank 6. MA total T C70 Capacitor Bank Protection and Control System 4000/67 75/5A T A.CD General calculations The nominal current of the capacitor bank is calculated as follows. S I B MA 0 3 nom = = = A 3 BLL ( ) 3 69 The impedance of the healthy phase capacitors stack is calculated as follows. (Eq 5) Z P BLL ( ) ( 69 ) = = = Ω S B 6. MA (Eq 6) The impedance of the capacitor can is calculated as follows. Z Z P S Ω 3 C = = = Ω P (Eq 7) GE MULTILI TECHICAL OTE EUTAL OLTAGE UBALACE FUCTIO AT GOUDED WYE CAPACITO BAKS 3

4 UBALACE CALCULATIOS The impedance of the capacitor section is calculated as follows. Z Z C S = = Ω = Ω 0 (Eq 8) From the formula above, the value of resistor in the neutral CT secondary is estimated as follows. BLL ( ) CT ( 69 ) 5 = = 3 S B T = 6. MA Ω (Eq 9) In the above equation, the voltage auxiliary input ratio is assumed same as the phase voltage input ratio. The calculations of and 0(bus) provide a quick check that the resistor value for one system phase voltage is equal to zero. The value is calculated as follows. I nom A.449 Ω = = =.3 CT 5 (Eq 0) The 0(bus) value is calculated as follows. ( BLL ( ) 0 3 ) ( 3) ( bus) = = 3 T = BUS (Eq ) The and 0(bus) values are practically the same. Unbalance calculations For a fuseless sample bank as shown above with S C = P = 0 = 0 series capacitor sections in one string and S = 3 parallel strings, the general equation to calculate ground current for n failed sections is shown below. n I G = I ( S C n) S + n nom ( S C n) S (Eq ) The neutral point secondary voltage with one failed section (n = ) is calculated as follows. ( n = ) n = I G A (Eq 3) CT ( ) 3 + ( 0 ) Ω = = = ( n = ) This can also be expressed in per-unit values as ( pu) = / 67 = pu. The neutral point secondary voltage with two failed sections (n = ) is calculated as follows. ( n = ) ( ) ( n = ) I G A CT ( ) 3 + ( 0 ) Ω = = = (Eq 4) ( n = ) This can also be expressed in per-unit values as ( pu) = / 67 = 0.0 pu. The neutral point secondary voltage with three failed sections (n = 3) is calculated as follows. ( n = 3) ( n = 3) I G A CT ( ) ( 0 3) Ω = = =.86 5 (Eq 5) ( n = 3) This can also be expressed in per-unit values as ( pu) =.86 / 67 = 0.09 pu. From the calculations above, the alarm pickup setting is chosen for the failure of one section as follows. ( n = ) 59U alarm = 0.9 = pu = pu (Eq 6) 4 GE MULTILI TECHICAL OTE EUTAL OLTAGE UBALACE FUCTIO AT GOUDED WYE CAPACITO BAKS

5 ELAY COFIGUATIO The trip pickup setting is chosen as midway between the second and third capacitor section failures as follows. ( n = ) ( n = 3) 59U + trip = = pu pu = pu (Eq 7) elay configuration If the external 3 0 voltage is brought into the relay, then the C70 model with two T banks must be ordered to protect capacitor bank according to the application example. One T bank is sufficient for calculated 3 0. For externally brought 3 0 and two type L CT/T modules in the F and M slots. Program the following settings in the System Setup > AC Inputs > Current menu. Program the following settings in the System Setup > AC Inputs > oltage menu. Program the following settings in the System Setup > Signal Sources menu. GE MULTILI TECHICAL OTE EUTAL OLTAGE UBALACE FUCTIO AT GOUDED WYE CAPACITO BAKS 5

6 ELAY COFIGUATIO Program the following settings in the Grouped Elements > Group > oltage Elements > eutral oltage Unbalance menu. Appendix As was mentioned above in the case of neutral CT connections, the value of resistor must be chosen so that the voltage drop across at the neutral point through the CT/auxiliary T input transformation matches the bus 0 value for a single phase to ground fault. This value is derived as follows. If the fault occurs on phase A, then 0 is calculated as follows. 0 = -- ( B + C ) = -- ( 3 B + C ) The impedance of each leg of bank is calculated as follows. (Eq 8) Z = BLL ( ) S B (Eq 9) The neutral current is calculated as follows. I B + = C BLL ( ) S B The secondary current in neutral resistor is calculated as follows. I sec ( ) B + C = CT BLL ( ) S B The voltage across secondary resistor is calculated as follows. (Eq 0) (Eq ) sec ( ) B + C = CT BLL ( ) S B (Eq ) Assume that the voltage setting for the auxiliary T ratio, T, is set the same as the bus T ratio. It is desired that following magnitudes are equivalent. T B + C = CT 0 = -- ( BLL ( ) S 3 B + C ) B (Eq 3) 6 GE MULTILI TECHICAL OTE EUTAL OLTAGE UBALACE FUCTIO AT GOUDED WYE CAPACITO BAKS

7 ELAY COFIGUATIO We therefore have: CT BLL ( ) S B = -- 3 CT BLL ( ) = T 3 S B (Eq 4) GE MULTILI TECHICAL OTE EUTAL OLTAGE UBALACE FUCTIO AT GOUDED WYE CAPACITO BAKS 7

Shunt Capacitor Bank Fundamentals and Protection

Shunt Capacitor Bank Fundamentals and Protection 2003 Conference for Protective Relay Engineers - Texas A&M University April 8-10, 2003, College Station (TX) Shunt Capacitor Bank Fundamentals and Protection Gustavo Brunello, M.Eng, P.Eng Dr. Bogdan Kasztenny

More information

100% Stator Ground Fault Detection Implementation at Hibbard Renewable Energy Center. 598 N. Buth Rd 3215 Arrowhead Rd

100% Stator Ground Fault Detection Implementation at Hibbard Renewable Energy Center. 598 N. Buth Rd 3215 Arrowhead Rd 100% Stator Ground Fault Detection Implementation at Hibbard Renewable Energy Center Introduction Roger Hedding Steven Schoenherr, P.E. ABB Inc. Minnesota Power 598 N. Buth Rd 3215 Arrowhead Rd Dousman,

More information

Chapter 24. Three-Phase Voltage Generation

Chapter 24. Three-Phase Voltage Generation Chapter 24 Three-Phase Systems Three-Phase Voltage Generation Three-phase generators Three sets of windings and produce three ac voltages Windings are placed 120 apart Voltages are three identical sinusoidal

More information

Introduction to Paralleling of LTC Transformers by the Circulating Current Method

Introduction to Paralleling of LTC Transformers by the Circulating Current Method TAPCHANGER CONTROLS Application Note #11 Introduction to Paralleling of LTC Transformers by the Circulating Current Method 1.0 ABSTRACT This Application Note discusses the elements of paralleling load

More information

IAV. Time Delay Voltage. For AC and DC circuit applications. GE Multilin 1. Protection and Control. Features and Benefits.

IAV. Time Delay Voltage. For AC and DC circuit applications. GE Multilin 1. Protection and Control. Features and Benefits. IAV Time Delay Voltage For A and D circuit applications. Features and Benefits Frequency compensation (optional) Target seal-in unit (most units) Instantaneous units (optional) Applications A Generators

More information

System Grounding and Ground-Fault Protection Methods for UPS-Supplied Power Systems

System Grounding and Ground-Fault Protection Methods for UPS-Supplied Power Systems System Grounding and Ground-Fault Protection Methods for -Supplied Power Systems Bill Brown, P.E., Square D Critical Power Competency Center 1. INTRODUCTION The use of solid grounding for -supplied power

More information

Equipment: Power Supply, DAI, Variable resistance (8311), Variable inductance (8321)

Equipment: Power Supply, DAI, Variable resistance (8311), Variable inductance (8321) Lab 4: 3-phase circuits. Objective: to study voltage-current relationships in 3-phase circuits; to learn to make delta and Y connections; to calculate and measure real, apparent, and reactive powers. Equipment:

More information

Figure. 1 - Split Phase 240/120V circuit (180 phase shift)

Figure. 1 - Split Phase 240/120V circuit (180 phase shift) This technical note describes the option of connecting the 60Hz XW Inverter/Charger to a three-phase source by using a transformer to convert the AC source to split-phase 240/120V. INTRODUCTION: Split-phase

More information

TESLA Recorder Power Metering Setup Configuration for 3 and 2 Element Watt/VAR Metering

TESLA Recorder Power Metering Setup Configuration for 3 and 2 Element Watt/VAR Metering TESLA Recorder Power Metering Setup Configuration for 3 and 2 Element Watt/VAR Metering Introduction This application note will assist the user to set up 3-phase metering to monitor Watt, VAR and VA power

More information

BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008

BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 Introduction This note will discuss AC analysis using the beta, re transistor model shown in Figure 1 for the three types of amplifiers: common-emitter,

More information

THE PER-UNIT SYSTEM. (2) The per-unit values for various components lie within a narrow range regardless of the equipment rating.

THE PER-UNIT SYSTEM. (2) The per-unit values for various components lie within a narrow range regardless of the equipment rating. THE PER-UNIT SYSTEM An interconnected power system typically consists of many different voltage levels given a system containing several transformers and/or rotating machines. The per-unit system simplifies

More information

ECE 431. Experiment #1. Three-Phase ac Measurements. PERFORMED: 26 January 2005 WRITTEN: 28 January 2005. Jason Wells

ECE 431. Experiment #1. Three-Phase ac Measurements. PERFORMED: 26 January 2005 WRITTEN: 28 January 2005. Jason Wells ECE 41 Experiment #1 Three- ac Measurements PERFORMED: 6 January 005 WRTTEN: 8 January 005 Jason Wells LEADER: Jason Wells RECORDER: Nathaniel Hakes 1 ntroduction The primary objectives of the experiment

More information

ELECTRONIC POWER SYSTEMS

ELECTRONIC POWER SYSTEMS ELECTRONIC POWER SYSTEMS TRADEOFFS BETWEEN SINGLE-PHASE & THREE-PHASE POWER WHITE PAPER: TW0057 1 Executive Summary Modern Electronic Systems are quite often powered from a three-phase power source. While

More information

SPECIAL TOPICS ON GROUND FAULT PROTECTION AND PROTECTION COORDINATION IN INDUSTRIAL AND COMMERCIAL POWER SYSTEMS

SPECIAL TOPICS ON GROUND FAULT PROTECTION AND PROTECTION COORDINATION IN INDUSTRIAL AND COMMERCIAL POWER SYSTEMS SPECIAL TOPICS ON GROUND FAULT PROTECTION AND PROTECTION COORDINATION IN INDUSTRIAL AND COMMERCIAL POWER SYSTEMS Claudio S. Mardegan claudio.mardegan@engepower.com www.engepower.com Phone: 55 3579-8777

More information

Protection of Phase Angle Regulating Transformers

Protection of Phase Angle Regulating Transformers Protection of Phase Angle Regulating Transformers A report to the Substation Subcommittee of the IEEE Power System Relaying Committee prepared by Working Group K1 IEEE Special Publication Members of the

More information

How To Wire A Three Phase, Single Phase, Wye Transformer

How To Wire A Three Phase, Single Phase, Wye Transformer Three-Phase Transformers When more power is needed - three transformers can be tied together. This is called three-phase. Here s a simple way of comparing single-phase to threephase power. Single-Phase

More information

Lecture Notes ELE A6

Lecture Notes ELE A6 ecture Notes EE A6 Ramadan El-Shatshat Three Phase circuits 9/12/2006 EE A6 Three-phase Circuits 1 Three-phase Circuits 9/12/2006 EE A6 Three-phase Circuits 2 Advantages of Three-phase Circuits Smooth

More information

Motor Protection Principles. Craig Wester GE Multilin Craig.Wester@GE.com

Motor Protection Principles. Craig Wester GE Multilin Craig.Wester@GE.com Motor Protection Principles Craig Wester GE Multilin Craig.Wester@GE.com Motor History & Facts The first U.S. patent for a motor was issued to Thomas Davenport in 1837. Today in North America, more than

More information

CT Application Guide for the 489 Generator Management Relay

CT Application Guide for the 489 Generator Management Relay g GE Power Management Technical Notes CT Application Guide for the 489 Generator Management Relay GE Publication No. GET-8402 Copyright 2002 GE Power Management Introduction A protection scheme operates

More information

BALANCED THREE-PHASE CIRCUITS

BALANCED THREE-PHASE CIRCUITS BALANCED THREE-PHASE CIRCUITS The voltages in the three-phase power system are produced by a synchronous generator (Chapter 6). In a balanced system, each of the three instantaneous voltages have equal

More information

1 Introduction. 2 Two Phases. J.L. Kirtley Jr.

1 Introduction. 2 Two Phases. J.L. Kirtley Jr. Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.061 Introduction to Power Systems Class otes Chapter 3 Polyphase etworks J.L. Kirtley Jr. 1 Introduction

More information

Radial Distribution Test Feeders

Radial Distribution Test Feeders Radial Distribution Test Feeders Distribution System Analysis Subcommittee Report Abstract: Many computer programs are available for the analysis of radial distribution feeders. In 1992 a paper was published

More information

1 Introduction. 2 The Symmetrical Component Transformation. J.L. Kirtley Jr.

1 Introduction. 2 The Symmetrical Component Transformation. J.L. Kirtley Jr. Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.06 Introduction to Power Systems Class Notes Chapter 4 Introduction To Symmetrical Components J.L. Kirtley

More information

SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY

SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY Page 1 of 25 PURPOSE: The purpose of this lab is to simulate the LCC circuit using MATLAB and ORCAD Capture CIS to better

More information

DNP Points List and Implementation

DNP Points List and Implementation S&C Electric Company BankGuard Plus DNP Points List and Implementation This appendix describes the DNP points and DNP implementation for the BankGuard PLUS Control, using software UPPD106S. DNP Points

More information

S&C BankGuard PLUS Control

S&C BankGuard PLUS Control S&C BankGuard PLUS Control For Substation Capacitor Banks and Shunt Reactors Application S&C s BankGuard PLUS Control utilizes flexible, reliable microprocessor technology to: Protect substation shunt

More information

TURBOtech srl. SED-635 Digital Excitation System. Industrial Electronics Sector FEATURES

TURBOtech srl. SED-635 Digital Excitation System. Industrial Electronics Sector FEATURES SED-635 Digital Excitation System SED-635 is a complete excitation system capable of adapting to control synchronous generators of any size. The integration of the TOUCH SCREEN operator interface and a

More information

Open Phase Conditions in Transformers Analysis and Protection Algorithm

Open Phase Conditions in Transformers Analysis and Protection Algorithm Open Phase Conditions in Transformers Analysis and Protection Algorithm Amir Norouzi GE Digital Energy Markham, ON amir.norouzi@ge.com Abstract This paper first provides an in-depth analysis of open phase

More information

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00

More information

Fault Analysis I13-1. 2008 PowerWorld Corporation

Fault Analysis I13-1. 2008 PowerWorld Corporation Fault Analysis Analysis of power system parameters resulting from a ground or line to line fault somewhere in the system Simulator contains a tool for analyzing faults in an automatic fashion Can perform

More information

Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading. Ramandeep Kaur Aujla S.NO 250447392

Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading. Ramandeep Kaur Aujla S.NO 250447392 1 Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading By Ramandeep Kaur Aujla S.NO 250447392 ES 586b: Theory and applications of protective relays Department of

More information

Transformer circuit calculations

Transformer circuit calculations Transformer circuit calculations This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Grounding of AC generators and switching the neutral in emergency and standby power systems

Grounding of AC generators and switching the neutral in emergency and standby power systems Power topic #6006 Part 2 of 2 Technical information from Cummins Power eneration rounding of AC generators and switching the neutral in emergency and standby power systems > White paper By Lawrence A.

More information

Loss of ac Voltage Considerations For Line Protection

Loss of ac Voltage Considerations For Line Protection Loss of ac Voltage Considerations For Line Protection A report prepared for the Line Protection Subcommittee Of the IEEE Power Engineering Society, Power System Relaying Committee Line Protection Subcommittee

More information

Measurement, Modeling and Simulation of Capacitor Bank Switching Transients

Measurement, Modeling and Simulation of Capacitor Bank Switching Transients Measurement, Modeling and Simulation of Capacitor Bank Switching Transients Mirza Softić*, Amir Tokić**, Ivo Uglešić*** *Kreka - Dubrave e, Dubrave, Bosnia and Herzegovina (e-mail: softic_mirza@yahoo.com).

More information

Preamble. Kirchoff Voltage Law (KVL) Series Resistors. In this section of my lectures we will be. resistor arrangements; series and

Preamble. Kirchoff Voltage Law (KVL) Series Resistors. In this section of my lectures we will be. resistor arrangements; series and Preamble Series and Parallel Circuits Physics, 8th Edition Custom Edition Cutnell & Johnson Chapter 0.6-0.8, 0.0 Pages 60-68, 69-6 n this section of my lectures we will be developing the two common types

More information

30. Bode Plots. Introduction

30. Bode Plots. Introduction 0. Bode Plots Introduction Each of the circuits in this problem set is represented by a magnitude Bode plot. The network function provides a connection between the Bode plot and the circuit. To solve these

More information

Percentage Restrained Differential, Percentage of What?

Percentage Restrained Differential, Percentage of What? Percentage Restrained Differential, Percentage of What? Michael J. Thompson Schweitzer Engineering Laboratories, Inc. 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be

More information

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated? Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux

More information

Installation manual. Generator Paralleling Controller GPC multi-line 2 4189340225C

Installation manual. Generator Paralleling Controller GPC multi-line 2 4189340225C Installation manual Generator Paralleling Controller GPC multi-line 2 Software ver. 1.3X Compact system in one unit - dynamic synchronisation - load sharing - generator protection DEIF A/S 3-phase AC RMS

More information

Chapter 12: Three Phase Circuits

Chapter 12: Three Phase Circuits Chapter 12: Three Phase Circuits 12.1 What Is a Three Phase Circuit? 12.2 Balance Three Phase Voltages 12.3 Balance Three Phase Y to Y Connection 12.4 Other Balance Three Phase Connections 12.5 Power in

More information

Transformer protection

Transformer protection 8 Transformer protection 8.1 Introduction The inherent characteristics of power transformers introduce a number of unique problems that are not present in the protection of transmission lines, generators,

More information

Product Guide. Low voltage grounding system. Answers for industry.

Product Guide. Low voltage grounding system. Answers for industry. Product Guide Low voltage grounding system Answers for industry. Advanced switchgear solutions for process industries In today s high-tech manufacturing world, profitability can be greatly impacted by

More information

TYPE TEST CERTIFICATE OF SHORT-CIRCUIT PERFORMANCE. A three-phase outdoor oil-immersed distribution transformer

TYPE TEST CERTIFICATE OF SHORT-CIRCUIT PERFORMANCE. A three-phase outdoor oil-immersed distribution transformer 168-08 TYPE TEST CERTIFICATE OF SHORT-CIRCUIT PERFORMANCE APPARATUS A three-phase outdoor oil-immersed distribution transformer DESIGNATION 1000 kva SERIAL No. 1-08-112-01-0001 Rated power Rated voltage

More information

Type SA-1 Generator Differential Relay

Type SA-1 Generator Differential Relay ABB Automation Inc. Substation Automation and Protection Division Coral Springs, FL 33065 Instruction Leaflet 41-348.11C Effective: November 1999 Supersedes I.L. 41-348.11B, Dated August 1986 ( ) Denotes

More information

Hyperlinks are Inactive

Hyperlinks are Inactive Prepared by: NIB/EOB PLANNING GUIDE FOR SINGLE CUSTOMER SUBSTATIONS SERVED FROM TRANSMISSION LINES 05503 Department: Electric T&D Section: T&D Engineering and Technical Support Approved by: G.O. Duru (GOD)

More information

Differential Amplifier Offset. Causes of dc voltage and current offset Modeling dc offset R C

Differential Amplifier Offset. Causes of dc voltage and current offset Modeling dc offset R C ESE39 ntroduction to Microelectronics Differential Amplifier Offset Causes of dc voltage and current offset Modeling dc offset mismatch S mismatch β mismatch transistor mismatch dc offsets in differential

More information

Product Data Bulletin

Product Data Bulletin Product Data Bulletin Power System Harmonics Causes and Effects of Variable Frequency Drives Relative to the IEEE 519-1992 Standard Raleigh, NC, U.S.A. INTRODUCTION This document describes power system

More information

Table of Contents. TransformerIQ FAQs 1

Table of Contents. TransformerIQ FAQs 1 [12/12] FAQs Table of Contents FAQ 1. What size transformer will TransformerIQ monitor?... 2 FAQ 2. Are there different TransformerIQ versions?... 2 FAQ 3. How are the units powered?... 2 FAQ 4. What is

More information

VOLTAGE REGULATOR AND PARALLEL OPERATION

VOLTAGE REGULATOR AND PARALLEL OPERATION VOLTAGE REGULATOR AND PARALLEL OPERATION Generator sets are operated in parallel to improve fuel economy and reliability of the power supply. Economy is improved with multiple paralleled generators by

More information

General Validation Test Program for Wind Power Plants Connected to the Hydro-Québec Transmission System

General Validation Test Program for Wind Power Plants Connected to the Hydro-Québec Transmission System General Validation Test Program for Wind Power Plants Connected to the Hydro-Québec Transmission System Direction Planification des actifs et expertise de transport February 2011 TABLE OF CONTENTS 1. CONDUCTING

More information

Ground Fault Protection on Ungrounded and High Resistance Grounded Systems

Ground Fault Protection on Ungrounded and High Resistance Grounded Systems > the power to protect Ground Fault Protection on Ungrounded and High Resistance Grounded Systems Application Guide www.i-gard.com table of contents SUBJECT PAGE 1. Introduction...1 2. Ungrounded Systems...1

More information

Power Technology Issue 104. Modeling of Two-Winding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E

Power Technology Issue 104. Modeling of Two-Winding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E SIEMENS Siemens Energy, Inc. Power Technology Issue 104 Modeling of TwoWinding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E Carlos GrandeMoran, Ph.D. Principal Consultant

More information

TA Kahraman Yumak ELK412 - Distribution of Electrical Energy Lab. Notes v1.0 2013 Spring web.itu.edu.tr/yumakk. Distance Protection

TA Kahraman Yumak ELK412 - Distribution of Electrical Energy Lab. Notes v1.0 2013 Spring web.itu.edu.tr/yumakk. Distance Protection Distance Protection Announcement: You are not supposed to prepare a pre-report. But there will be an oral examination, so you are strongly advised to study this note regarding to the pre-study questions

More information

Power Technology Issue 106. Modeling of Three-Winding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E

Power Technology Issue 106. Modeling of Three-Winding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E SIEMENS Siemens Energy, Inc. Power Technology Issue 106 Modeling of Three-Winding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E Carlos Grande-Moran, Ph.D. Principal

More information

Three phase circuits

Three phase circuits Three phase circuits THREE PHASE CIRCUITS THREE-PHASE ADVANTAGES 1. The horsepower rating of three-phase motors and the kva rating of three-phase transformers are 150% greater than single-phase motors

More information

THREE PHASE CIRCUITS

THREE PHASE CIRCUITS THREE PHASE CIRCUITS A. PREPARATION 1. Three Phase Voltages and Systems 2. The Determination of Phase Sequence 3. Blondel's Theorem and Its Consequences 4. References B. EXPERIMENT 1. Equipment List 2.

More information

Accurate Point-of-Load Voltage Regulation Using Simple Adaptive Loop Feedback

Accurate Point-of-Load Voltage Regulation Using Simple Adaptive Loop Feedback APPLCATON NOTE AN:04 Accurate Point-of-Load oltage egulation Using imple Adaptive Loop eedback Maurizio alato Principal Engineer August 009 Contents Page ntroduction ntroduction 1 Adaptive Loop egulation

More information

Introduction to PowerWorld Simulator: Interface and Common Tools

Introduction to PowerWorld Simulator: Interface and Common Tools Introduction to PowerWorld Simulator: Interface and Common Tools 2001 South First Street Champaign, Illinois 61820 +1 (217) 384.6330 support@powerworld.com http://www.powerworld.com Fault Analysis Analysis

More information

DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION

DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION ÿþ üûúùø öõöôùóùõò CT Dimensioning DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION Application note GER3973 1 CT Dimensioning ÿþ üûúùø öõöôùóùõò GER-3973 Application note ÿþ üûúùø öõöôùóùõò

More information

Eaton s E-Series protective relay family

Eaton s E-Series protective relay family E-Series protective relays Feeder distribution relays Motor relays Transformer relays Generator relays Eaton s E-Series protective relay family Microprocessor-based design Eaton s E-Series relay family

More information

ET 332b Ac Electric Machines and Power Systems

ET 332b Ac Electric Machines and Power Systems Instructor: Dr. Carl Spezia, PE Office: Engr. D110 Phone: 453-7839 E-mail: powerguy@siu.edu ET 332b Ac Electric Machines and Power Systems Office Hours: 9:00 am - 10:00 am M-W-F 2:00 pm - 3:00 pm M-W-F

More information

FIT TIER 2 Application

FIT TIER 2 Application FIT TIER 2 Application Application Information The below information Auto-Fills from your registration information: Building Permit Application Date: Project Completion Date: Name: Address: City: State:

More information

WHITE PAPER GROUND FAULT. Lowering the Limits for Ground Fault Detection

WHITE PAPER GROUND FAULT. Lowering the Limits for Ground Fault Detection WHITE PAPER GROUND FAULT Lowering the Limits for Ground Fault Detection Current flowing to ground has only two paths it can flow to ground through a ground fault, or it can flow to ground through distributed

More information

Grounding of Electrical Systems NEW CODE: Grounding and Bonding

Grounding of Electrical Systems NEW CODE: Grounding and Bonding Grounding of Electrical Systems NEW CODE: Grounding and Bonding Presented By Scott Peele PE Grounding of Electrical Systems Outline Defining the Terms Why should I Ground? Types of Grounding Systems Separately

More information

Discussion on Class I & II Terminology. IEEE PES Transformers Committee Fall Meeting 2011 Boston, MA

Discussion on Class I & II Terminology. IEEE PES Transformers Committee Fall Meeting 2011 Boston, MA Discussion on Class I & II Terminology IEEE PES Transformers Committee Fall Meeting 2011 Boston, MA What is Class I & II? C57.12.00 2010 is the only document we have that defined these terms. 5.10 Insulation

More information

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Introduction There is a growing trend in the UPS industry to create a highly efficient, more lightweight and smaller UPS

More information

Three-Phase Electric Power Distribution for Computer Data Centers

Three-Phase Electric Power Distribution for Computer Data Centers Three-hase Electric ower Distribution for Computer Data Centers WHITE AER E901 Geist January 008 Summary This paper will describe the characteristics of three-phase power and outline the advantages of

More information

Definition AC Power Distribution

Definition AC Power Distribution COMMON AC POWER DISTRIBUTION CONFIGURATIONS The input voltage needed to power electronic equipment is provided by the manufacture in the product specifications. Matching this requirement to the facility

More information

3-Phase AC Calculations Revisited

3-Phase AC Calculations Revisited AN110 Dataforth Corporation Page 1 of 6 DID YOU KNOW? Nikola Tesla (1856-1943) came to the United States in 1884 from Yugosiavia. He arrived during the battle of the currents between Thomas Edison, who

More information

Generator Differential Relay Electrical Apparatus

Generator Differential Relay Electrical Apparatus Generator Differential Relay Electrical Apparatus MD3G Rotating Machine Differential Relay 150-3 The MD3G Rotating Machine Differential Relay is a member of Cooper Power Systems Edison line of microprocessor

More information

Line to Ground Voltage Monitoring on Ungrounded and Impedance Grounded Power Systems

Line to Ground Voltage Monitoring on Ungrounded and Impedance Grounded Power Systems Line to Ground Voltage Monitoring on Ungrounded and Impedance Grounded Power Systems by Reza Tajali, P.E. Square D Company, Power Systems Engineering Group 295 Tech Park Drive LaVergne, Tennessee 37086

More information

DC TRANSMISSION BASED ON VOLTAGE SOURCE CONVERTERS

DC TRANSMISSION BASED ON VOLTAGE SOURCE CONVERTERS DC TRANSMISSION BASED ON VOLTAGE SOURCE CONVERTERS by Gunnar Asplund, Kjell Eriksson, Hongbo Jiang, Johan Lindberg, Rolf Pålsson, Kjell Svensson ABB Power Systems AB Sweden SUMMARY Voltage Source Converters

More information

NC-12 Modbus Application

NC-12 Modbus Application NC-12 Modbus Application NC-12 1 Table of Contents 1 Table of Contents... 2 2 Glossary... 3 SCADA...3 3 NC-12 Modbus in general... 3 4 Entire system... 4 4.1 PFC to PC connection alternatives...4 4.1.1

More information

Voltage Regulator SPAU 341 C. Product Guide

Voltage Regulator SPAU 341 C. Product Guide Issued: July 1998 Status: Updated Version: D/25.04.2006 Data subject to change without notice Features Comprehensive voltage regulation for power transformers with on-load tapchangers in distribution substations

More information

Selecting Current Transformers Part 1 By Darrell G. Broussard, P.E.

Selecting Current Transformers Part 1 By Darrell G. Broussard, P.E. By Darrell G. Broussard, P.E. Introduction: As engineers, we are aware that electrical power systems have grown. How much have they grown? When was the last time you specified a 2400-volt system, a 4160-volt

More information

Series and Parallel Circuits

Series and Parallel Circuits Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected end-to-end. A parallel

More information

OVERCURRENT & EARTH FAULT RELAYS. To study the protection of equipment and system by relays in conjunction with switchgear.

OVERCURRENT & EARTH FAULT RELAYS. To study the protection of equipment and system by relays in conjunction with switchgear. OVERCURRENT & EARTH FAULT RELAYS Objective: To study the protection of equipment and system by relays in conjunction with switchgear. Theory: The function of a relay is to detect abnormal conditions in

More information

Transmission Protection Overview

Transmission Protection Overview Transmission Protection Overview 2012 Hands-On Relay School Brian Smyth Schweitzer Engineering Laboratories Pullman, WA Transmission Line Protection Objective General knowledge and familiarity with transmission

More information

Series-Parallel Circuits. Objectives

Series-Parallel Circuits. Objectives Series-Parallel Circuits Objectives Identify series-parallel configuration Analyze series-parallel circuits Apply KVL and KCL to the series-parallel circuits Analyze loaded voltage dividers Determine the

More information

Both variants can be used for measuring the positive sequence voltage Up or the negative sequence voltage Un.

Both variants can be used for measuring the positive sequence voltage Up or the negative sequence voltage Un. Rev. - 2004-10-22 Page 1(5) General RXTBA 1 is a three-phase phase sequence voltage filter built up by resistors and capacitors. The filter is available in two voltage variants; one for rated voltage 3x110

More information

ACCURACY OF POTENTIALTRANSFORMERS

ACCURACY OF POTENTIALTRANSFORMERS 8 VOLTAGE TRANSFORMERS Two types of voltage transformer are used for protective-relaying purposes, as follows: (1) the "instrument potential transformer," hereafter to be called simply "potential transformer,"

More information

Features. Display. Measurements. Intelligent. Accuracy. Models. Installation DEIF A/S. Multi-instrument 4921210109D

Features. Display. Measurements. Intelligent. Accuracy. Models. Installation DEIF A/S. Multi-instrument 4921210109D 7000/7000C/7020 Multi-instrument 4921210109D Features Measurements All 3-phase AC measurements True RMS Replaces analogue meters Demand on each phase current Accuracy U, I and F class 0.5 Other values

More information

Chapter 4 AC to AC Converters ( AC Controllers and Frequency Converters )

Chapter 4 AC to AC Converters ( AC Controllers and Frequency Converters ) Chapter 4 AC to AC Converters ( AC Controllers and Frequency Converters ) Classification of AC to AC converters Same frequency variable magnitude AC power AC controllers AC power Frequency converters (Cycloconverters)

More information

Protection Based on Dynamic State Estimation (a.k.a. Setting-less Protection): Status and Vision

Protection Based on Dynamic State Estimation (a.k.a. Setting-less Protection): Status and Vision Protection Based on Dynamic State Estimation (a.k.a. Setting-less Protection): Status and Vision Sakis Meliopoulos Georgia Power Distinguished Professor School of Electrical and Computer Engineering Georgia

More information

INTRODUCTION TO SYSTEM PROTECTION. Hands-On Relay School 2012

INTRODUCTION TO SYSTEM PROTECTION. Hands-On Relay School 2012 INTRODUCTION TO SYSTEM PROTECTION Hands-On Relay School 2012 CONGRATULATIONS On choosing the field of system protection. It is an exciting, challenging profession. System protection has changed considerably

More information

Three-Phase AC Power Circuits

Three-Phase AC Power Circuits Electricity and New Energy Three-Phase AC Power Circuits Student Manual 86360-F0 Order no.: 86360-00 Revision level: 10/2014 By the staff of Festo Didactic Festo Didactic Ltée/Ltd, Quebec, Canada 2010

More information

Chapter 3 AUTOMATIC VOLTAGE CONTROL

Chapter 3 AUTOMATIC VOLTAGE CONTROL Chapter 3 AUTOMATIC VOLTAGE CONTROL . INTRODUCTION TO EXCITATION SYSTEM The basic function of an excitation system is to provide necessary direct current to the field winding of the synchronous generator.

More information

RC NETWORKS SALES GUIDE

RC NETWORKS SALES GUIDE SALES GUIDE INTRODUCTION TO Recent developments in electronic equipment have shown the following trends: Increasing demands for numerical control machines, robotics and technically advanced appliances

More information

Improvements of Reliability of Micro Hydro Power Plants in Sri Lanka

Improvements of Reliability of Micro Hydro Power Plants in Sri Lanka Improvements of Reliability of Micro Hydro Power Plants in Sri Lanka S S B Udugampala, V Vijayarajah, N T L W Vithanawasam, W M S C Weerasinghe, Supervised by: Eng J Karunanayake, Dr. K T M U Hemapala

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD IEC 60071-2 Third edition 1996-12 Insulation co-ordination Part 2: Application guide This English-language version is derived from the original bilingual publication by leaving out

More information

Neutral to Earth Voltage Reduction Methods in Three-Phase Four Wire Distribution Systems

Neutral to Earth Voltage Reduction Methods in Three-Phase Four Wire Distribution Systems Neutral to Earth oltage Reduction Methods in ThreePhase Four Wire Distribution Systems G. Ahmadi and S.M. Shahrtash ran University of Science and Technology (UST) gahmadi@ieee.org Center of Excellence

More information

Series and Parallel Circuits

Series and Parallel Circuits Pre-Laboratory Assignment Series and Parallel Circuits ECE 2100 Circuit Analysis Laboratory updated 16 May 2011 1. Consider the following series circuit. Derive a formula to calculate voltages V 1, V 2,

More information

Three-phase AC circuits

Three-phase AC circuits Three-phase AC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

GE Protection and Control Business Department. Page 1 Date 5/11/99

GE Protection and Control Business Department. Page 1 Date 5/11/99 GE Protection and Control Business Department Page 1 GE Protection and Control Business Department Proven Overcurrent Protection with Power Management Communication The The Advantages of Microprocessor

More information

Unified requirements for systems with voltages above 1 kv up to 15 kv

Unified requirements for systems with voltages above 1 kv up to 15 kv (1991) (Rev.1 May 2001) (Rev.2 July 2003) (Rev.3 Feb 2015) Unified requirements for systems with voltages above 1 kv up to 15 kv 1. General 1.1 Field of application The following requirements apply to

More information

The following table shows approximate percentage wise the

The following table shows approximate percentage wise the SHORT-CIRCUIT CALCULATION INTRODUCTION Designing an electrical system is easy and simple, if only the normal operation of the network is taken into consideration. However, abnormal conditions which are

More information

Loading Considerations When Paralleling Transformers

Loading Considerations When Paralleling Transformers Application Guide 7400DB0701 02/2007 Nashville, TN, USA Loading Considerations When Paralleling Transformers Class 7400 Retain for future use. Introduction Principles of Paralleling This application guide

More information

Buffer Op Amp to ADC Circuit Collection

Buffer Op Amp to ADC Circuit Collection Application Report SLOA098 March 2002 Buffer Op Amp to ADC Circuit Collection Bruce Carter High Performance Linear Products ABSTRACT This document describes various techniques that interface buffer op

More information